亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        小分子有機酸對土壤中多環(huán)芳烴環(huán)境行為影響的研究進展

        2020-01-07 00:42:00袁月
        福建農(nóng)業(yè)科技 2020年10期
        關(guān)鍵詞:土壤有機質(zhì)多環(huán)芳烴土壤微生物

        袁月

        摘?要:土壤中的多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)作為一類具有“三致”效應(yīng)的疏水性有機污染物,能在土壤中長時間穩(wěn)定的存在并且很難被降解。PAHs的環(huán)境行為取決于它們與土壤不同組分之間的相互作用,作為土壤中根系分泌物主要組分的小分子有機酸(low molecular weight organic acids,LMWOAs)能通過對土壤環(huán)境的影響進而影響PAHs的環(huán)境行為。綜述了LMWOAs對土壤中PAHs吸附-解吸和“老化”等環(huán)境行為的影響,討論了LMWOAs通過對土壤有機質(zhì)、土壤結(jié)構(gòu)及土壤微生物等的作用而影響PAHs的環(huán)境行為。通過綜述該領(lǐng)域近年的研究成果,指出了現(xiàn)有研究中的不足,并展望了今后的研究趨勢,有利于推動對PAHs污染土壤的有效治理。

        關(guān)鍵詞:小分子有機酸;多環(huán)芳烴;土壤有機質(zhì);土壤結(jié)構(gòu);土壤微生物

        中圖分類號:X53?文獻標(biāo)志碼:A?文章編號:0253-2301(2020)10-0062-08

        DOI: 10.13651/j.cnki.fjnykj.2020.10.011

        Abstract: As a group of hydrophobic organic pollutants with ″three genicity″ effects, Polycyclic aromatic hydrocarbons (PAHs) in soil can exist steadily for a long time and are difficult to be degraded. The environmental behavior of PAHs depends on their interaction with different soil components. Low-molecular-weight organic acids (LMWOAs), as the main components of root exudate in soil, can affect the environmental behavior of PAHs by influencing the soil environment. The effects of low-molecular-weight organic acids (LMWOAs) on the environmental behaviors of PAHs in soil such as adsorption-desorption, and aging were reviewed. LMWOAs affecting the environmental behaviors of PAHs through their effects on soil organic matter, soil structure and soil microorganisms were discussed. By summarizing the research achievements in this field in recent years, the deficiencies of the existing research were pointed out and the research trend in the future was forecasted, which would be helpful to promote the effective treatment of PAHs contaminated soil.

        Key words: Low-molecular-weight organic acids;Polycyclic aromatic hydrocarbons;Soil organic matter;Soil structure;Soil microorganism

        多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)是由兩個或兩個以上的苯環(huán)稠合形成的一類疏水性有機化合物,其化學(xué)性質(zhì)穩(wěn)定且易吸附于固體顆粒,一些PAHs化合物在環(huán)境中具有持久性[1-2]。人類活動(如化石燃料的不完全燃燒、汽車尾氣排放以及原油的泄漏等)是環(huán)境中PAHs的主要來源[3]。土壤是PAHs的一個主要陸地儲存庫,2014年4月17日我國環(huán)境保護部和國土資源部發(fā)布的《全國土壤污染狀況調(diào)查公報》中指出,PAHs的點位超標(biāo)率為1.4%。PAHs進入土壤后會發(fā)生一系列物理、化學(xué)和生物過程,包括吸附-解吸、微生物降解等[4-5]。土壤有機質(zhì)、溶解性有機質(zhì)、土壤組成與空間結(jié)構(gòu)等多種環(huán)境因素都會對土壤中PAHs的環(huán)境行為產(chǎn)生影響[6-7]。土壤中PAHs的吸附解吸和“老化”等環(huán)境行為主要受土壤有機質(zhì)(SOM)的含量和質(zhì)量以及團聚體結(jié)構(gòu)特征等因素的影響;而微生物活性則是影響土壤中PAHs去除的一個直接因素[8]。小分子有機酸(low-molecular-weight organic acids,LMWOAs)是一類具有一個或多個羧基的小分子有機物,作為土壤中可溶性有機物的最重要組成部分之一,能通過對土壤有機質(zhì)、土壤結(jié)構(gòu)以及土壤微生物等的作用而影響PAHs的土壤環(huán)境行為[9-12]。本文系統(tǒng)地綜述了LMWOAs通過對土壤有機質(zhì)的作用或?qū)ν寥澜Y(jié)構(gòu)的破壞而影響PAHs的吸附解吸;同時,總結(jié)了LMWOAs作為碳源、影響降解菌生長環(huán)境進而對土壤微生物產(chǎn)生的影響。闡述了LMWOAs對土壤中PAHs環(huán)境行為的影響及其作用機制等方面的研究進展,以期為更好地了解和利用LMWOAs對土壤中PAHs的修復(fù)提供參考。

