亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于植物功能性狀的生態(tài)學(xué)研究進(jìn)展:從個(gè)體水平到全球尺度

        2019-10-16 10:07:08賀鵬程葉清
        關(guān)鍵詞:物種植物功能

        賀鵬程, 葉清

        基于植物功能性狀的生態(tài)學(xué)研究進(jìn)展:從個(gè)體水平到全球尺度

        賀鵬程1,2, 葉清1*

        (1. 中國(guó)科學(xué)院華南植物園, 中國(guó)科學(xué)院退化生態(tài)系統(tǒng)植被恢復(fù)與管理重點(diǎn)實(shí)驗(yàn)室, 廣東省應(yīng)用植物學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣州 510650; 2. 中國(guó)科學(xué)院大學(xué),北京 100049)

        植物功能性狀是指能夠反映植物碳獲取、水分傳遞、養(yǎng)分循環(huán)等的重要生命活動(dòng)的屬性,包括植物生理、形態(tài)和物候等方面的特征。通過(guò)植物功能性狀探討物種分布格局、生長(zhǎng)策略和存活機(jī)制及其對(duì)全球變化的響應(yīng)與適應(yīng),是近年來(lái)生態(tài)學(xué)研究的熱點(diǎn)之一。然而,不同尺度下植物功能性狀與環(huán)境因子的關(guān)系存在差異,并且性狀之間的關(guān)系也不盡相同。從物種、種群、群落、植被區(qū)系到全球尺度,圍繞植物功能性狀之間的相互關(guān)系及其對(duì)氣候環(huán)境變化響應(yīng)的熱點(diǎn)問(wèn)題進(jìn)行了綜述,梳理了近年來(lái)植物功能性狀研究領(lǐng)域的進(jìn)展,并討論了目前植物功能性狀研究的局限性和該領(lǐng)域未來(lái)的發(fā)展趨勢(shì)。

        物種多樣性;氣候;物種分布;時(shí)空格局;植被功能型;群落演替

        1859年,達(dá)爾文在《物種起源》中描述加拉帕戈斯群島達(dá)爾文雀(Coerebini)鳥喙的大小和形狀時(shí)第一次引入了性狀的概念[1],而功能性狀(functional trait)正式提出則是在1946年卡特爾對(duì)人格的構(gòu)成和測(cè)量的心理學(xué)研究中[2]。近20年來(lái),植物功能性狀的研究得到廣泛關(guān)注和迅速發(fā)展[3]。植物功能性狀包括了植物形態(tài)、生理、物候等特性[4],通過(guò)植物功能性狀可以解釋植物對(duì)不同環(huán)境的適應(yīng)機(jī)理[5–6],預(yù)測(cè)植物的分布格局[7–8],探究群落的組成和功能[9–10],以及評(píng)估生態(tài)系統(tǒng)的功能和服務(wù)[11–12]。

        目前比較常用的植物功能性狀包括植物葉片經(jīng)濟(jì)學(xué)和植物水力結(jié)構(gòu)有關(guān)的特征。具體而言,葉片經(jīng)濟(jì)學(xué)性狀包括葉片光合速率、葉片比葉重、葉片壽命、葉片呼吸速率、葉片氮磷含量等[13];植物水力結(jié)構(gòu)有關(guān)的性狀則包括木質(zhì)部的導(dǎo)水率、葉片凌晨和中午水勢(shì)、葉片膨壓?jiǎn)适c(diǎn)、植物導(dǎo)水率喪失50%時(shí)的水勢(shì)、水力安全系數(shù)(hydraulic safety margin)、木材密度等[14]。本文主要針對(duì)這些與植物的生長(zhǎng)和分布密切相關(guān)的植物水力學(xué)和經(jīng)濟(jì)學(xué)功能性狀,圍繞氣候因子對(duì)植物功能性狀的影響以及功能性狀之間的相互聯(lián)系,從植物個(gè)體到全球尺度水平進(jìn)行梳理和討論。

        1 種內(nèi)水平植物功能性狀與環(huán)境因子的關(guān)系

        1.1 種內(nèi)水平功能性狀的空間變化

        研究單種植物功能性狀隨環(huán)境因子的變化有助于理解氣候變化條件下植物適應(yīng)環(huán)境的生理生態(tài)學(xué)機(jī)制,對(duì)認(rèn)識(shí)植物的遷移和分布有著重要的指導(dǎo)意義。隨著干旱的加劇,歐洲山毛櫸()種群的枝條抗氣穴化能力增加,紋孔膜的厚度增加,但導(dǎo)管直徑變窄,說(shuō)明植物可以增強(qiáng)自身抗氣穴化能力, 有效應(yīng)對(duì)干旱脅迫[15]。Liang等[16]對(duì)我國(guó)南方常綠闊葉林優(yōu)勢(shì)樹種絲栗栲()的研究表明,隨著降水的增加,植物枝條的導(dǎo)水率、葉片密度和葉片膨壓?jiǎn)适c(diǎn)都顯著升高,說(shuō)明植物的水力功能性狀具有很強(qiáng)的可塑性,有助于植物適應(yīng)氣候變化背景下降水的改變,包括強(qiáng)度、頻度和起始時(shí)間上的變化。此外, Schreiber等[17]對(duì)加拿大西部4個(gè)地點(diǎn)顫楊()導(dǎo)管直徑的研究也表明,導(dǎo)管直徑具有很強(qiáng)的表型可塑性,與夏季降水具有顯著的正相關(guān)關(guān)系。

        1.2 時(shí)間尺度上種內(nèi)植物功能性狀與環(huán)境因子的關(guān)系

        研究植物種內(nèi)功能性狀與環(huán)境因子的關(guān)系在時(shí)間尺度上的變化,是揭示植物適應(yīng)環(huán)境變化尤其當(dāng)?shù)貧夂蜃兓闹匾侄?。有關(guān)植物功能性狀隨氣候動(dòng)態(tài)變化的相關(guān)研究較多,尤以年際動(dòng)態(tài)和季節(jié)動(dòng)態(tài)的研究居多,研究結(jié)果對(duì)如何保護(hù)和可持續(xù)利用當(dāng)?shù)厣志哂锌茖W(xué)指導(dǎo)意義。對(duì)加拿大顫楊樹輪寬度的研究表明,由氣候變暖引發(fā)的干旱降低了植物的徑向生長(zhǎng),因此, 需要制定有效的灌溉措施以保護(hù)現(xiàn)有的森林[18]。此外,Gao等[19]研究了干旱對(duì)美國(guó)西南部3樹種(,,)年輪徑向生長(zhǎng)的影響,認(rèn)為干旱過(guò)程對(duì)植物的影響非常復(fù)雜,干旱頻率和干旱時(shí)長(zhǎng)的增加對(duì)樹木的生長(zhǎng)具有“累加效應(yīng)”,即兩者同時(shí)存在擴(kuò)大了干旱對(duì)樹木的影響,并降低了樹木的抗旱性;而干旱起始時(shí)間和干旱強(qiáng)度的增加則對(duì)樹木的徑向生長(zhǎng)具有“遺留效應(yīng)”,即顯著地影響樹木后續(xù)的徑向生長(zhǎng), 這說(shuō)明除了干旱脅迫程度外,不同的干旱過(guò)程對(duì)樹木的影響也具有顯著的差異。

