周國逸, 熊鑫,2
土壤有機碳形成機制的探索歷程
周國逸1, 熊鑫1,2
(1. 中國科學院華南植物園, 廣州 510650; 2. 中國科學院大學, 北京 100049)
土壤有機碳(SOC)是生態(tài)系統(tǒng)的重要資產(chǎn),在全球碳平衡中發(fā)揮著關(guān)鍵的作用。2015年巴黎氣候會議以來,促進SOC在陸地生態(tài)系統(tǒng)中的積累受到特別重視,被認為是有效減緩大氣CO2濃度上升的最重要地表措施。從服務(wù)于這個目標出發(fā),對過去幾十年全球在探索SOC形成機制上的歷程進行了回顧和總結(jié),從弄清SOC全球分布規(guī)律,闡明樣地以下尺度的SOC循環(huán)過程及其相應(yīng)的物理、化學與生物機理,到樣地及以上尺度的土壤固碳機制,最后給出了成熟森林SOC積累機制的實例。SOC形成機制的探索歷程就是尋求為促進土壤固碳提供理論指導的過程。
土壤有機碳;形成;固存;機制
土壤有機碳(SOC)是土壤的重要組成成分,是生態(tài)系統(tǒng)的重要資產(chǎn)[1],它不僅是度量土壤肥力的關(guān)鍵因子,更是表征生態(tài)系統(tǒng)服務(wù)功能大小的綜合指標[2]。在特定的區(qū)域內(nèi),SOC含量高往往意味著該生態(tài)系統(tǒng)的服務(wù)功能強,根據(jù)生態(tài)系統(tǒng)SOC儲量的大小并結(jié)合所處的時空分布特征,可以準確地量化出該生態(tài)系統(tǒng)的其他服務(wù)功能,諸如固碳釋氧功能[3–4]、水土保持與涵養(yǎng)功能[5]、生物多樣性保育功能[6]等。
探索SOC形成機制的主要動機不是因為它在形成生態(tài)系統(tǒng)服務(wù)功能上的中心地位,而在于SOC對全球碳平衡的貢獻。全球尺度上,SOC儲量是大氣和陸地植被各自碳儲量的3倍以上[1],中國陸地生態(tài)系統(tǒng)的SOC更是生物量碳的3.9倍[7]。SOC儲量的微小變化將導致全球碳平衡估算的巨大誤差,假設(shè)SOC含量變化0.01% a–1[按百分濃度計算,即由%變化到(±0.01)%],在假定土壤容重為1 g cm–3且其年內(nèi)變化可以忽略的情況下,SOC庫的變化將為±1 Mg hm–2a–1,這是一個很大的值。以這個值乘以全球森林面積(3.87×109hm2)得到的全球森林土壤碳儲量的年變化量為±3.87 Pg,這個值甚至比1990年的全球碳“失匯”量還要大。土壤固碳潛力巨大,同樣地,如果SOC的百分濃度增量為0.01% a–1,則凈增加1%需要100 a時間。Tang等[7]通過分析中國森林生態(tài)系統(tǒng)7 800個樣地的資料證明,森林生態(tài)系統(tǒng)由建立到成熟,土壤碳庫的增速顯著高于生物量碳庫的增速;且在生物量保持相對穩(wěn)定后,土壤碳庫依然有相對高的增長速率。Zhou等[8]報道成熟森林土壤可持續(xù)積累有機碳,且被全球范圍內(nèi)的大量研究結(jié)果所證實[9–12],這便為土壤固碳潛力提供了一個更高的天花板。一個未經(jīng)證實的理論認為隨著生態(tài)系統(tǒng)的自然成熟,光合作用固定的有機碳將逐漸被呼吸作用釋放的無機碳所平衡[13],成熟生態(tài)系統(tǒng)沒有碳匯功能。該理論雖然受到成熟森林土壤持續(xù)固碳和成熟森林生物量增加等現(xiàn)象的挑戰(zhàn)[8,11,14–15],但長時間尺度上并不存在異議, 有爭議的是如何定義成熟生態(tài)系統(tǒng)。事實上,也只有“成熟森林土壤持續(xù)固碳”這個現(xiàn)象被證明是在生態(tài)系統(tǒng)演替過程中自然發(fā)生的[6],來源于內(nèi)源驅(qū)動、因而是相對長久的;而成熟森林生物量持續(xù)增加的現(xiàn)象則是全球環(huán)境變化(氣溫升高、CO2濃度上升、氮沉降加劇等)的結(jié)果[16],來源于外源驅(qū)動、因而是短暫的。