        1?LMWOAs對土壤有機質(zhì)作用的影響

        有機質(zhì)是土壤的重要組成部分,SOM已被證明是土壤和沉積物中疏水性有機污染物的主要匯聚區(qū)[13]。SOM含量是影響污染物吸附形態(tài)和生物有效性的主要土壤性質(zhì)[14-15]。SOM含量高的土壤具有更多的吸附位點,對PAHs的吸附量和吸附強度均較高,能夠與PAHs緊密結(jié)合并限制其流動性,同時限制土壤中PAHs的降解[16-17]。另外,SOM的結(jié)構(gòu)特征也會影響有機污染物的吸附行為。SOM的芳香組分易于與PAHs形成π-π鍵,天然有機質(zhì)的脂肪族結(jié)構(gòu)通過疏水性作用使污染物吸附在橡膠態(tài)有機碳區(qū)域[18-20]。同時,芳香性較高且極性較小的SOM成分具有較高的吸附能力,黏性“橡膠態(tài)”的SOM比剛性“玻璃態(tài)”的SOM具有更快的吸附速率[21]。

        在自然土壤中,有機質(zhì)和黏土礦物常通過金屬陽離子結(jié)合在一起以有機無機復(fù)合體的形態(tài)存在[22]。而土壤中LMWOAs常與黏土礦物共存,LMWOAs具有羧基、羥基或者氨基等基團,與金屬陽離子具有較強的螯合能力,能與土壤中的黏土礦物和有機組分等發(fā)生作用,進而會影響SOM上污染物的吸附-解吸等行為。表1列出了一些關(guān)于LMWOAs通過對SOM的作用進而對PAHs環(huán)境行為產(chǎn)生影響的研究結(jié)果。

        部分研究認(rèn)為,LMWOAs對土壤中PAHs吸附-解吸的影響,主要是通過其對SOM的作用[26]。LMWOAs與金屬離子的螯合作用打破了有機質(zhì)與礦物之間的“橋梁”,使SOM與礦物之間的離子橋鍵斷開,促進了金屬陽離子和溶解性有機質(zhì)(DOM)的釋放。DOM是由較小的有機分子通過疏水性作用或氫鍵作用形成的超分子聚合物[27-28]。它雖僅占SOM的很小部分,但能作為PAHs等有機污染物在土壤中遷移的載體,有利于土壤中污染物的遷移和轉(zhuǎn)化[29-30]。因此,LMWOAs的作用促使土壤固相有機質(zhì)減少,DOM增加。DOM增加的過程中,吸附在固相有機質(zhì)上的PAHs向溶液相轉(zhuǎn)移,使原本被鎖定的PAHs得到釋放,這可能是土壤中PAHs解吸量增多的重要原因。

        LMWOAs對SOM的作用除了能夠?qū)е峦寥烙袡C礦質(zhì)復(fù)合體中固相有機質(zhì)釋放、DOM增加以外,在這一過程中SOM的聚合程度可能也發(fā)生了變化。有研究表明,通過使用纖維素酶使固相土壤有機質(zhì)轉(zhuǎn)變?yōu)镈OM的過程中,會降低SOM的剛性,使SOM結(jié)構(gòu)變得松散[31]。研究認(rèn)為,土壤腐殖質(zhì)是來源于生物物質(zhì)分解或降解的相對較小的分子通過自組裝締合而形成的超分子,這種超分子主要是通過弱的分子間作用力(疏水作用力:范德華力、ππ、CHπ;氫鍵)而非共價鍵作用形成的分子聚集體[32-33];腐殖質(zhì)的超分子結(jié)構(gòu)在一定的環(huán)境條件下又可以解聚成不同的小分子有機質(zhì)[34-35]。有機質(zhì)的還原和聚合程度越高,污染物的解吸滯后程度越大,解吸速率越慢,生物有效性也就越低[36-37]。LMWOAs的螯合能力是否使有機質(zhì)結(jié)構(gòu)變得松散,導(dǎo)致有機質(zhì)聚合程度降低,進而促進了土壤中PAHs遷移或解吸。有關(guān)此方面的研究還沒有準(zhǔn)確的結(jié)論。

        此外,SOM在不同的pH條件下會以不同的物理形態(tài)(卷曲或拉伸)存在,并對疏水性有機污染物表現(xiàn)出不同的吸附能力[38-39]。土壤pH是影響土壤和礦物表面電荷、調(diào)節(jié)土壤養(yǎng)分、影響有機污染物存在形式以及土壤微生物活性的重要因素[40-41]。較高的pH值會使得有機污染物和SOM在水相中的溶解度增加,從而促進SOM的脫附和有機污染物的解吸[42]。

