亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the nonlinear exponential sums involving the Liouville function

        2019-12-26 09:51:22HuangJingYanXiaofeiZhangDeyu

        Huang Jing,Yan Xiaofei,Zhang Deyu

        (School of Mathematics and Statistics,Shandong Normal University,Ji′nan 250014,China)

        Abstract:Let λ(n)be the Liouville function.The main purpose of this paper is to consider the case that β is variable and generalize the results in Sankaranarayanan and Sun,the main techniques we used is Vaughan′s identity and Perron′s formula,so we will prove a nontrivial upper bound for the nonlinear exponential sum.

        Keywords: nonlinear exponential sums,Liouville function,Vaughan′s identity

        1 Introduction

        In analytic number theory,the problems concerning nonlinear exponential twisting arithmetic functions arise naturally in investigating equi-distribution theory,zerodistribution of L-functions and so on.We usually consider the general nonlinear exponential sum of the form

        Here,n~XmeansX≤n≤2Xande(z)=e2πiz.When,the sumS(X,α)was studied by Vinogradov for the von Mangoldt functionan= Λ(n)[1-2].Foran= Λ(n)andan=μ(n)[3-4](μis the M?bius function)the sumsS(X,α)were studied by reference[5],and it showed that these sums are intimately related toL-functions ofGL2.Iffis a holomorphic cusp form of even weight on the upper half plane,they also proved that a good upper bound of(X,α)implies a quasi Riemann hypothesis forL(s,f).Ifβis variable andanare the Fourier coefficients of automorphic forms.These sums are studied in[6-7].Reference[8]proved an asymptotic formula for the nonlinear exponential sum

        wheree(z)=e2πizandk∈Z+.

        For prime powerspk,the Liouville functionλ(n)is defined byλ(pk)=(?1)k.Throughout this paper,we consider the sum

        As noticed in reference[9],it is amusing to point out that the hypothesis that for someθ<1,

        implies the quasi Riemann hypothesis.This approach is due to Polya.It should be pointed out that the Riemann hypothesis is equivalent to the view that the above estimate holds for every.Also,reference[5]considered the sums

        withan?nεfor anyε>0 and?being a stabled smooth function compactly supported on R+,and under some hypothesis,it established the bound that

        The main purpose of this paper is to consider the case thatβis variable and generalize the results in references[10-11].The principal aim is to prove Theorem 1.1.

        Theorem 1.1Letλ(n)be the Liouville function.For any 0α∈R and 0<β≤1,for anyε>0,we have

        where the implied constant depends only onε.

        Remark 1.1To prove Theorem 1.1,we will apply the method in references[10-11].The main techniques we used is Vaughan′s identity and Perron′s formula.Asβis variable,for working out the dependence ofβ,we must handle the terms withβin the denominator carefully,especially in the error terms.In addition,we must choose new parameters in some place to make the method work.When,our results agree with reference[11]and improved the result in reference[10].

        An analogous results can be proved whenλ(n)is replaced byμ(n).We have Theorem 1.2.

        Theorem 1.2Letμ(n)be the M?bius function.For any 0α∈R and 0<β≤1,for anyε>0,we have

        where the implied constant depends only onε.

        Remark 1.2When,we get the upper bound estimate for our nonlinear exponential sums is.This agrees with(2)if we takefor any positive integerq,andan=λ(n)orμ(n).This is the best results so far while conjecturally the exponent ofXexpects to be.

        Following references[11]and[10],we apply Vaughan′s identity forλ(n) first.For anyA,B0 andF,G,we have the formal identity:

        Here,U≥1 andV≥1 are free parameters to be chosen later,ζ(s)denotes the Riemann zeta-function.We have used that

        2 An application of Vaughan′s identity for λ(n)

        We will estimateS1,1(X,α)in Section 3 and Section 5,S1,2(X,α),S3,1(X,α)andS3,2(X,α)are of the same type and we will estimate them in Section 4.

        3 Some lemmas

        In this paper,we replace various exponential sums spirit in Van der Corput′s by exponential integrals and find a bound for the latter.The results from references[13]and[14]are as follows.

        Lemma 3.1Letf(x)be a real-valued function,twice differentiable on[a,b]:

        (1)Iff′(x)is monotonic,f′(x)≥n>0,orf′(x)≤?n<0 throughout the interval[a,b],we have

        (2)Iff′(x)≥m>0,orf′(x)≤?m<0 throughout the interval[a,b],we have

        Lemma 3.2Letf(x)be a real-valued function with|f′(x)|≤1?θ|andf′(x)0 on[a,b],we have

        Lemma 3.3LetX,T≥1.For any complex numbersan,then

        Lemma 3.4Letλandtbe real number whilex,kandβbe positive number.DefineT0=4kπ|λ|(2X)k,we have

        Let|λ|≤θand setT?=4kπθ(2X)k,then

        4 The estimation of S1,1(X,α)

        5 The estimation of S1,2(X,α),S3,1(X,α),S3,2(X,α)

        6 The estimation of(X,α)and the proof of Theorem 1.1

        7 Proof of Theorem 1.2

        久久久亚洲经典视频| 亚洲精品久久久久中文字幕一福利 | 午夜婷婷国产麻豆精品| 国产小屁孩cao大人| 精品亚洲一区二区99| 都市激情亚洲综合一区| 色婷婷久久综合中文久久一本| 国产丝袜美腿在线播放| 国产一区二区三区视频网| 国产午夜精品av一区二区麻豆 | 日韩精品成人无码专区免费| 幻女bbwxxxx在线视频| 中文字幕无码家庭乱欲| 午夜毛片午夜女人喷潮视频| 日韩不卡av高清中文字幕 | 国产一区亚洲一区二区| 国产亚洲中文字幕一区| 亚洲综合网国产精品一区| 无码人妻丰满熟妇区bbbbxxxx| 欧美日韩亚洲国内综合网| 综合三区后入内射国产馆| 四虎成人精品无码永久在线| 少妇性l交大片免费快色| 中国男男女在线免费av| 欧美怡春院一区二区三区| 亚洲av日韩av在线观看| 国语少妇高潮对白在线| av草草久久久久久久久久久| 国产偷拍自拍在线观看| 国产传媒精品成人自拍| 成人片黄网站a毛片免费| 无码毛片aaa在线| 神马不卡一区二区三级| 国产白浆精品一区二区三区| 日本办公室三级在线观看| 国产日本精品视频一区二区| 国产成人无码a区在线观看视频 | 天堂女人av一区二区| 亚洲成人av一区免费看| 伊人情人色综合网站| 精品无码久久久久久国产|