相較于生物量碳,SOC平均周轉(zhuǎn)時間更長[17]、有些甚至能保存上百萬年[1],因此,在緩解全球大氣CO2濃度上升的舉措中,SOC是更為優(yōu)質(zhì)的有機碳儲存方式。在全球人工林面積持續(xù)多年增加的基礎(chǔ)上[18],繼續(xù)依靠植被面積增加從而增加全球陸地生態(tài)系統(tǒng)碳儲量的模式將很快遇到其壁壘,在陸地生態(tài)系統(tǒng)中尋求更優(yōu)質(zhì)的固碳方式,是保障社會經(jīng)濟持續(xù)發(fā)展的同時減少碳凈排放的根本途徑。
因此,自2015年巴黎氣候會議以來,促進SOC在陸地生態(tài)系統(tǒng)中的積累受到特別的重視,被認為是有效減緩大氣CO2濃度上升的最重要地表措施[19–20], 明顯揚棄了過去“造林、再造林”的理念。實現(xiàn)大規(guī)模SOC存貯量的提升并為此規(guī)劃行動方案以及準確模擬全球碳平衡的先決條件是全面闡明SOC積累的驅(qū)動機制,為此,全球開展了探索SOC形成機制的廣泛研究。我們通過Web of Science查找了過去20年來,以“SOC”為主題的論文數(shù)(圖1), 從中可以看出,涉及該內(nèi)容的論文數(shù)一直在持續(xù)增加,特別是2009年以前和近幾年,這反映了探索SOC形成機制歷程的曲折性、艱難性和前沿性。本文試圖從如下幾個方面再現(xiàn)這個歷程。
圖1 通過Web of Science搜索的全球過去20年以“SOC”為主題的論文數(shù)
探索SOC形成機制的歷程起步于對全球陸地土壤碳庫現(xiàn)狀大小的評估。認識到SOC在全球碳平衡中的核心地位后,全球范圍內(nèi)廣泛開展了與SOC在陸地生態(tài)系統(tǒng)分布規(guī)律相關(guān)的大量工作[21–24]。至今,SOC庫在主要生態(tài)系統(tǒng)類型及土壤剖面的分布規(guī)律已基本清晰,不同的研究結(jié)果間沒有數(shù)量級上的差異[7,25–26]??梢灶A(yù)計,如果沒有人為的土地利用變化和氣象災(zāi)害的發(fā)生,陸地植被生態(tài)系統(tǒng)碳庫大小將是相對穩(wěn)定且有規(guī)律增長的,具有長時間尺度上的參照性;但一些特殊生境類型(如:高寒區(qū)、荒漠區(qū)、內(nèi)陸濕地、湖泊、農(nóng)田、大陸架等)下的土壤碳庫狀況尚未完全弄清楚[27–28]。
隨后,重點轉(zhuǎn)移到了在樣地(生態(tài)系統(tǒng))尺度上SOC積累與某些表觀因素間的關(guān)系研究,這類工作占據(jù)了已有研究的大部分,并且還在進行中。主要特點是試圖發(fā)現(xiàn)SOC含量隨生態(tài)系統(tǒng)類型和空間位置不同而發(fā)生變化的證據(jù)[29–30],包括處于不同恢復階段的人工恢復生態(tài)系統(tǒng)系列的SOC含量差異證據(jù)[31–32],以及處于不同演替階段的自然生態(tài)系統(tǒng)系列的SOC含量差異證據(jù)等[33],都屬于這類研究。同時,在有長期監(jiān)測數(shù)據(jù)的支持下, 一些報道闡明了同一生態(tài)系統(tǒng)類型SOC儲存量隨時間的變化趨勢[7–8]。這些工作不僅開啟了全球范圍內(nèi)探索SOC積累機制的研究,而且為深入探討該機制提供了重要的實驗參照和數(shù)據(jù)準備。隨著探索的不斷深入, 很多研究試圖闡述SOC與植被生態(tài)系統(tǒng)的狀態(tài)參量(如生物多樣性[34]、植被生物量[35]、初級生產(chǎn)力與凋落物量[36–39]、凋落物質(zhì)[40–41]、根系生物量[42]、根系分泌物[43]等)或生態(tài)因子(如光[44]、溫[45]、水[46]、土壤質(zhì)地[47–48]和土壤養(yǎng)分[49]等)的相互關(guān)系,并認為這些相互關(guān)系可以推廣到其他區(qū)域或更大尺度上。