        LMWOAs添加會影響土壤pH。研究表明,LMWOAs對土壤中PAHs的解吸有促進作用,然而LMWOAs對PAHs解吸的促進作用并不是一直隨著LMWOAs濃度的增加而增強。有研究發(fā)現(xiàn),在一定濃度范圍內(nèi),當(dāng)LMWOAs濃度高于一定值時,LMWOAs對土壤中PAHs解吸的促進作用就會減弱[43]。究其原因可能是高濃度LMWOAs的添加導(dǎo)致了土壤pH值的變化,當(dāng)LMWOAs的濃度超過一定數(shù)值可能會影響LMWOAs有機陰離子對PAHs解吸促進的作用能力[44]。具體的影響及機理有待進一步研究。

        2?LMWOAs對土壤結(jié)構(gòu)破壞的影響

        土壤的組成和空間結(jié)構(gòu)影響土壤顆粒與PAHs的相互作用[45],進而影響PAHs的吸附-解吸、老化等環(huán)境行為。在PAHs污染土壤中,隨著老化時間的增加,PAHs會分散到SOM的剛性相中或緩慢擴散進入土壤微孔結(jié)構(gòu)[46-47]。PAHs可以被鎖定在這些微小孔隙中。吸附在土壤微孔結(jié)構(gòu)內(nèi)的PAHs,只有通過轉(zhuǎn)運的方式才能被微生物接觸進而被降解[48-49]。

        LMWOAs通過其羥基、羧基與礦物中金屬離子之間發(fā)生螯合作用,促進金屬離子從礦物表面的釋放,改變土壤微孔分布,進而影響吸附在其上的PAHs環(huán)境行為。Wang等[50]通過使用蘋果酸,檸檬酸,琥珀酸和酒石酸這4種LMWOAs研究其對黑土、紅土、木質(zhì)素和腐殖質(zhì)的微孔特性的影響。結(jié)果表明,檸檬酸和蘋果酸的添加顯著降低了土壤微孔的表面積和體積,但是這兩種酸對于木質(zhì)素微孔沒有顯著改變。因此,土壤微孔體積減小的主要原因并不是微孔被堵塞,而可能是由于LMWOAs增強了對礦物中金屬離子的爭奪,導(dǎo)致了土壤礦物顆粒的溶解。隨著土壤微孔的破壞,礦物質(zhì)顆粒的溶解,鎖定在土壤孔隙中的PAHs被釋放。PAHs的遷移率和流動性得到了提高,有機會被微生物接觸進而被降解。

        土壤團聚體空間結(jié)構(gòu)特征(例如比表面積、孔隙度和粒徑大?。┯绊懷鯕鉂B透率與PAHs的生物可接近性[51]。土壤團聚體對PAHs具有鎖定作用。自然土壤中,土壤團聚體結(jié)構(gòu)形成的過程會將有機質(zhì)吸附的PAHs包裹其中,使其很難解吸或溶出。團聚體能夠形成物理屏障反過來保護有機質(zhì),使微生物和酶很難接近底物,進而使PAHs的生物有效性降低。土壤團聚體不同粒徑組分通過陽離子(如Ca2+、Mg2+、Fe2+、Al3+等)形成橋鍵而復(fù)合成粒徑較大的組分[52]。LMWOAs能與金屬陽離子發(fā)生螯合作用,破壞土壤團聚體結(jié)構(gòu),使得包裹在團聚體內(nèi)部的PAHs被釋放,PAHs的生物有效性得到提高。LMWOAs通過與土壤結(jié)構(gòu)中無機離子的螯合作用導(dǎo)致了部分土壤結(jié)構(gòu)的溶解,從而提高PAHs與微生物或酶的接觸機會,提高PAHs生物有效性[52]。

        然而,土壤中的陽離子不僅會在土壤有機質(zhì)與礦物之間形成橋鍵,有機質(zhì)分子間或分子內(nèi)部也會通過金屬陽離子橋鍵結(jié)合。研究表明,多價金屬離子可以作為土壤有機質(zhì)聚合的交聯(lián)劑,通過與有機質(zhì)不同支鏈上的羧基或酚羥基配位而增加有機質(zhì)的剛性[25]。LMWOAs與土壤中陽離子的絡(luò)合不僅破壞了有機質(zhì)與礦物之間橋鍵,而且也可能破壞了有機質(zhì)分子間或分子內(nèi)部的陽離子橋鍵。仍需進一步研究LMWOAs是否通過影響土壤有機質(zhì)的聚合程度、破壞有機質(zhì)分子之間或有機質(zhì)分子內(nèi)部的陽離子橋鍵,使有機質(zhì)結(jié)構(gòu)變得松散進而促進了土壤中PAHs的解吸。