        1.3 物種的馴化與適應(yīng)在功能性狀上的差異

        物種的馴化(acclimation)是指在一個(gè)相對(duì)較短的時(shí)間內(nèi)物種表型的可塑性,而物種的適應(yīng)(adaptation)是指在長(zhǎng)期的物種進(jìn)化過(guò)程中物種多基因、多性狀和多功能的改變[20–21]。馴化的對(duì)象一般指的是同一物種,而適應(yīng)的對(duì)象一般指的是不同物種。這兩個(gè)過(guò)程往往對(duì)植物性狀有著不同甚至相反的影響。植物在高光馴化條件下,葉子會(huì)變厚、機(jī)械抗性會(huì)增強(qiáng)[22–23],而在光照充足的環(huán)境條件下, 常綠植物的適應(yīng)往往表現(xiàn)為葉子變薄、機(jī)械抗性降低的特征[24–26]。另外,Rosas等[27]對(duì)西班牙加泰羅尼亞3種殼斗科(Fagaceae)和3種松科(Pinaceae)木本植物的研究表明,在濕潤(rùn)地區(qū)植物的適應(yīng)表現(xiàn)為具有高的枝條導(dǎo)水率喪失50%時(shí)的水勢(shì)(50; 與植物的抗旱密切相關(guān)),而植物在馴化條件下50則沒(méi)有顯著變化。

        2 屬和科水平植物功能性狀的研究

        2.1 同屬植物功能性狀隨環(huán)境因子的變化

        同屬植物雖然相比同種植物的基因型變化更大,但是研究同屬植物功能性狀的變化相比同種植物的取材范圍更大,同時(shí),相比跨屬植物的研究,又大大降低了基因型的差異對(duì)植物功能性狀的影響。最近幾年,研究環(huán)境因子對(duì)同屬植物功能性狀的影響也越來(lái)越多。Pfautsch等[28]對(duì)澳大利亞桉屬()的28個(gè)種群導(dǎo)管直徑的研究表明,植物的導(dǎo)管直徑隨著濕潤(rùn)指數(shù)的增加而增加, 植物木質(zhì)部導(dǎo)水率也隨之升高。Larter等[29]對(duì)世界上抗旱能力最強(qiáng)的23種澳洲柏屬()植物的研究表明,該屬植物木質(zhì)部抗旱能力隨著干旱程度的增加而增加,但植物木質(zhì)部導(dǎo)水率與干旱指數(shù)無(wú)關(guān)。

        2.2 同科植物功能性狀的關(guān)系及其隨環(huán)境因子的變化

        對(duì)一些具有特殊屬性(如進(jìn)化的原始性、分布的廣泛性)的單一科植物進(jìn)行研究,可以為物種的保育提供理論支持。Zhang等[30]對(duì)33種蘇鐵科(Cycada- ceae)植物的研究表明,與被子植物相比, 蘇鐵科植物的葉片光合速率同樣與葉片比葉面積、葉片氮磷含量呈正相關(guān),但不同的是蘇鐵科植物的葉片光合速率與葉片導(dǎo)水速率不相關(guān)。Cao等[31]對(duì)具有淺根系且對(duì)土壤水分敏感的59種竹子(Bambusoideae)研究表明,竹子的高度受植物根壓的影響。Kawai等[32]對(duì)溫帶森林廣泛分布的8種殼斗科(Fagaceae)植物葉脈分級(jí)與葉片機(jī)械抗性、水力特征的關(guān)系進(jìn)行研究,結(jié)果表明葉片一、二級(jí)葉脈影響葉片機(jī)械抗性,而末端葉脈影響葉片水分利用效率。Liu等[33]研究了27種木蘭科(Magnoliaceae)植物的功能性狀和進(jìn)化的關(guān)系,結(jié)果表明木蘭科植物與導(dǎo)水和養(yǎng)分利用有關(guān)的性狀具有很強(qiáng)的進(jìn)化生態(tài)位保守性,相比木蓮屬()、含笑屬()和木蘭屬()植物,玉蘭屬()植物具有較高的導(dǎo)水速率和光合作用,但這是以犧牲抗旱能力為代價(jià)的。

        3 不同類型植物功能性狀的差異

        3.1 裸子植物和被子植物

        裸子植物和被子植物由于進(jìn)化時(shí)間的不同,不僅在結(jié)實(shí)方式上不同,在植物功能性狀上也差異顯著。被子植物的導(dǎo)管細(xì)胞管腔直徑一般比較寬,所以導(dǎo)水效率高,而裸子植物的篩胞管腔比較細(xì)窄, 因此導(dǎo)水效率低[34–36]。但也正因?yàn)槿绱?,裸子植物的木質(zhì)部更不易發(fā)生氣穴化,抗旱能力也更強(qiáng)[37–38]。研究表明,世界上最抗旱的植物便是裸子植物[39]。

        3.2 常綠植物和落葉植物

        常綠和落葉代表了植物葉片的兩種不同生活型,常綠植物一般生長(zhǎng)在較穩(wěn)定的環(huán)境條件下,而落葉植物則常常生活在季節(jié)性比較強(qiáng)的環(huán)境中,根據(jù)引起落葉的原因不同,又分為干旱引起的落葉植物和低溫引起的落葉植物。常綠植物和落葉植物由于葉片生長(zhǎng)和存活時(shí)間的不同,導(dǎo)致了植物功能性狀上的顯著差異。常綠植物的葉片構(gòu)建成本往往比落葉植物高,而比葉面積比落葉植物低[40–41]。Wang等對(duì)我國(guó)植物葉片碳穩(wěn)定同位素(13C)的研究表明,常綠灌木的葉片13C要高于落葉灌木[42]。不僅如此,常綠植物與落葉植物在性狀與環(huán)境的關(guān)系上也會(huì)出現(xiàn)不同甚至相反的結(jié)果,Kikuzawa等[43]報(bào)道常綠植物的葉片壽命跟溫度呈負(fù)相關(guān),而落葉植物的葉片壽命跟溫度呈正相關(guān),而與葉片氮含量的關(guān)系則正好相反。另外,有研究表明[44]落葉植物的葉片比葉重(LMA)在低光條件下比較低,這無(wú)論在同種還是不同種中都是成立的,而在同種常綠植物中也有相同結(jié)果,但不同種常綠植物在低光條件下LMA比較高。

        3.3 陰生植物和陽(yáng)生植物

        由于光環(huán)境不同,陰生植物和陽(yáng)生植物往往表現(xiàn)出不同的生理特性,陰生植物在蔭蔽環(huán)境條件下采取資源保守利用策略,而陽(yáng)生植物則在光照充足的條件下發(fā)展出快速獲取資源的策略。He等[26]對(duì)亞熱帶常綠林57種木本植物葉片功能性狀的研究表明,陰生植物的葉片機(jī)械抗性、葉片壽命比陽(yáng)生植物高,而光合速率則比陽(yáng)生植物低。Zhu等[45]對(duì)蕨類植物的葉片成本-收益分析表明,陽(yáng)生蕨類植物的葉片營(yíng)養(yǎng)元素利用效率比陰生蕨類更高,并且碳的償還時(shí)間也更快。