對環(huán)境因子和生態(tài)系統(tǒng)本身的控制實驗也在全球范圍內(nèi)廣泛地開展起來,多數(shù)研究者通過FACE (free-air CO2enrichment)試驗[50]、人工升溫[51]、改變降水輸入[52]、添加氮磷[53–54]等處理對植被生態(tài)系統(tǒng)施加影響,觀測不同生態(tài)系統(tǒng)的響應(yīng)與適應(yīng),包括SOC動態(tài)對這些因子變化的響應(yīng)[55–56];個別研究者通過人工改變植物物種多樣性(如草原中的物種剔除試驗[57]、森林中的不同物種數(shù)混交試驗等[58]),以檢驗生物多樣性對生態(tài)系統(tǒng)功能包括土壤固碳功能的影響。與此同時,另一些研究者則通過將整個生態(tài)系統(tǒng)進行移位,即:將處于某一環(huán)境條件下的生態(tài)系統(tǒng)盡可能完整地移位至另一環(huán)境條件下,以研究同一生態(tài)系統(tǒng)在不同環(huán)境條件下的響應(yīng)差異,當然也包括SOC動態(tài)響應(yīng)的差異。如: 將亞熱帶與溫帶交界處的土柱整體移位至南亞熱帶地區(qū)[59];在鼎湖山,將海拔600 m處的山地常綠闊葉林生態(tài)系統(tǒng)整體移位至海拔300和30 m處, 也把海拔300 m處的針闊葉混交林生態(tài)系統(tǒng)整體移位至30 m處, 以檢驗不同森林生態(tài)系統(tǒng)對環(huán)境條件改變的響應(yīng)差異[51,60]。一般認為,生態(tài)系統(tǒng)整體移位試驗比傳統(tǒng)的環(huán)境因子控制試驗更加貼近真實狀況;但如果不在機理上對這些試驗結(jié)果做更深層次的分析,那么所有的控制試驗都只是起到了辨識和檢驗自然觀測結(jié)果的作用,從機理探討的角度來說并沒有本質(zhì)的進步;而且,由于控制試驗的條件或多或少地與自然條件存在差異,所得到的結(jié)果必然與真實狀況存在偏差,甚至存在錯誤的可能。因此,控制試驗的主要優(yōu)點在于縮短了研究周期,其最終目的是為深層次的機理分析提供便利、而不在于觀測到的現(xiàn)象和試驗結(jié)果本身。
隨著探索SOC形成機制的深入,越來越多的研究試圖闡明由植物殘體向土壤有機質(zhì)轉(zhuǎn)化的輸入機制。一些研究指出氮含量豐富、碳氮比低的凋落物不僅分解快,而且分解過程中會產(chǎn)生更高比例的可溶性有機碳(DOC)和微小植物殘片,有利于傳輸?shù)秸麄€土層并最終穩(wěn)定存貯[40,61–64]。Sumiyoshi等[41]的試驗證實,木質(zhì)素含量低的凋落物分解速度快的同時,促進了SOC的積累。另一些研究則證實微生物更能有效地利用氮含量豐富的凋落物以構(gòu)建微生物自身生物量,從而提高碳的利用效率[65]。
包括根系凋落物和根系分泌物在內(nèi)的根系輸入對SOC的貢獻一直是研究者們關(guān)心的問題[42–43,66]。由于物理化學的保護機制、微尺度下的物理保護機制、與金屬離子的化學作用以及根系組織的化學穩(wěn)定性,來源于根系的SOC比來源于地上部分的平均駐留時間(residence time)長1.4倍[42]。根系分泌物不僅是SOC的供給者而且給土壤帶來了生命活性物質(zhì), 這些生命活性物質(zhì)在植物與土壤生物之間起著重要的紐帶作用[67],通過激發(fā)微生物對土壤氮循環(huán)的反饋機制[68],調(diào)節(jié)土壤生物化學過程而間接地影響SOC存貯;而其對SOC存貯的直接作用機理仍有待更深入的研究。