        3?LMWOAs對土壤微生物的影響

        一般認(rèn)為,PAHs等有機污染物在被土壤吸附后,隨著時間的增加,污染物與土壤結(jié)合得更緊密,導(dǎo)致其生物有效性下降,這一過程即為“老化”。土壤中有機污染物的生物有效性常被認(rèn)為是控制污染物降解速率和污染土壤生物修復(fù)成功與否的重要因素[53]。隨著老化時間的增加,PAHs生物有效性的下降,PAHs的可提取性也會顯著降低[54],進而限制PAHs的原位生物降解、影響PAHs污染土壤的修復(fù)效率[55]。

        在眾多的PAHs污染修復(fù)方法中,微生物修復(fù)因其低成本、高效、污染少等優(yōu)點成為研究熱點。微生物降解已成為最主要的多環(huán)芳烴污染土壤的修復(fù)技術(shù)。微生物、細菌、真菌和藻類具有自然降解潛力,能應(yīng)用于有機污染物的生物修復(fù),使PAHs等有機污染物轉(zhuǎn)化為毒性較小的化合物或易于被環(huán)境吸收的水和二氧化碳[56]。土壤微生物對污染物的降解是成本效益最低的污染物修復(fù)過程[57]。研究表明,LMWOAs通過改變土壤環(huán)境進而影響土壤微生物對PAHs的降解能力,并且LMWOAs對土壤中PAHs生物有效性的提高有促進作用。表2列出了一些關(guān)于LMWOAs影響土壤中PAHs生物有效性及降解能力的相關(guān)研究。

        已知碳源、氮源以及無機鹽是微生物生長所必需的營養(yǎng)物質(zhì),給微生物提供充足的營養(yǎng)物質(zhì)可以提高微生物的修復(fù)性能。外加碳源能夠在一定程度上縮短降解菌對PAHs進入快速降解的時間[63]。研究認(rèn)為,LMWOAs能作為微生物可利用的碳源,提高微生物對PAHs的降解能力。王蛟龍等[12]通過測定添加LMWOAs后污染土壤中菲含量及土壤細菌群落種類和數(shù)量的變化,結(jié)果發(fā)現(xiàn)添加LMWOAs減少了細菌OTU數(shù)及細菌菌群多樣性,但增加了PAHs降解菌的豐度。Sivaram等[10]的研究結(jié)果也表明,當(dāng)芘是唯一的碳源時,試驗選用的所有菌株都不能將芘完全降解,在添加檸檬酸等LMWOAs后,細菌以LMWOAs作為碳源而促進了生長,從而提高了其對PAHs的降解能力。LMWOAs通過作為土壤微生物可利用的碳源,激發(fā)了土壤微生物活性,從而促進了PAHs的降解。

        另外,土壤養(yǎng)分、土壤酶活性會影響土壤環(huán)境中微生物對PAHs的降解,影響PAHs的生物有效性。一般情況下, 微生物對PAHs的降解都需要氧氣的參與,產(chǎn)生加氧酶,然后再在加氧酶的作用下使苯環(huán)分解[64]。土壤微生物數(shù)量、土壤酶活性是影響PAHs降解效率的重要因素[65-66]。土壤中微生物數(shù)量與酶活性呈顯著正相關(guān)[67]。土壤環(huán)境中的養(yǎng)分含量是降解菌存活的重要基礎(chǔ),對微生物活性有很大影響。

        LMOWAs能與土壤中Al3+、Ca2+等金屬陽離子的發(fā)生螯合作用[61],促使氮、磷元素的釋放,為土壤中降解菌的生長提供養(yǎng)分[68]。Rostami等[60]的研究結(jié)果顯示,水楊酸和菌根真菌的同時施用增加了土壤中的細菌數(shù)量、脫氫酶活性,進而增強了高羊茅修復(fù)PAHs污染土壤的能力,使得土壤中氟、蒽的去除率顯著提高。在土壤環(huán)境中,土壤酶活性的增強能夠激活土壤中的氮、磷等養(yǎng)分元素,進而促進微生物的生長。另有研究表明,施用LMWOAs對土壤中金屬離子的爭奪作用會使礦物增溶,能顯著提高土壤中有效磷的含量,土壤酶的活性也顯著增強,土壤中養(yǎng)分含量的增加促進特定微生物的增長,進而促進了其對土壤中PAHs的降解[58]。

