亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the nonlinear exponential sums involving the Liouville function

        2019-12-26 09:51:22HuangJingYanXiaofeiZhangDeyu

        Huang Jing,Yan Xiaofei,Zhang Deyu

        (School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)

        Abstract:Let λ(n)be the Liouville function.The main purpose of this paper is to consider the case that β is variable and generalize the results in Sankaranarayanan and Sun,the main techniques we used is Vaughan′s identity and Perron′s formula,so we will prove a nontrivial upper bound for the nonlinear exponential sum.

        Keywords: nonlinear exponential sums,Liouville function,Vaughan′s identity

        1 Introduction

        In analytic number theory,the problems concerning nonlinear exponential twisting arithmetic functions arise naturally in investigating equi-distribution theory,zerodistribution of L-functions and so on.We usually consider the general nonlinear exponential sum of the form

        Here,n~XmeansX≤n≤2Xande(z)=e2πiz.When,the sumS(X,α)was studied by Vinogradov for the von Mangoldt functionan= Λ(n)[1-2].Foran= Λ(n)andan=μ(n)[3-4](μis the M?bius function)the sumsS(X,α)were studied by reference[5],and it showed that these sums are intimately related toL-functions ofGL2.Iffis a holomorphic cusp form of even weight on the upper half plane,they also proved that a good upper bound of(X,α)implies a quasi Riemann hypothesis forL(s,f).Ifβis variable andanare the Fourier coefficients of automorphic forms.These sums are studied in[6-7].Reference[8]proved an asymptotic formula for the nonlinear exponential sum

        wheree(z)=e2πizandk∈Z+.

        For prime powerspk,the Liouville functionλ(n)is defined byλ(pk)=(?1)k.Throughout this paper,we consider the sum

        As noticed in reference[9],it is amusing to point out that the hypothesis that for someθ<1,

        implies the quasi Riemann hypothesis.This approach is due to Polya.It should be pointed out that the Riemann hypothesis is equivalent to the view that the above estimate holds for every.Also,reference[5]considered the sums

        withan?nεfor anyε>0 and?being a stabled smooth function compactly supported on R+,and under some hypothesis,it established the bound that

        The main purpose of this paper is to consider the case thatβis variable and generalize the results in references[10-11].The principal aim is to prove Theorem 1.1.

        Theorem 1.1Letλ(n)be the Liouville function.For any 0α∈R and 0<β≤1,for anyε>0,we have

        where the implied constant depends only onε.

        Remark 1.1To prove Theorem 1.1,we will apply the method in references[10-11].The main techniques we used is Vaughan′s identity and Perron′s formula.Asβis variable,for working out the dependence ofβ,we must handle the terms withβin the denominator carefully,especially in the error terms.In addition,we must choose new parameters in some place to make the method work.When,our results agree with reference[11]and improved the result in reference[10].

        An analogous results can be proved whenλ(n)is replaced byμ(n).We have Theorem 1.2.

        Theorem 1.2Letμ(n)be the M?bius function.For any 0α∈R and 0<β≤1,for anyε>0,we have

        where the implied constant depends only onε.

        Remark 1.2When,we get the upper bound estimate for our nonlinear exponential sums is.This agrees with(2)if we takefor any positive integerq,andan=λ(n)orμ(n).This is the best results so far while conjecturally the exponent ofXexpects to be.

        Following references[11]and[10],we apply Vaughan′s identity forλ(n) first.For anyA,B0 andF,G,we have the formal identity:

        Here,U≥1 andV≥1 are free parameters to be chosen later,ζ(s)denotes the Riemann zeta-function.We have used that

        2 An application of Vaughan′s identity for λ(n)

        We will estimateS1,1(X,α)in Section 3 and Section 5,S1,2(X,α),S3,1(X,α)andS3,2(X,α)are of the same type and we will estimate them in Section 4.

        3 Some lemmas

        In this paper,we replace various exponential sums spirit in Van der Corput′s by exponential integrals and find a bound for the latter.The results from references[13]and[14]are as follows.

        Lemma 3.1Letf(x)be a real-valued function,twice differentiable on[a,b]:

        (1)Iff′(x)is monotonic,f′(x)≥n>0,orf′(x)≤?n<0 throughout the interval[a,b],we have

        (2)Iff′(x)≥m>0,orf′(x)≤?m<0 throughout the interval[a,b],we have

        Lemma 3.2Letf(x)be a real-valued function with|f′(x)|≤1?θ|andf′(x)0 on[a,b],we have

        Lemma 3.3LetX,T≥1.For any complex numbersan,then

        Lemma 3.4Letλandtbe real number whilex,kandβbe positive number.DefineT0=4kπ|λ|(2X)k,we have

        Let|λ|≤θand setT?=4kπθ(2X)k,then

        4 The estimation of S1,1(X,α)

        5 The estimation of S1,2(X,α),S3,1(X,α),S3,2(X,α)

        6 The estimation of(X,α)and the proof of Theorem 1.1

        7 Proof of Theorem 1.2

        欧美人牲交| 偷拍熟女露出喷水在线91| 国产成人自拍视频播放| 7777色鬼xxxx欧美色妇| 亚洲国产精品特色大片观看完整版 | 日本一区二区在线免费视频| 国内精品视频在线播放不卡| 国产成人午夜福利在线观看者 | 日本一道综合久久aⅴ免费| 亚洲一区精品无码色成人 | 精品久久久久久久中文字幕| 2021最新久久久视精品爱| 日本一区二区三区经典视频| 国产美女做爰免费视频| 五十路熟久久网| 久久精品国产亚洲av蜜桃av| 日本伦理精品一区二区三区| 少妇下蹲露大唇无遮挡| 亚洲日韩精品A∨片无码加勒比| 国产精品片211在线观看| 日韩人妻高清福利视频| 久久精品国产亚洲av四叶草| 亚洲国产天堂一区二区三区| 久久人妻AV无码一区二区| 亚洲一区二区三区资源| 久久婷婷色香五月综合缴缴情| 天堂√中文在线bt| 亚洲成a人片在线观看高清| 日韩免费精品在线观看| 极品少妇一区二区三区四区| 日韩AV有码无码一区二区三区| 国产亚洲一区二区毛片| 亚洲av成人无码一区二区三区在线观看| 小12萝8禁在线喷水观看| 中文熟女av一区二区| 精品国产成人av久久| 国产一女三男3p免费视频| 99综合精品久久| av手机免费在线观看高潮| 久久久久无码精品国产app| 国产成人无码A区在线观|