生物量碳輸入量與SOC積累的關(guān)系一直是研究者關(guān)心的焦點,這是一個直觀的認識,生物量碳輸入量決定著SOC積累的觀點幾乎是全球碳平衡模型的一個基石[69]。然而,有研究發(fā)現(xiàn)全球生物量分布與SOC分布并沒有關(guān)聯(lián)[35],間接說明了生物量碳輸入量對SOC積累沒有影響,但對于農(nóng)田土壤,這個論點似乎并不成立[39];Zhou等[6]通過對中國森林生態(tài)系統(tǒng)的觀測和全球森林生態(tài)系統(tǒng)的meta數(shù)據(jù)分析,直接證明生物量碳輸入量(包括地上地下所有生物殘體的輸入)相對于生物殘體的質(zhì)(以C/N比來表征)來說,對SOC的貢獻是微不足道的。
在SOC的自身形態(tài)上,依據(jù)不同組分的化學頑抗性水平和周轉(zhuǎn)速率,研究者們往往將SOC劃分為易分解有機碳和難分解有機碳[70],或是活性組分和惰性組分兩大類[71]。不少研究都試圖從SOC形態(tài)組成的角度探索SOC的存貯機制[1,72],木質(zhì)素、烷基碳或芳香碳等難分解有機組分或分子結(jié)構(gòu)的多寡常被用來表征土壤有機質(zhì)碳的穩(wěn)定性[73–74]。研究者顯然認為,易分解有機碳比例高,則SOC平均存在時間短,不利于積累;反之則長,利于積累。這看起來似乎是SOC積累的一種機理,但本質(zhì)上不過是一個問題的兩個方面,因為研究者并沒有回答為什么這個比例在不同的土壤中會存在差異、這個差異是如何形成的等問題;實際上,就連“易分解有機碳比例高,則SOC存在時間短”的命題也是有條件才成立的,只是從一個側(cè)面來說明SOC的狀況。
土壤質(zhì)地(soil texture)被認為對SOC的存貯起著重要的作用[48],以至于生物地球化學模型幾乎無一例外地根據(jù)土壤粘粒的含量來修正土壤有機質(zhì)的周轉(zhuǎn)速率。然而,Zhou等[6]和Wynn等[47]認為大尺度下的SOC積累并未受控于土壤質(zhì)地,也許土壤質(zhì)地只是影響SOC積累的一個局地因子。土壤結(jié)構(gòu)(soil structure)因為可能影響SOC的存貯而被廣泛地研究[3,75–76],一般認為隨著土壤團粒結(jié)構(gòu)的增大,土壤有機質(zhì)含量增加[77–78]。同時,土壤團粒結(jié)構(gòu)的形成降低了底物的可接觸性,有利于SOC的保存[79]。然而,土壤團粒結(jié)構(gòu)的大小與SOC含量的高低可能也只是一個問題的兩個方面,分不清哪個是因、哪個是果,甚至土壤團粒結(jié)構(gòu)的大小更有可能是SOC含量高低的結(jié)果,大量的研究結(jié)果已經(jīng)證實土壤有機質(zhì)是大團聚體形成的主要膠結(jié)劑[80–81]。
人們還試圖尋求SOC在垂直分布上的差異對其穩(wěn)定性的貢獻[26],一般認為處于缺氧環(huán)境下的深層SOC周轉(zhuǎn)時間慢,更易于保存[82]。
SOC積累涉及一系列連續(xù)的物理、化學和生物反應(yīng),這些反應(yīng)可以被粗略地包含在輸入和存貯兩個緊密聯(lián)系的過程中。僅憑快速的凋落物分解并不一定會帶來SOC的積累,只是為SOC的積累創(chuàng)造了條件;同樣,僅僅依靠良好的存貯環(huán)境,也不會增加SOC。要正確地闡明SOC的積累機理,必須將這兩個過程綜合考慮。環(huán)境因子、特別是全球變化因子如何影響這一連串的物理、化學、生物反應(yīng)從而控制SOC積累是眾多研究者密切關(guān)注的熱點。