        3.4 C3和C4植物

        C3植物和C4植物由于光合途徑的不同,二者往往表現(xiàn)出對(duì)溫度、水分、CO2等不同的敏感性。一年生C3草本植物的葉片水力導(dǎo)度、氣孔密度比C4草本植物更低,但是導(dǎo)管密度比C4草本植物更高[46]。Taylor等[47]報(bào)道C4植物比C3植物具有更高的光合速率、水分利用效率和氮的利用效率,但是氣孔導(dǎo)度較低。不僅如此,C3和C4植物對(duì)CO2濃度升高的響應(yīng)也不同,有研究表明在CO2升高條件下,C4草本植物葉片面積比C3草本植物增加得更大,而C3草本植物的分蘗則比C4草本植物更多[48]。此外,Reich等[49]對(duì)8種多年生草本植物(C3和C4植物各4種)長(zhǎng)達(dá)20年的研究表明,前12年C3植物的生物量在CO2升高條件下,生物量顯著升高, 而C4植物則沒(méi)有顯著變化,而之后的8年,情況則發(fā)生了反轉(zhuǎn),即C4植物的生物量在CO2升高條件下顯著提高,而C3植物的則沒(méi)有發(fā)生很大變化,這說(shuō)明無(wú)論C3還是C4植物對(duì)大氣CO2濃度的升高都是敏感的,從而挑戰(zhàn)了在短期控制試驗(yàn)中得出的關(guān)于C4植物對(duì)CO2升高不敏感的經(jīng)典研究結(jié)論。

        3.5 木質(zhì)藤本與直立木本植物

        在熱帶雨林中,藤本植物具有非常高的豐富度,往往比可自我支撐的木本植物在光照、水分和營(yíng)養(yǎng)獲取等方面具有競(jìng)爭(zhēng)優(yōu)勢(shì)。有研究表明,在旱季,木質(zhì)藤本植物可以利用更深層的土壤水分,相比同一生境的直立木本植物,木質(zhì)藤本植物具有更高的邊材導(dǎo)水率[50],且具有更高的氣孔調(diào)節(jié)能力以減少水分的喪失;而在雨季其光合能力顯著高于直立木本植物,從而保證了藤本植物的競(jìng)爭(zhēng)優(yōu)勢(shì)[51]。另外,有研究表明木質(zhì)藤本植物在旱季比直立木本植物生長(zhǎng)速率更快[52],并且,與直立木本不同的是,木質(zhì)藤本植物水力效率與水力安全之間不存在權(quán)衡關(guān)系,有利于藤本植物保持高的光合速率,同時(shí)不易受到干旱的脅迫[53]。

        4 不同植被區(qū)系植物功能性狀的差異

        氣候的差異往往會(huì)促使植物形成不同的植被功能區(qū)系,如熱帶雨林、溫帶落葉森林、荒漠植被、北方苔原等。不同的植被類型除了在物種多樣性、植被分層和土壤理化性質(zhì)上不同之外,植物的功能性狀也發(fā)生了很大的變化。Yuan等[54]對(duì)植物細(xì)根氮磷含量的研究表明,熱帶雨林植物的細(xì)根磷含量低于荒漠植被、苔原和北方森林,而細(xì)根氮磷比則高于后者。Bartlett等[55]對(duì)與植物葉片抗旱性密切相關(guān)的葉片膨壓?jiǎn)适c(diǎn)的水勢(shì)和葉片飽和滲透勢(shì)的研究表明,荒漠植物的這兩種葉片性狀的數(shù)值比熱帶雨林植物更低,說(shuō)明荒漠植物的葉片具有更強(qiáng)抗旱能力。Choat等[37]報(bào)道地中海地區(qū)植物和溫帶森林植物的枝條水力安全系數(shù)比熱帶雨林更高,從而證明前者比后者更耐旱。另外,還有研究表明,我國(guó)南亞熱帶常綠林優(yōu)勢(shì)樹種的水力安全系數(shù)比熱帶干旱森林和地中海地區(qū)植物更高,說(shuō)明南亞熱帶常綠林植物在氣候變化條件下,更不容易遭受水分脅迫的危害[56]。此外,地中海地區(qū)植被、溫帶季節(jié)森林物種比熱帶雨林物種的葉片導(dǎo)水率喪失50%時(shí)的水勢(shì)與枝條導(dǎo)水率喪失50%時(shí)的水勢(shì)之差更大,說(shuō)明干旱森林植物存在脆弱性分區(qū),從而有利于干旱地區(qū)的植物葉片更有效地應(yīng)對(duì)干旱脅迫[57]。

        5 植物功能性狀與群落動(dòng)態(tài)變化

        5.1 植物功能性狀與群落演替

        不同森林演替階段由于光環(huán)境、土壤養(yǎng)分、水分和溫度的不同,植物的功能性狀往往發(fā)生顯著的變化。研究不同演替階段植物功能性狀的變化不僅可以深入理解植物隨時(shí)間更替的過(guò)程,也有利于為森林的管理和重建提供指導(dǎo)[58]。Zhu等[6]研究了我國(guó)鼎湖山地區(qū)南亞熱帶森林不同演替階段34種優(yōu)勢(shì)樹種光合和水力特征,認(rèn)為演替早期階段植物葉片光合速率、氣孔導(dǎo)度和枝條的導(dǎo)水率要顯著高于演替晚期階段的樹種。Navas等[59]對(duì)法國(guó)南部42種植物的葉片功能性狀的研究表明,隨著演替的進(jìn)行,葉片壽命增加,而葉片構(gòu)建成本沒(méi)有顯著差異。此外,Poorter等[60]對(duì)拉丁美洲50個(gè)樣點(diǎn)1 403個(gè)樣方超過(guò)16 000棵樹木材密度的研究表明,木材密度在干旱森林與濕潤(rùn)森林隨演替的變化正好呈現(xiàn)相反的趨勢(shì),并隨著演替時(shí)間的延長(zhǎng)趨于收斂,即在濕潤(rùn)森林木材密度隨演替的增加而增加,而在干旱森林木材密度隨演替的增加而降低。這跟森林演替早期階段的生境過(guò)濾有密切關(guān)系,干旱森林演替早期階段木材密度的增加有利于提高植物抗干旱和防火能力,晚期階段隨著濕度增加、溫度降低, 有利于產(chǎn)生具有低的木材密度的物種,而濕潤(rùn)森林演替早期階段木材密度偏低則是為了更快的獲取光照、營(yíng)養(yǎng)物質(zhì)并快速生長(zhǎng),演替晚期階段木材密度的增加則有利于提高植物耐陰和抵抗病原菌的感染。

        5.2 植物功能性狀與物種多樣性

        隨著CO2濃度的升高、溫度上升、氮沉降的增加、降水的改變,植物群落的組成也發(fā)生了明顯的變化。例如,Zhou等[61–62]對(duì)我國(guó)鼎湖山地區(qū)常綠闊葉林32年(1978-2010年)的群落監(jiān)測(cè)數(shù)據(jù)表明, 我國(guó)南亞熱帶成熟林隨著氮沉降加劇、無(wú)降雨日數(shù)增加、土壤濕度降低、大氣CO2濃度增加等環(huán)境變化,群落中大樹(胸徑>20 cm)的生物量和個(gè)體數(shù)在減少,而小樹(1 cm≤胸徑≤10 cm)的生物量和個(gè)體數(shù)在增加。Li等[10]的研究進(jìn)一步表明,該地區(qū)森林植物在葉片光合和水力特征方面存在顯著差異,近30多年來(lái),與多度減少的物種相比,多度增加的物種具有更高的光合能力、葉片氮磷含量、枝條導(dǎo)水率和葉片膨壓?jiǎn)适c(diǎn)時(shí)的水勢(shì),從而更有利于適應(yīng)氣候的變化。類似的,Soudzilovskaia等[63]對(duì)俄羅斯西北高加索高山植物群落29年的研究也表明,葉片比葉面積、葉片厚度、種子質(zhì)量、根的氮含量和比根長(zhǎng)度等功能性狀可以用來(lái)解釋物種多度與溫度變化的關(guān)系。