        然而,在關(guān)于LMWOAs對土壤中PAHs生物有效性影響的研究中,部分研究通過使用有機溶劑等的提取來預(yù)測LMWOAs對土壤中PAHs生物有效性的影響,或者根據(jù)對土壤中PAHs解吸量的多少來判斷其生物有效性。而有機溶劑提取本身會對PAHs的生物有效性產(chǎn)生影響。研究表明,向土壤中加入有機溶劑有利于PAHs類污染物從土壤基質(zhì)上的解吸,能夠提高PAHs的生物有效性,增強PAHs的生物降解[69]。有機溶劑能夠作為萃取劑對污染土壤中的PAHs表現(xiàn)出較好的去除效果。所以在進行研究時不能忽視有機溶劑本身起到的促進作用。

        4?結(jié)語與展望

        目前關(guān)于LMWOAs對土壤中PAHs環(huán)境行為影響的研究已取得了較好的成果,部分研究認(rèn)為LMWOAs通過對土壤有機質(zhì)的作用或?qū)ν寥澜Y(jié)構(gòu)的破壞而促進土壤中PAHs的解吸;并指出LMWOAs影響PAHs生物有效性的機制是通過作為微生物生長所需的碳源、影響其生長環(huán)境等。然而,相關(guān)研究多選用能與金屬離子發(fā)生螯合作用的一類LMWOAs,認(rèn)為其通過破壞有機質(zhì)與礦物之間橋鍵,使有機質(zhì)溶解或破壞土壤結(jié)構(gòu),進而影響PAHs的環(huán)境行為。未考慮LMWOAs是否使SOM解聚或減弱SOM的聚合程度而對PAHs環(huán)境行為產(chǎn)生影響。關(guān)于LMWOAs對PAHs生物有效性的研究,更多地考慮LMWOAs對微生物的作用而影響PAHs的生物有效性,而較少的研究其對土壤、礦物及有機質(zhì)結(jié)構(gòu)的破壞促進了PAHs解吸,進而提高了PAHs的生物可降解性。

        鑒于土壤環(huán)境的復(fù)雜性和土壤中PAHs污染的多樣性,關(guān)于LMWOAs對土壤中PAHs環(huán)境行為影響的研究,仍需在很多方面進行更加深入地探索。(1)有必要研究LMWOAs對土壤有機質(zhì)聚合程度的改變是否對土壤中PAHs的解吸造成了影響。判斷LMWOAs是否破壞了有機質(zhì)分子間或分子內(nèi)部的陽離子橋鍵,從而對PAHs的解吸起到了促進作用。(2)LMWOAs促進土壤中PAHs微生物降解的真正機制是什么?LMWOAs是否是通過對土壤、礦物及有機質(zhì)結(jié)構(gòu)的破壞促進PAHs解吸,進而提高了PAHs的生物可降解性,而不僅是其作為微生物可利用碳源的作用。目前關(guān)于上述方面的研究仍很不清楚,有待于深入探索。研究結(jié)果可以為PAHs的微生物修復(fù)提供新的思路,為污染土壤的修復(fù)治理提供理論依據(jù)。這些都將是值得進一步研究的課題。

        參考文獻:

        [1]MENZIE C,POTOCKI B,SANTODONATO J.Exposure to carcinogenic PAHs in the environment[J].Environmental Science & Technology,1992,26:1278-1284.

        [2]BEZZA F,CHIRWA E.Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons(PAHs)in creosote contaminated soil[J].Chemosphere,2016,144:635-644.

        [3]SHARMA D,JAIN S.Impact of intervention of biomass cook-stove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India[J].Environ Int,2019,123:240-255.

        [4]MACLEOD C J A,SEMPLE K T.Sequential extraction of low concentrations of pyrene and formation of non-extractable residues in sterile and non-sterile soils[J].Soil Biology & Biochemistry,2003,35:1443-1450.

        [5]王春霞.環(huán)境化學(xué)學(xué)科前沿與展望[M].北京:科學(xué)出版社,2011.

        [6]WEISSENFELS W,KLEWER H,LANGHOFF J.Adsorption of polycyclic aromatic hydrocarbons(PAHs)by soil particles:Influence on biodegradability and biotoxicity[J].Applied Microbiology & Biotechnology,1992,36:689-696.

        [7]邢維芹,駱永明,李立平.影響土壤中PAHs降解的環(huán)境因素及促進降解的措施[J].土壤通報,2007,38(1):173-178.

        [8]ALEXANDER M.Aging,Bioavailability,and overestimation of risk from environmental pollutants[J].Environmental Science & Technology,2000,34:4259-4265.

        [9]GAO Y,REN L,LING W,et al.Desorption of phenanthrene and pyrene in soils by root exudates[J].Bioresource Technology,2010,101:1159-1165.