氣溫上升和適度的降水將加速植物殘體的分解[83],從而控制生物量碳輸入過程,這個結(jié)論在全球范圍內(nèi)是一致的,不管植物殘體的類型和性質(zhì)如何變化[84]。盡管如此,卻很少有研究將凋落物分解速率表述為氣溫與降水函數(shù),可見,這方面的研究至今并不深入,已有的全球和區(qū)域性凋落物交叉分解試驗并不多[84–85]。在降水稀少的干旱區(qū)草地,推動凋落物分解的氣候因子是紫外輻射[82]。SOC礦化速率(土壤呼吸速率)明顯與分解者的活性規(guī)律相一致,隨氣溫的上升而加快,雖然不同區(qū)域的Q10值差異很大[86],但總體上呈指數(shù)增加的模式。與降水相比,土壤水分狀況是影響土壤呼吸更為直接的因子,大多數(shù)相關(guān)研究都將土壤水分而不是降水量作為考量因素,研究發(fā)現(xiàn)土壤呼吸作用與土壤水分呈單峰曲線,即在土壤水分含量低的時候,土壤呼吸速率隨土壤水分含量增加而單調(diào)地增大,達到峰值后, 又單調(diào)地減小。土壤水分含量高便于有機碳向土壤深層運輸,增加土壤剖面有機碳含量的均勻性,同時維持土壤的厭氧環(huán)境[82],有利于SOC的保存。
植物殘體分解速率和土壤呼吸速率對氮沉降的響應(yīng)則比較復雜,Mo等[53]報道氮沉降水平的增加延緩了“氮飽和”的成熟森林生態(tài)系統(tǒng)凋落物分解和土壤呼吸、而對未達到“氮飽和”的先鋒群落和過渡群落則相反;這種現(xiàn)象似乎是由于氮沉降對不同成熟度森林土壤的酸化程度存在差異,土壤酸化增加了土壤陽離子(cation)交換量從而促進了SOC的積累[87];同時土壤酸化也降低了分解者的活性[88–89]。
一般認為,微生物活性在調(diào)控凋落物分解速率上起著重要的作用[83];但全球尺度上的凋落物分解交互試驗結(jié)果表明,與氣候作用比較,分解者的作用是局部的、不會改變凋落物分解速率由熱帶向寒帶逐漸減小的全球格局[84]。有研究表明植物多樣性上升將導致分解者生物量和活性增加[34,90],從而間接地調(diào)控SOC的積累,因此,植物多樣性也是影響SOC積累的環(huán)境因子之一。
在樣地及以上尺度檢驗和校正樣地以下尺度的個例研究(case study)所得到的SOC平衡過程及其機理并歸納出普遍規(guī)律,是探索SOC形成機制歷程中的一個關(guān)鍵節(jié)點。如前言中所述,探索SOC形成機制的根本目的在于建立適合評估區(qū)域或全球碳平衡的模型、促進全球陸地生態(tài)系統(tǒng)SOC積累以減緩大氣CO2濃度上升。多年來特別是2015年巴黎氣候會議以來,在這個目的驅(qū)動下,全球廣泛開展了樣地尺度以上的土壤固碳機制的探索工作,試圖建立SOC與大尺度環(huán)境因子之間的關(guān)系,諸如SOC儲量與氣候和植被[25–26,91–93]、土壤類型[94]和管理方式[35]的關(guān)系等等。然而,盡管人們對樣地尺度以下的SOC平衡過程如前所述已有了充分的了解,但目前還沒有普遍認可的樣地尺度以上的土壤固碳機制[95],這種現(xiàn)狀呼吁人們在對不同時空尺度和土壤類型的SOC進行大量測定的基礎(chǔ)上,繼續(xù)開展進一步的研究[96]。
基于中國科學院戰(zhàn)略先導專項課題“中國森林生態(tài)系統(tǒng)固碳現(xiàn)狀、速率、機制和潛力(森林課題)”在國家尺度上所布置的森林樣地及其調(diào)查數(shù)據(jù)、結(jié)合全球已經(jīng)發(fā)表的研究結(jié)果,Zhou等[6]報道樣地及以上尺度的SOC動態(tài)與氣候、初級生產(chǎn)者、土壤之間存在如下規(guī)律:(1) 與濕潤指數(shù)P/PET (P-年降水量,PET-年蒸散潛力)呈顯著正相關(guān)關(guān)系;(2) 與凋落物(泛指輸入到土壤的所有初級產(chǎn)品,包括地上地下凋落物及粗死木、根系分泌物)碳氮比(C/N)呈顯著負相關(guān)關(guān)系;(3) 植物多樣性只直接影響表層SOC動態(tài),對深層SOC動態(tài)沒有直接影響,但是在自然狀況下,植物多樣性的上升將導致群落凋落物平均C/N比下降,從而間接影響SOC;(4) 與凋落物量沒有顯著關(guān)系;(5) 與土壤質(zhì)地沒有顯著關(guān)系。