        5.3 植物功能性狀與物種的生長(zhǎng)和死亡

        物種的生長(zhǎng)和死亡始終是生態(tài)學(xué)的核心問(wèn)題,已有大量的研究表明植物的生長(zhǎng)和死亡除了與環(huán)境因子有關(guān)之外,與植物的功能性狀也密切相關(guān)。有研究表明種子質(zhì)量、葉片氮含量、比葉面積、葉片光合速率、樹高等性狀與植物的生長(zhǎng)和死亡密切相關(guān)[64–69]。關(guān)于水力特征和水力安全對(duì)植物的生長(zhǎng)和死亡影響方面,F(xiàn)an等[70]研究了中國(guó)西南西雙版納40種熱帶樹種,認(rèn)為植物導(dǎo)管性狀比木材密度可以更好地預(yù)測(cè)植物的生長(zhǎng)速率。Liu等[71]對(duì)我國(guó)古田山24 hm2樣地80樹種1 300個(gè)體的研究表明,植物的枝條導(dǎo)水率也可以預(yù)測(cè)植物的生長(zhǎng)速率。Anderegg等[72]研究了全球33個(gè)地點(diǎn)的475種植物,認(rèn)為具有較低水力安全系數(shù)、木質(zhì)部容易發(fā)生氣穴化的植物,在全球變化背景下更容易死亡。

        6 全球植被植物功能性狀與環(huán)境因子的關(guān)系

        6.1 植物功能性狀譜系

        資源獲取的快慢是物種的一個(gè)基本特性[73]。在資源缺乏的地區(qū),植物葉片往往具有較長(zhǎng)壽命和較強(qiáng)的抵抗力,而在資源豐富的地區(qū)植物往往具有高的碳同化速率,但植物葉片更易脫落[7],構(gòu)成了葉片經(jīng)濟(jì)學(xué)譜的核心觀點(diǎn)[13]。與葉片經(jīng)濟(jì)學(xué)譜相似,植物還存在根經(jīng)濟(jì)學(xué)譜——根的呼吸與根的氮含量、比根長(zhǎng)呈正相關(guān),而與根的干物質(zhì)含量呈負(fù)相關(guān)[74];沙漠植物具有光合能力的枝條在碳的獲取、水分傳輸和水分喪失之間存在著莖經(jīng)濟(jì)學(xué)譜[75];水力經(jīng)濟(jì)學(xué)譜是指木質(zhì)部的生長(zhǎng)與脆弱性之間的權(quán)衡關(guān)系[76];木材經(jīng)濟(jì)學(xué)譜表明具有高木材密度的物種存活率較高,而具有低木材密度的物種生長(zhǎng)速率較高[77]。所有這些器官或組織的經(jīng)濟(jì)學(xué)譜組成了植物經(jīng)濟(jì)學(xué)譜[73],即具有快速資源獲取策略的物種無(wú)論在器官還是個(gè)體水平,植物組織密度較低、水分傳輸速率較高、組織的壽命較短、資源周轉(zhuǎn)速率較快,而具有慢速資源獲取策略的物種則相反。

        6.2 全球尺度上植物功能性狀之間的關(guān)系

        除了功能性狀經(jīng)濟(jì)學(xué)譜概念的提出,在全球尺度上,植物功能性狀之間還存在著眾多重要的關(guān)系,如植物抗旱性狀、葉片膨壓?jiǎn)适c(diǎn)時(shí)的水勢(shì)、葉片導(dǎo)水率喪失50%時(shí)的水勢(shì)和枝條導(dǎo)水率喪失50%時(shí)的水勢(shì)之間的協(xié)同關(guān)系[78];全球樹高與水力特征,如導(dǎo)管直徑、導(dǎo)管密度、枝條導(dǎo)水率喪失50%時(shí)的水勢(shì)、枝條導(dǎo)水率、胡波爾值、木材密度之間的關(guān)系[79];不同級(jí)葉脈密度、葉脈直徑與葉片大小的關(guān)系[80];全球植被葉片機(jī)械力與葉片壽命之間呈正相關(guān)關(guān)系[81]等。同時(shí),有些植物功能性狀之間雖然在理論上應(yīng)該有很強(qiáng)的關(guān)系,但研究結(jié)果表明關(guān)系很弱或沒(méi)有關(guān)系,即二者關(guān)系相對(duì)獨(dú)立,如在全球尺度上,植物的水分傳輸速率與水力安全之間僅存在微弱的權(quán)衡關(guān)系[82];比葉面積、木材密度和種子質(zhì)量與幼樹的生長(zhǎng)速率相關(guān)性不顯著[83]; 植物形態(tài)特征(葉片大小、樹高和種子質(zhì)量)與葉片經(jīng)濟(jì)學(xué)譜特征(葉片氮含量和葉片比葉重)呈現(xiàn)解偶聯(lián)的關(guān)系[84]。

        6.3 環(huán)境因子對(duì)全球植物功能性狀的影響

        隨著世界經(jīng)濟(jì)的全球化與高速發(fā)展,科技也實(shí)現(xiàn)了大繁榮、大融合,并向著大數(shù)據(jù)發(fā)展。最近20年,在全球尺度上研究植物功能性狀隨環(huán)境因子的變化受到越來(lái)越多的關(guān)注,可以說(shuō)涉及到了植物生態(tài)學(xué)領(lǐng)域的各個(gè)方面。Choat等[37]對(duì)全球81個(gè)地點(diǎn)226種植物的研究表明,大多數(shù)物種的水力安全系數(shù)很窄,說(shuō)明無(wú)論該地點(diǎn)的降水條件如何,氣候變化條件下物種都容易受到干旱脅迫。Wright等[85]研究了全球682個(gè)地點(diǎn)7 670物種13 705個(gè)樣本的葉片大小,認(rèn)為葉片在濕潤(rùn)、溫暖且光照較好的條件下較大,而在干旱的條件下較小,在高緯度和高海拔地區(qū)也偏小。Maire等[86]對(duì)全球288個(gè)地點(diǎn)的1509種植物葉片光合作用的研究表明,植物的光合速率受土壤pH的影響,而與土壤氮磷含量無(wú)關(guān)。Morris等[87]研究了全球2 332種木本被子植物的導(dǎo)管直徑與氣候的關(guān)系,認(rèn)為植物的導(dǎo)管直徑隨溫度和降水的升高而升高。除此之外,有關(guān)植物功能性狀與環(huán)境因子之間關(guān)系的研究也很多,如葉片呼吸與溫度的關(guān)系[88–89]、葉片13C含量與降水的變化[90–91]、植物高度與溫度的關(guān)系[92]、森林林冠高度與降水的關(guān)系[93]、葉片氮磷含量與溫度、緯度的關(guān)系[94]、葉片氮磷含量、比葉面積與土壤因子的關(guān)系[95]、葉片光合氮的利用效率與土壤氮含量的關(guān)系[96]、營(yíng)養(yǎng)元素重吸收速率與溫度、降水的關(guān)系[97]、細(xì)根氮磷含量隨緯度的變化[54]、葉片壽命與溫度的關(guān)系[43]、葉片機(jī)械抗性隨溫度、降水的變化[81]、葉片厚度、密度和葉片比葉重與環(huán)境因子的關(guān)系[98]、氣候?qū)θ~片灰分含量的影響[99]、溫度對(duì)生物量的影響[100]等。