        [10]SIVARAM A,LOGESHWARAN P,LOCKINGTON R,et al.Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria[J].Chemosphere,2019,222:132-140.

        [11]LING W,SUN R,GAO X,et al.Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil[J].European Journal of Soil Science,2015,66:339-347.

        [12]王蛟龍,諶小勇,閆文德.低分子有機酸對土壤中菲降解及細菌群落結(jié)構(gòu)的影響[J].生態(tài)學(xué)報,2019(19):7179-7188.

        [13]MEANS J,WOOD S,HASSETT J,et al.Sorption of polynuclear aromatic hydrocarbons by sediments and soils[J].Environmental Science & Technology,1980,14:1524-1528.

        [14]CELIS R,JONGE H D,JONGE L W D,et al.The role of mineral and organic components in phenanthrene and dibenzofuran sorption by soil[J].European Journal of Soil Science,2010,57:308-319.

        [15]YANG Y,ZHANG N,XUE M,et al.Efects of soilorganic matter on the development of the microbial polycyclicaromatic hydrocarbons(PAHs)degradation potentials[J].Environmental Pollutants,2011,159:591-595.

        [16]NAM K,CHUNG N,ALEXANDER M.Relationship between organic matter content of soil and the sequestration of phenanthrene[J].Environmental Science & Technology,1998,32:3785-3788.

        [17]WATANABE N,SCHWARTZ E,SCOW K,et al.Relating desorption and biodegradation of phenanthrene to SOM structure characterized by quantitative pyrolysis GCMS[J].Environmental Science & Technology,2005,39:6170-6181.

        [18]SALLOUM M J,CHEFETZ B,HATCHER P G.Phenanthrene sorption by aliphatic-rich natural organic matter[J].Environmental Science & Technology,2002,36:1953-1958.

        [19]MAO J D,HUNDAL L S,THOMPSON M L,et al.Correlation of poly(methylene)-rich amorphous aliphatic domains in humic substances with sorption of a nonpolar organic contaminant,phenanthrene[J].Environmental Science & Technology, 2002,36:929-936.

        [20]GUNASEKARA A S,XING B.Sorption and desorption of naphthalene by soil organic matter[J].Journal of Environmental Quality,2003,32:240-246.

        [21]XING B,PIGNATELLO J.Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride)and soil organic matter[J].Environmental Science & Technology,1997,31:792-799.

        [22]SAISON C,PERRIN-GANIER C,AMELLAL S,et al.Effect of metals on the adsorption and extractability of 14C-phenanthrene in soils[J].Chemosphere,2004,55:477-485.

        [23]JIA H,CHEN H,NULAJI G,et al.Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe (III)-smectite under visible light[J].Chemosphere,2015,138:266-271.

        [24]WANG H.Effect of artificial root exudates on the sorption and desorption of PAHs in meadow brown soils[J].AIP Conference Proceedings,2017,1890:1-4.

        [25]YANG Y,RATT D,SMETS B F,et al.Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption[J].Chemosphere,2001,43:1013-1021.

        [26]LING W,SUN R,GAO X,et al.Low molecular weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil[J].European Journal of Soil Science,2015,66:339-347.

        [27]SUTTON R,SPOSITO G.Molecular structure in soil humic substances:the new view[J].Environmental Science & Technology,2005,39:9009-9015.

        [28]徐玉芬,吳平霄,黨志.水溶性有機質(zhì)對土壤中污染物環(huán)境行為影響的研究進展[J].礦物巖石地球化學(xué)通報,2007(3):101-106.

        [29]ZHANG J,F(xiàn)AN S.Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction[J].Journal of Hazardous Materials,2016,320:114-122.

        [30]黃賽花,吳啟堂,侯梅芳,等.水溶性有機質(zhì)對土壤吸附芘的影響[J].生態(tài)環(huán)境學(xué)報,2017(4):693-699.

        [31]WICKE D,REEMTSMA T.Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter[J].Chemosphere,2010,78:996-1003.

        [32]PICCOLO A.The supramolecular structure of humic substances:A novel understanding of humus chemistry and implications in soil science[J].Advances in Agronomy,2002,75:57-134.

        [33]SUTTON R,SPOSITO G.Molecular structure in soil humic substances: the new view[J].Environmental Science & Technology,2005,39:9009-9015.

        [34]MEJKALOV D,PICCOLO A.Aggregation and disaggregation of humic supramolecular assemblies by NMR diffusion ordered spectroscopy(DOSY-NMR)[J].Environmental Science & Technology,2007,42:699-706.

        [35]NI J,PIGNATELLO J.Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids[J].Environmental Science:Processes & Impacts,2018,20:1225-1233.