這些結(jié)果表明,任何能夠引起凋落物C/N比下降的自然過程和人為措施(如自然演替或人工引進C/N比低的物種到群落中)、以及能導致濕潤指數(shù)P/PET上升的氣候變化事件都將促進SOC的積累。這可以解釋很多先前難以理解的現(xiàn)象。如:FACE試驗表明, CO2濃度上升促進了生物量的積累且增加了凋落物產(chǎn)量, 卻并不能增加SOC含量[55,97–98],這顯然是因為CO2濃度上升并沒有降低(甚至增加)凋落物C/N比[6]。與此類似,氮肥添加試驗雖然增加了初級生產(chǎn)者的生產(chǎn)力和生物量,但能否增加SOC含量則取決于是否降低了凋落物的C/N比[99–100]。營林工作者通過引進豆科植物以增加原有林分的土壤肥力[101],也是因為豆科植物的加入降低了原有林分的凋落物C/N比[6]。
自發(fā)現(xiàn)成熟森林土壤可持續(xù)固碳現(xiàn)象以來[8],通過13年的研究,其固碳機理已基本清晰。作為本文主題下的一個實例,這里將成熟森林生態(tài)系統(tǒng)土壤固碳機制總結(jié)如下。
“內(nèi)源驅(qū)動機制”是指由生態(tài)系統(tǒng)自身演替所導致的氣候、初級生產(chǎn)者、土壤理化性質(zhì)改變所驅(qū)動的SOC積累。受這種機制作用,成熟與未成熟生態(tài)系統(tǒng)SOC的反應(yīng)是完全不同的。
對季風常綠闊葉林(南亞熱帶地帶性頂級群落)及其演替系列的研究發(fā)現(xiàn),在先鋒群落向頂級群落自然演替過程中及達到頂級群落后,雖然凋落物量很快趨向穩(wěn)定,但土壤水分[102]和植物多樣性[103–104]持續(xù)上升,凋落物C/N比和木質(zhì)素含量持續(xù)降低,推動著凋落物分解速率的加快以及流向土壤的有機碳比例增大[40],為土壤提供了越來越豐富的有機碳源。與此同時,隨著演替的進行,土壤有效磷含量的下降和有效氮含量的上升阻礙了SOC的分解從而有利于SOC的保存[53,105–106];而且,由于土壤水分隨森林成熟度增加而逐步提高,一方面使得成熟森林土壤表層有機碳較易于向土壤深層運輸并在厭氧環(huán)境下得到保存[82],另一方面森林的順行演替有利于驅(qū)動微生物朝著促進SOC積累的方向發(fā)揮功能[102]。
上述成熟森林SOC持續(xù)積累的內(nèi)源驅(qū)動機制可以被Zhou等[6]近期的研究結(jié)果完美詮釋并相互印證。
“外源驅(qū)動機制”是指生態(tài)系統(tǒng)受外力(人類經(jīng)營管理、自然災(zāi)害和全球及區(qū)域環(huán)境變化)作用所導致的SOC積累。這種機制對所有生態(tài)系統(tǒng)SOC積累都起作用,但成熟與非成熟生態(tài)系統(tǒng)的反應(yīng)程度可能有所差異。
對季風常綠闊葉林及其演替系列的研究發(fā)現(xiàn),該區(qū)域長期受酸沉降和氮沉降上升的脅迫,導致土壤酸化和成熟森林土壤氮含量飽和,酸化土壤和氮飽和土壤都將抑制土壤呼吸[53,107],增加土壤陽離子交換量(CEC)[87],有利于SOC的保存,這種效應(yīng)在成熟森林土壤更為顯著[53]。
過去幾十年來,季風常綠闊葉林區(qū)域氣溫持續(xù)上升、降水強度兩極化,這在導致土壤水分下降的同時[104,108],也增大了成熟與未成熟生態(tài)系統(tǒng)土壤水分的年內(nèi)變幅差異,成熟生態(tài)系統(tǒng)土壤水分的年內(nèi)變幅小于未成熟生態(tài)系統(tǒng)的年內(nèi)變幅,更有利于SOC的積累[102]。