        7 展望

        本文從個(gè)體、科、屬水平到群落、全球尺度綜述了植物功能性狀在性狀-性狀、性狀-環(huán)境關(guān)系方面的最新研究進(jìn)展(圖1)。雖然在每個(gè)尺度上都已經(jīng)有大量的關(guān)于植物功能性狀的研究,然而,以往對(duì)植物功能性狀的研究,往往局限在研究單一尺度, 由于不同尺度植物功能性狀的變異程度不同[101], 物種內(nèi)、物種間以及不同植被功能型之間性狀的關(guān)系往往存在著很大的差異[102]。Anderegg等[103]對(duì)全球葉片經(jīng)濟(jì)學(xué)的有關(guān)性狀研究表明,種內(nèi)性狀的關(guān)系與全球植被種間的葉片經(jīng)濟(jì)學(xué)譜關(guān)系不同,有很多種植物的性狀關(guān)系甚至是相反的,從而在種內(nèi)水平挑戰(zhàn)了葉片經(jīng)濟(jì)學(xué)譜的普適性規(guī)律。這是因?yàn)槲锓N的進(jìn)化和環(huán)境對(duì)性狀都起到了至關(guān)重要的作用,雖然研究種內(nèi)植物功能性狀的變化可排除進(jìn)化的作用,但同時(shí)考慮基因型和環(huán)境對(duì)植物功能性狀的影響是該研究領(lǐng)域未來(lái)發(fā)展的趨勢(shì)。

        另外,比較種間性狀的不同,尤其在野外復(fù)雜的光、水和土壤環(huán)境條件下,不僅物種的適應(yīng)在起作用,同時(shí)物種的馴化也在起作用,兩者對(duì)植物性狀影響的相對(duì)大小,直接決定了種間性狀與環(huán)境之間的關(guān)系以及性狀之間的關(guān)系[27,104]。Uma?a等[105]對(duì)波多黎各亞熱帶濕潤(rùn)森林16個(gè)不同海拔固定樣地的植物葉片大小、葉片氮含量等的研究表明,性狀之間的關(guān)系在種內(nèi)不同個(gè)體、種間和種群水平上都是不同的,不能簡(jiǎn)單理解為種內(nèi)功能性狀之間的關(guān)系可以縮小種間功能性狀之間的差異。因此,同時(shí)研究和比較種內(nèi)不同個(gè)體水平、種間水平和種群水平植物功能性狀與環(huán)境因子之間的關(guān)系,在將來(lái)的研究中是非常有必要的。

        圖1 植物功能性狀在不同尺度上的研究概念圖

        [1] DARWIN C. On the Origin of Species by Means of Natural Selection: or the Preservation of Favoured Races in the Struggle for Life [M]. London: John Murray, 1859.

        [2] CATTELL R B. Personality structure and measurement: I. The opera- tional determination of trait unities [J]. Brit J Psychol Gen Sect, 1946, 36: 88–103.

        [3] VIOLLE C, NAVAS M L, VILE D, et al. Let the concept of trait be functional! [J]. Oikos, 2007, 116(5): 882–892. doi: 10.1111/j.0030-1299. 2007.15559.x.

        [4] PéREZ-HARGUINDEGUY N, DíAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide [J]. Aust J Bot, 2013, 61(3): 167–234. doi: 10.1071/BT12225.

        [5] WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies: Some leading dimensions of variation between species [J]. Annu Rev Ecol Syst, 2002, 33: 125–159. doi: 10.1146/annurev.ecolsys. 33.010802.150452.

        [6] ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photo- synthesis of 34 woody species from different successional stages of subtropical forests [J]. Plant Cell Environ, 2013, 36(4): 879–891. doi: 10.1111/pce.12024.

        [7] REICH P B, WALTERS M B, ELLSWORTH D S. From tropics to tundra: global convergence in plant functioning [J]. Proc Natl Acad Sci USA, 1997, 94(25): 13730–13734. doi: 10.1073/pnas.94.25.13730.

        [8] POORTER L, KITAJIMA K, MERCADO P, et al. Resprouting as a persistence strategy of tropical forest trees: Relations with carbohydrate storage and shade tolerance [J]. Ecology, 2010, 91(9): 2613–2627. doi: 10.1890/09-0862.1.

        [9] GARNIER E, CORTEZ J, BILLèS G, et al. Plant functional markers capture ecosystem properties during secondary succession [J]. Ecology, 2004, 85(9): 2630–2637. doi: 10.1890/03-0799.

        [10] LI R H, ZHU S D, CHEN H Y H, et al. Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest? [J]. Ecol Lett, 2015, 18(11): 1181–1189. doi: 10.1111/ele.12497.

        [11] HIGGINS S I, O’HARA R B, BYKOVA O, et al. A physiological analogy of the niche for projecting the potential distribution of plants [J]. J Biogeogr, 2012, 39(12): 2132–2145. doi: 10.1111/j.1365-2699. 2012.02752.x.

        [12] MYERS-SMITH I H, THOMAS H J D, BJORKMAN A D. Plant traits inform predictions of tundra responses to global change [J]. New Phytol, 2019, 221(4): 1742–1748. doi: 10.1111/nph.15592.

        [13] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821–827. doi: 10. 1038/nature02403.

        [14] CHOAT B, BRODRIBB T J, BRODERSEN C R, et al. Triggers of tree mortality under drought [J]. Nature, 2018, 558(7711): 531–539. doi: 10. 1038/s41586-018-0240-x.

        [15] SCHULDT B, KNUTZEN F, DELZON S, et al. How adaptable is the hydraulic system of European beech in the face of climate change- related precipitation reduction? [J]. New Phytol, 2016, 210(2): 443– 458. doi: 10.1111/nph.13798.

        [16] LIANG X Y, HE P C, LIU H, et al. Precipitation has dominant influences on the variation of plant hydraulics of the native(Fagaceae) in subtropical China [J]. Agric For Meteorol, 2019, 271: 83–91. doi: 10.1016/j.agrformet.2019.02.043.

        [17] SCHREIBER S G, HACKE U G, HAMANN A. Variation of xylem vessel diameters across a climate gradient: Insight from a reciprocal transplant experiment with a widespread boreal tree [J]. Funct Ecol, 2015, 29(11): 1392–1401. doi: 10.1111/1365-2435.12455.

        [18] CHEN Y J, SCHNITZER S A, ZHANG Y J, et al. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas [J]. Funct Ecol, 2017, 31(2): 306–317. doi: 10.1111/1365-2435.12724.

        [19] GAO S, LIU R S, ZHOU T, et al. Dynamic responses of tree-ring growth to multiple dimensions of drought [J]. Glob Change Biol, 2018, 24(11): 5380–5390. doi: 10.1111/gcb.14367.

        [20] DEMMIG-ADAMS B, STEWART J J, ADAMS W W. Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment [J]. Philos Trans Roy Soc B Biol Sci, 2014, 369(1640): 20130244. doi: 10.1098/rstb.2013.0244.

        [21] WATSON-LAZOWSKI A, LIN Y, MIGLIETTA F, et al. Plant adap- tation or acclimation to rising CO2? Insight from first multigene- rational RNA-Seq transcriptome [J]. Glob Change Biol, 2016, 22(11): 3760–3773. doi: 10.1111/gcb.13322.