        [36]LUEKING A D,HUANG W,SODERSTROM-SCHWARZ S,et al.Relationship of Soil Organic Matter Characteristics to Organic Contaminant Sequestration and Bioavailability[J].Journal of Environmental Quality,2000,29:317-323.

        [37]倪進治,駱永明,魏然.土壤有機和無機組分對多環(huán)芳烴環(huán)境行為影響的研究進展[J].土壤,2006(5):559-564.

        [38]MURPHY E,ZACHARA J,SMITH S,et al.Interaction of hydrophobic organic compounds with mineral-bound humic substances[J].Environmental Science & Technology,1994,28:1291-1299.

        [39]FENG X,SIMPSON A,SIMPSON M. Investigating the role of mineral-bound humic acid in phenanthrene sorption[J].Environmental Science & Technology,2006,40:3260-3266.

        [40]WANG A,LI S,TENG Y,et al.Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils[J].Journal of Environmental Sciences,2013,25:1172-1179.

        [41]ZENG F,HE Y,LIAN Z,et al.The impact of solution chemistry of electrolyte on the sorption of pentachlorophenol and phenanthrene by natural hematite nanoparticles[J].Science of the Total Environment,2014,466:577-585.

        [42]YU L,DUAN L,NAIDU R,et al.Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture[J].Science of The Total Environment,2018,613-614:1140-1153.

        [43]ZHANG Y,YANG X,GU C,et al.Prediction of Polycyclic Aromatic Hydrocarbon Bioaccessibility to Earthworms in Spiked Soils by Composite Extraction with Hydroxypropyl-β-Cyclodextrin and Organic Acids[J].Pedosphere,2017,27:502-510.

        [44]MARTIN B,GEORGE S,PRICE C,et al.The role of root exuded low molecular weight organic anions infacilitating petroleum hydrocarbon degradation:Current knowledge and future directions[J].Science of the Total Environment,2014,472:643-653.

        [45]WEISSENFELS W,KLEWER H,LANGHOFF J.Adsorption of polycyclic aromatic hydrocarbons(PAHs)by soil particles:Influence on biodegradability and biotoxicity[J].Applied Microbiology and Biotechnology,1992,36:689-696.

        [46]PAN B,XING B.Adsorption mechanisms of organic chemicals on carbon nanotubes[J].Environmental Science & Technology,2008,42:9005-9013.

        [47]LUO L,LIN S,HUANG H,et al.Relationships between aging of PAHs and soil properties[J].Environmental Pollution,2012,170:177-182.

        [48]HU X,WANG J,LIU Y,et al.Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin:isotherms, kinetics and thermodynamics[J].Journal of Hazardous Materials,2011,185:306-314.

        [49]LIU Y,ZENG Z,ZENG G,et al.Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds[J].Bioresource Technology,2012,115:21-26.

        [50]WANG Y,F(xiàn)ANG L,LIN L,et al.Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons[J].

        Chemosphere,2014,99:152-159.

        [51]SICILIANO S D,LAIRD B D,LEMIEUX C L.Polycyclic aromatic hydrocarbons are enriched but bioaccessibility reduced in brownfield soils adhered to human hands[J].Chemosphere,2010,80:1101-1108.

        [52]WHITE J C,MATTINA M I,LEE W Y,et al.Role of organic acids in enhancing the desorption and uptake of weathered p,p'-DDE by Cucurbita pepo[J].Environmental Pollution,2003,124:71-80.

        [53]SEMPLE K,DOICK K,WICK L,et al.Microbial interactions with organic contaminants in soil:Definitions,processes and measurement[J].Environmental Pollution,2007,150:166-176.

        [54]NORTHCOTT G,JONES K.Partitioning,extractability,and formation of nonextractable PAH residues in soil.1.compound differences in aging and sequestration[J].Environmental Science & Technology,2016,35:1103-10.

        [55]GINSBACH J,KILLOPS K,Olsen R,et al.Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents[J].Environmental Toxicology and Chemistry,2010,29:1049-1055.

        [56]MELLO J,LIMA B,SOUZA A,et al.Biodegradation of BTEX compounds in a biofilm reactor-Modeling and simulation[J].Journal of Petroleum Science & Engineering,2010,70:131-139.

        [57]WANG J,SANDOVAL K,DING Y,et al.Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities[J].Science of the Total Environment,2016,557-558:453-468.

        [58]MA H,LI X,WEI M,et al.Elucidation of the mechanisms into effects of organic acids on soil fertility,cadmium speciation and ecotoxicity in contaminated soil[J].Chemosphere,2020,239:http://doi.org/10.1016/j.chemosphere.2019.124706.