        [22] LOUDA S M, RODMAN J E. Insect herbivory as a major factor in the shade distribution of a native crucifer (A. Gray, Bittercress) [J]. J Ecol, 1996, 84(2): 229–237. doi: 10.2307/2261358.

        [23] ONODA Y, SCHIEVING F, ANTEN N P R. Effects of light and nutrient availability on leaf mechanical properties of: A conceptual approach [J]. Ann Bot, 2008, 101(5): 727–736. doi: 10. 1093/aob/mcn013.

        [24] COLEY P D. Herbivory and defensive characteristics of tree species in a lowland tropical forest [J]. Ecol Monogr, 1983, 53(2): 209–234. doi: 10.2307/1942495.

        [25] KITAJIMA K, LLORENS A M, STEFANESCU C, et al. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species [J]. New Phytol, 2012, 195(3): 640–652. doi: 10.1111/j.1469-8137.2012.04203.x.

        [26] HE P C, WRIGHT I J, ZHU S D, et al. Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements [J]. New Phytol, 2019, 223(2): 607–618. doi: 10.1111/nph.15803.

        [27] ROSAS T, MENCUCCINI M, BARBA J, et al. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient [J]. New Phytol, 2019, 223(2): 632–646. doi: 10.1111/nph. 15684.

        [28] PFAUTSCH S, HARBUSCH M, WESOLOWSKI A, et al. Climate determines vascular traits in the ecologically diverse genus[J]. Ecol Lett, 2016, 19(3): 240–248. doi: 10.1111/ele.12559.

        [29] LARTER M, PFAUTSCH S, DOMEC J C, et al. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus[J]. New Phytol, 2017, 215(1): 97–112. doi: 10.1111/ nph.14545.

        [30] ZHANG Y J, CAO K F, SACK L, et al. Extending the generality of leaf economic design principles in the cycads, an ancient lineage [J]. New Phytol, 2015, 206(2): 817–829. doi: 10.1111/nph.13274.

        [31] CAO K F, YANG S J, ZHANG Y J, et al. The maximum height of grasses is determined by roots [J]. Ecol Lett, 2012, 15(7): 666–672. doi: 10.1111/j.1461-0248.2012.01783.x.

        [32] KAWAI K, OKADA N, WATLING J. How are leaf mechanical properties and water-use traits coordinated by vein traits? A case study in Fagaceae [J]. Funct Ecol, 2016, 30(4): 527–536. doi: 10.1111/1365- 2435.12526.

        [33] LIU H, XU Q Y, HE P C, et al. Strong phylogenetic signals and phylo- genetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae [J]. Sci Rep, 2015, 5: 12246. doi: 10.1038/ srep12246.

        [34] BOND W J. The tortoise and the hare: ecology of angiosperm domi- nance and gymnosperm persistence [J]. Biol J Linn Soc, 1989, 36(3): 227–249. doi: 10.1111/j.1095-8312.1989.tb00492.x.

        [35] SPERRY J S, HACKE U G, PITTERMANN J. Size and function in conifer tracheids and angiosperm vessels [J]. Amer J Bot, 2006, 93(10): 1490–1500. doi: 10.3732/ajb.93.10.1490.

        [36] FEILD T S, WILSON J P. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success [J]. Int J Plant Sci, 2012, 173(6): 596–609. doi: 10.1086/666099.

        [37] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought [J]. Nature, 2012, 491(7426): 752–755. doi: 10.1038/nature11688.

        [38] ANDEREGG L D L, HILLERISLAMBERS J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms [J]. Glob Change Biol, 2016, 22(3): 1029–1045. doi: 10. 1111/gcb.13148.

        [39] LARTER M, BRODRIBB T J, PFAUTSCH S, et al. Extreme aridity pushes trees to their physical limits [J]. Plant Physiol, 2015, 168(3): 804–807. doi: 10.1104/pp.15.00223.

        [40] VILLAR R, MERINO J. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems [J]. New Phytol, 2001, 151(1): 213–226. doi: 10.1046/j.1469-8137. 2001.00147.x.

        [41] POORTER H, NIINEMETS ü, POORTER L, et al. Causes and conse- quences of variation in leaf mass per area (LMA): A meta-analysis [J]. New Phytol, 2009, 182(3): 565–588. doi: 10.1111/j.1469-8137.2009. 02830.x.

        [42] WANG N, XU S S, JIA X, et al. Variations in foliar stable carbon isotopes among functional groups and along environmental gradients in China: A meta-analysis [J]. Plant Biol, 2013, 15(1): 144–151. doi: 10. 1111/j.1438-8677.2012.00605.x.

        [43] KIKUZAWA K, ONODA Y, WRIGHT I J, et al. Mechanisms under- lying global temperature-related patterns in leaf longevity [J]. Glob Ecol Biogeogr, 2013, 22(8): 982–993. doi: 10.1111/geb.12042.

        [44] LUSK C H, REICH P B, MONTGOMERY R A, et al. Why are ever- green leaves so contrary about shade? [J]. Trends Ecol Evol, 2008, 23(6): 299–303. doi: 10.1016/j.tree.2008.02.006.

        [45] ZHU S D, LI R H, SONG J, et al. Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests [J]. Ann Bot, 2016, 117(3): 497–506. doi: 10.1093/aob/mcv179.

        [46] LIU H, TAYLOR S H, XU Q Y, et al. Life history is a key factor explaining functional trait diversity among subtropical grasses, and its influence differs between C3and C4species [J]. J Exp Bot, 2019, 70(5): 1567–1580. doi: 10.1093/jxb/ery462.

        [47] TAYLOR S H, HULME S P, REES M, et al. Ecophysiological traits in C3and C4grasses: A phylogenetically controlled screening experiment [J]. New Phytol, 2010, 185(3): 780–791. doi: 10.1111/j.1469-8137.2009. 03102.x.

        [48] WAND S J E, MIDGLEY G F, JONES M H, et al. Responses of wild C4and C3grass (Poaceae) species to elevated atmospheric CO2concen- tration: A meta-analytic test of current theories and perceptions [J]. Glob Change Biol, 1999, 5(6): 723–741. doi: 10.1046/j.1365-2486.1999. 00265.x.

        [49] REICH P B, HOBBIE S E, LEE T D, et al. Unexpected reversal of C3versus C4grass response to elevated CO2during a 20-year field experiment [J]. Science, 2018, 360(6386): 317–320. doi: 10.1126/ science.aas9313.

        [50] CHEN L, HUANG J G, ALAM S A, et al. Drought causes reduced growth of trembling aspen in western Canada [J]. Glob Change Biol, 2017, 23(7): 2887–2902. doi: 10.1111/gcb.13595.

        [51] CHEN Y J, CAO K F, SCHNITZER S A, et al. Water-use advantage for lianas over trees in tropical seasonal forests [J]. New Phytol, 2015, 205(1): 128–136. doi: 10.1111/nph.13036.

        [52] SCHNITZER S A, van der HEIJDEN G M F. Lianas have a seasonal growth advantage over co-occurring trees [J]. Ecology, 2019, 100(5): e02655. doi: 10.1002/ecy.2655.

        [53] van der SANDE M T, POORTER L, SCHNITZER S A, et al. The hydraulic efficiency-safety trade-off differs between lianas and trees [J]. Ecology, 2019, 100(5): e02666. doi: 10.1002/ecy.2666.