        [59]HOU Y,LIU X,ZHANG X,et al.Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils[J].Environmental Science & Pollution Research,2015,22:17780-17788.

        [60]ROSTAMI M,ROSTAMI S.Effect of salicylic acid and mycorrhizal symbiosis on improvement of fluoranthene phytoremediation using tall fescue(Festuca arundinacea Schreb)[J].Chemosphere,2019,232:70-75.

        [61]JIANG S,XIE F,LU H,et al.Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons[J].Environmental Science & Pollution Research,2017,24:1-10.

        [62]TIAN W,ZHAO J,ZHOU Y,et al.Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons[J].Ecotoxicology and Environmental Safety,2017,135:158-164.

        [63]王嬌嬌.植物、外加碳源和菌劑對多環(huán)芳烴(PAHs)污染介質(zhì)的修復(fù)作用研究[D].杭州:浙江大學(xué),2012.

        [64]鄒德勛,駱永明,徐鳳花,等.土壤環(huán)境中多環(huán)芳烴的微生物降解及聯(lián)合生物修復(fù)[J].土壤, 2007, 39(3):334-340.

        [65]HADIBARATA T,KRISTANTI R.Identification of metabolites from benzo[a]pyre neoxidation by ligninolytic enzymes of Polyporus sp.S133[J].Journal of Environmental Management,2012,111:115-119.

        [66]REIN A,ADAM I,MILTNER A,et al.Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-model simulations for prediction of bioremediation success[J].Journal of Hazardous Materials,2016,306:105-114.

        [67]ZHANG G,GUO X,ZHU Y,et al.The effects of different biochars on microbial quantity,microbial community shift,enzyme activity,and biodegradation of polycyclic aromatic hydrocarbons in soil[J].Geoderma,2018,328:100-108.

        [68]CHEN J,ZHOU H,HAI C,et al.Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers(PBDEs)in contaminated mangrove soil[J].Journal of Hazardous Materials,2015,300:84-92.

        [69]LAU E,GAN S,NG H,et al.Extraction agents for the removal of polycyclic aromatic hydrocarbons(PAHs)from soil in soil washing technologies[J].Environmental pollution(Barking,Essex:1987),2014,184:640-649.

        (責(zé)任編輯:柯文輝)

        猜你喜歡
        土壤有機質(zhì)多環(huán)芳烴土壤微生物
        不同林分類型及土層對土壤養(yǎng)分的影響
        不同干擾林地土壤重金屬與養(yǎng)分積累的關(guān)系
        科技資訊(2017年1期)2017-03-27 11:19:38
        長白山北坡和西坡林線土壤有機質(zhì)含量的對比分析
        基于PCR—DGGE的間作油茶林土壤細菌多樣性
        基于PCR—DGGE的間作油茶林土壤細菌多樣性
        焦油渣和煤瀝青焚燒處置適用工藝探析
        海紅對石油烴的積累與凈化效應(yīng)探析
        蒼耳在PAHs脅迫下的根系響應(yīng)
        精河沙區(qū)土壤酶分布特征及其對土壤理化性狀的響應(yīng)
        刈割對不同植物群落特征、土壤微生物和土壤酶活性的影響
        在线视频观看国产色网| 成人一区二区免费视频| 欧美尺寸又黑又粗又长| 九九精品无码专区免费| 国产av专区一区二区三区| 国产粉嫩美女一区二区三| 久亚洲精品不子伦一区| 午夜视频在线观看视频在线播放| 国产人妻久久精品二区三区老狼| 亚洲男同志gay 片可播放| 国产码欧美日韩高清综合一区| 亚洲一区二区三区国产精品| 按摩少妇高潮在线一区| 亚洲一区二区三区中文字幕网| 人妻少妇精品久久久久久| 亚洲婷婷五月综合狠狠爱 | 91精品国产91综合久久蜜臀| 久久久99精品免费视频| 2019日韩中文字幕mv| 亚洲日韩成人av无码网站| 国产白嫩美女在线观看| 特一级熟女毛片免费观看| 国产美女冒白浆视频免费| 亚洲中文字幕高清av| 久久久www成人免费毛片| 午夜亚洲www湿好爽| 国产欧美精品一区二区三区–老狼| 91精品国产闺蜜国产在线| 日韩av在线亚洲女同| 国产精品美女久久久久av福利| 精品人妻人人做人人爽夜夜爽| 美女高潮流白浆视频在线观看 | av日韩一区二区三区四区| 男女做爰高清免费视频网站| 久久久久久好爽爽久久| 日本久久久免费高清| 中文字幕一区乱码在线观看| 国产电影一区二区三区| 天天天综合网| 国产极品喷水视频| 一本色道久在线综合色|