        [54] YUAN Z Y, CHEN H Y H, REICH P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus [J]. Nat Commun, 2011, 2: 344. doi: 10.1038/ncomms1346.

        [55] BARTLETT M K, SCOFFONI C, SACK L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis [J]. Ecol Lett, 2012, 15(5): 393–405. doi: 10.1111/j.1461-0248.2012.01751.x.

        [56] ZHU S D, LI R H, HE P C, et al. Large branch and leaf hydraulic safety margins in subtropical evergreen broad-leaved forest [J]. Tree Physiol, 2019. doi: 10.1093/treephys/tpz028.

        [57] ZHU S D, LIU H, XU Q Y, et al. Are leaves more vulnerable to cavitation than branches? [J]. Funct Ecol, 2016, 30(11): 1740–1744. doi: 10.1111/1365-2435.12656.

        [58] McGILL B J, ENQUIST B J, WEIHER E, et al. Rebuilding community ecology from functional traits [J]. Trends Ecol Evol, 2006, 21(4): 178– 185. doi: 10.1016/j.tree.2006.02.002.

        [59] NAVAS M L, DUCOUT B, ROUMET C, et al. Leaf life span, dynamics and construction cost of species from Mediterranean old- fields differing in successional status [J]. New Phytol, 2003, 159(1): 213–228. doi: 10.1046/j.1469-8137.2003.00790.x.

        [60] POORTER L, ROZENDAAL D M A, BONGERS F, et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time [J]. Nat Ecol Evol, 2019, 3: 928–934. doi: 10. 1038/s41559-019-0882-6.

        [61] ZHOU G Y, WEI X H, WU Y P, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China [J]. Glob Change Biol, 2011, 17(12): 3736–3746. doi: 10.1111/j.1365-2486.2011.02499.x.

        [62] ZHOU G Y, PENG C H, LI Y L, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in southern China [J]. Glob Change Biol, 2013, 19(4): 1197–1210. doi: 10.1111/gcb.12128.

        [63] SOUDZILOVSKAIA N A, ELUMEEVA T G, ONIPCHENKO V G, et al. Functional traits predict relationship between plant abundance dynamic and long-term climate warming [J]. Proc Natl Acad Sci USA, 2013, 110(45): 18180–18184. doi: 10.1073/pnas.1310700110.

        [64] POORTER L, BONGERS F. Leaf traits are good predictors of plant performance across 53 rain forest species [J]. Ecology, 2006, 87(7): 1733–1743. doi: 10.1890/0012-9658.

        [65] POORTER L, WRIGHT S J, PAZ H, et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests [J]. Ecology, 2008, 89(7): 1908–1920. doi: 10.1890/07-0207.1.

        [66] KRAFT N J B, METZ M R, CONDIT R S, et al. The relationship between wood density and mortality in a global tropical forest data set [J]. New Phytol, 2010, 188(4): 1124–1136. doi: 10.1111/j.1469-8137. 2010.03444.x.

        [67] WRIGHT S J, KITAJIMA K, KRAFT N J B, et al. Functional traits and the growth: Mortality trade-off in tropical trees [J]. Ecology, 2010, 91 (12): 3664–3674. doi: 10.1890/09-2335.1.

        [68] Adler P B, Salguero-Gómez R, Compagnoni A, et al. Functional traits explain variation in plant life history strategies [J]. Proc Natl Acad Sci USA, 2014, 111(2): 740–745. doi: 10.1073/pnas. 1315179111.

        [69] ALEIXO I, NORRIS D, HEMERIK L, et al. Amazonian rainforest tree mortality driven by climate and functional traits [J]. Nat Clim Change, 2019, 9(5): 384–388. doi: 10.1038/s41558-019-0458-0.

        [70] FAN Z X, ZHANG S B, HAO G Y, et al. Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density [J]. J Ecol, 2012, 100(3): 732–741. doi: 10. 1111/j.1365-2745.2011.01939.x.

        [71] LIU X J, SWENSON N G, LIN D M, et al. Linking individual-level functional traits to tree growth in a subtropical forest [J]. Ecology, 2016, 97(9): 2396–2405. doi: 10.1002/ecy.1445.

        [72] ANDEREGG W R L, KLEIN T, BARTLETT M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe [J]. Proc Natl Acad Sci USA, 2016, 113(18): 5024–5029. doi: 10.1073/pnas.1525678113.

        [73] REICH P B, CORNELISSEN H. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto [J]. J Ecol, 2014, 102(2): 275– 301. doi: 10.1111/1365-2745.12211.

        [74] ROUMET C, BIROUSTE M, PICON-COCHARD C, et al. Root structure- function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy [J]. New Phytol, 2016, 210(3): 815–826. doi: 10.1111/nph.13828.

        [75] áVILA-LOVERA E, ZERPA A J, SANTIAGO L S. Stem photo- synthesis and hydraulics are coordinated in desert plant species [J]. New Phytol, 2017, 216(4): 1119–1129. doi: 10.1111/nph.14737.

        [76] ELLER C B, de V BARROS F, BITTENCOURT P R L, et al. Xylem hydraulic safety and construction costs determine tropical tree growth [J]. Plant Cell Environ, 2018, 41(3): 548–562. doi: 10.1111/pce.13106.

        [77] CHAVE J, COOMES D, JANSEN S, et al. Towards a worldwide wood economics spectrum [J]. Ecol Lett, 2009, 12(4): 351–366. doi: 10. 1111/j.1461-0248.2009.01285.x.

        [78] BARTLETT M K, KLEIN T, JANSEN S, et al. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought [J]. Proc Natl Acad Sci USA, 2016, 113(46): 13098–13103. doi: 10. 1073/pnas.1604088113.

        [79] LIU H, GLEASON S M, HAO G Y, et al. Hydraulic traits are coordinated with maximum plant height at the global scale [J]. Sci Adv, 2019, 5(2): eaav1332. doi: 10.1126/sciadv.aav1332.

        [80] SACK L, SCOFFONI C, McKOWN A D, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns [J]. Nat Commun, 2012, 3: 837. doi: 10.1038/ncomms1835.

        [81] ONODA Y, WESTOBY M, ADLER P B, et al. Global patterns of leaf mechanical properties [J]. Ecol Lett, 2011, 14(3): 301–312. doi: 10. 1111/j.1461-0248.2010.01582.x.

        [82] GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species [J]. New Phytol, 2016, 209(1): 123– 136. doi: 10.1111/nph.13646.

        [83] PAINE C E T, AMISSAH L, AUGE H, et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why [J]. J Ecol, 2015, 103(4): 978–989. doi: 10.1111/1365-2745.12401.

        [84] DíAZ S, KATTGE J, CORNELISSEN J H C, et al. The global spectrum of plant form and function [J]. Nature, 2016, 529(7585): 167– 171. doi: 10.1038/nature16489.

        [85] WRIGHT I J, DONG N, MAIRE V, et al. Global climatic drivers of leaf size [J]. Science, 2017, 357(6354): 917–921. doi: 10.1126/science. aal4760.

        [86] MAIRE V, WRIGHT I J, PRENTICE I C, et al. Global effects of soil and climate on leaf photosynthetic traits and rates [J]. Glob Ecol Biogeogr, 2015, 24(6): 706–717. doi: 10.1111/geb.12296.

        [87] MORRIS H, GILLINGHAM M A, PLAVCOVá L, et al. Vessel diameter is related to amount and spatial arrangement of axial paren- chyma in woody angiosperms [J]. Plant Cell Environ, 2018, 41(1): 245–260. doi: 10.1111/pce.13091.

        [88] ATKIN O K, BLOOMFIELD K J, REICH P B, et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits [J]. New Phytol, 2015, 206(2): 614–636. doi: 10.1111/nph.13253.

        [89] HESKEL M A, O’SULLIVAN O S, REICH P B, et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types [J]. Proc Natl Acad Sci USA, 2016, 113(14): 3832– 3837. doi: 10.1073/pnas.1520282113.

        [90] DIEFENDORF A F, MUELLER K E, WING S L, et al. Global patterns in leaf13C discrimination and implications for studies of past and future climate [J]. Proc Natl Acad Sci USA, 2010, 107(13): 5738–5743. doi: 10.1073/pnas.0910513107.

        [91] CORNWELL W K, WRIGHT I J, TURNER J, et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3plants worldwide [J]. Glob Ecol Biogeogr, 2018, 27(9): 1056–1067. doi: 10.1111/geb.12764.

        [92] MOLES A T, WARTON D I, WARMAN L, et al. Global patterns in plant height [J]. J Ecol, 2009, 97(5): 923–932. doi: 10.1111/j.1365- 2745.2009.01526.x.

        [93] TAO S L, GUO Q H, LI C, et al. Global patterns and determinants of forest canopy height [J]. Ecology, 2016, 97(12): 3265–3270. doi: 10. 1002/ecy.1580.

        [94] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 2004, 101(30): 11001–11006. doi: 10.1073/pnas.0403588101.

        [95] ORDO?EZ J C, VAN BODEGOM P M, WITTE J P M, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility [J]. Glob Ecol Biogeogr, 2009, 18(2): 137–149. doi: 10.1111/j.1466-8238.2008.00441.x.

        [96] HIDAKA A, KITAYAMA K. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients [J]. J Ecol, 2009, 97(5): 984–991. doi: 10.1111/j.1365-2745.2009.01540.x.

        [97] YUAN Z Y, CHEN H Y H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation [J]. Glob Ecol Biogeogr, 2009, 18(1): 11–18. doi: 10.1111/j.1466-8238.2008.00425.x.

        [98] NIINEMETS ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs [J]. Ecology, 2001, 82 (2): 453–469. doi: 10.1890/0012-9658.

        [99] HAN W X, CHEN Y H, ZHAO F J, et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants [J]. Glob Ecol Biogeogr, 2012, 21(3): 376–382. doi: 10.1111/j.1466-8238.2011.00677.x.

        [100] LARJAVAARA M, MULLER-LANDAU H C. Temperature explains global variation in biomass among humid old-growth forests [J]. Glob Ecol Biogeogr, 2012, 21(10): 998–1006. doi: 10.1111/j.1466-8238. 2011.00740.x.

        [101] ANDEREGG W R L. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation [J]. New Phytol, 2015, 205(3): 1008–1014. doi: 10.1111/ nph.12907.

        [102] OSNAS J L D, KATABUCHI M, KITAJIMA K, et al. Divergent drivers of leaf trait variation within species, among species, and among functional groups [J]. Proc Natl Acad Sci USA, 2018, 115(21): 5480–5485. doi: 10.1073/pnas.1803989115.

        [103] ANDEREGG L D L, BERNER L T, BADGLEY G, et al. Within- species patterns challenge our understanding of the leaf economics spectrum [J]. Ecol Lett, 2018, 21(5): 734–744. doi: 10.1111/ele.2945.

        [104] SKELTON R P, ANDEREGG L D L, LAMARQUE L J. Examining variation in hydraulic and resource acquisition traits along climatic gradients tests our understanding of plant form and function [J]. New Phytol, 2019, 223(2): 505–507. doi: 10.1111/nph.15893.

        [105] UMA?A M N, SWENSON N G. Does trait variation within broadly distributed species mirror patterns across species? A case study in Puerto Rico [J]. Ecology, 2019. doi: 10.1002/ecy.2745.

        Plant Functional Traits: From Individual Plant to Global Scale

        He Peng-cheng1,2, YE Qing1*

        (1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

        Plant functional traits (PFTs) are plant attributes that can reflect plant life history processes, such as carbon acquisition, water transport and nutrient cycling, including plant features associated with plant physiology, morphology and phenology. Employing functional traits to answer questions regarding plant distribution, growth and survival, as well as to explore the mechanisms underlying plants’ response to global climate change, remains a hot research topic in ecology over the past decades. However, it has been shown that trait-trait correlation and its association with environmental factors are rather variable or even reverse across ecological scales. The research progresses related to PFTs at different scales, i.e., within species, across species, across communities and across biomes globally were summarized. The limitations of current research of PFTs and proposed future research directions in this field were also discussed.

        Species diversity; Climate; Species distribution; Spatial-temporal pattern; Plant functional type; Community succession

        10.11926/jtsb.4108

        2019–06–06

        2019–07–11

        國(guó)家自然科學(xué)基金項(xiàng)目(31825005, 31570405)資助

        This work was supported by the National Natural Science Foundation of China (Grant No. 31825005, 31570405).

        賀鵬程,男,博士研究生,從事植物功能性狀與全球變化研究。E-mail: hepc@scib.ac.cn

        E-mail: qye@scib.ac.cn

        猜你喜歡
        物種植物功能
        吃光入侵物種真的是解決之道嗎?
        也談詩(shī)的“功能”
        回首2018,這些新物種值得關(guān)注
        電咖再造新物種
        汽車觀察(2018年10期)2018-11-06 07:05:26
        關(guān)于非首都功能疏解的幾點(diǎn)思考
        哦,不怕,不怕
        將植物穿身上
        植物罷工啦?
        瘋狂的外來(lái)入侵物種
        植物也瘋狂
        国产自拍高清在线观看| 亚洲偷自拍另类图片二区| 中文字幕午夜AV福利片| 在线看亚洲一区二区三区| 一边摸一边抽搐一进一出视频| 国精品无码一区二区三区在线蜜臀 | 久久国产自偷自免费一区100| 免费人人av看| av手机免费在线观看高潮| 婷婷久久香蕉五月综合加勒比| 无码人妻精品一区二区三区66| 亚洲一区精品中文字幕| 国产精品亚洲一二三区| 男人女人做爽爽18禁网站| 国产精品天天狠天天看| 亚洲av中文aⅴ无码av不卡| 日本一级片一区二区三区| 人妻饥渴偷公乱中文字幕| 黑人巨大videos极度另类| 一本一道久久a久久精品综合蜜桃| 国产一区二区三区视频地址| 蜜桃日本免费看mv免费版| 国产AV边打电话边出轨| 日本熟女人妻一区二区三区| 亚洲字幕中文综合久久| 人妻夜夜爽天天爽一区| 久久狠色噜噜狠狠狠狠97| 日本在线综合一区二区| 人妻丰满熟av无码区hd| 正在播放国产对白孕妇作爱| 亚欧免费无码AⅤ在线观看| 国模91九色精品二三四| а√资源新版在线天堂| 亚洲午夜福利精品久久| 国产成人美涵人妖视频在线观看| 亚洲av无码一区东京热久久| 中文字幕人妻丝袜美腿乱| 国产亚洲AV片a区二区| 日本一区二区三区视频免费在线| 日韩精品内射视频免费观看| 亚洲AV无码久久久一区二不卡|