[1] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]Nature, 2011, 478(7367): 49–56. doi: 10.1038/nature10386.
[2] LIU X D, QIAO Y N, ZHOU G Y. Controlling action of soil organic matter on soil moisture retention and its availability [J]Chin J Plant Ecol, 2011, 35(12): 1209–1218. doi: 10.3724/SP.J.1258.2011.01209.劉效東, 喬玉娜, 周國逸. 土壤有機質(zhì)對土壤水分保持及其有效性的控制作用 [J]. 植物生態(tài)學報, 2011, 35(12): 1209–1218. doi: 10. 3724/SP.J.1258.2011.01209.
[3] OADES J M. Soil organic matter and structural stability: Mechanisms and implications for management [J]Plant Soil, 1984, 76(1/2/3): 319– 337. doi: 10.1007/BF02205590.
[4] NADPOROZHSKAYA M A, MOHREN G M J, CHERTOV O G, et al. Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: An application of the ROMUL model [J]Ecol Modell, 2006, 190(3/4): 399–418. doi: 10. 1016/j.ecolmodel.2005.03.025.
[5] GUPTA S C, LARSON W E. Estimating soil water retention charac- teristics from particle size distribution, organic matter percent, and bulk density [J]Water Resour Res, 1979, 15(6): 1633–1635. doi: 10.1029/ WR015i006p01633.
[6] ZHOU G Y, XU S, CIAIS P, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation [J]Natl Sci Rev, 2019: nwz045. doi: 10.1093/nsr/nwz045.
[7] TANG X L, ZHAO X, BAI Y F, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey [J]Proc Natl Acad Sci USA, 2018, 115(16): 4021–4026. doi: 10.1073/ pnas.1700291115.
[8] ZHOU G Y, LIU S G, LI Z, et al. Old-growth forests can accumulate carbon in soils [J]Science, 2006, 314(5804): 1417. doi: 10.1126/ science.1130168.
[9] KNOHL A, SCHULZE E D, KOLLE O, et al. Large carbon uptake by an unmanaged 250-year-old deciduous forest in central Germany [J]Agric For Meteorol, 2003, 118(3/4): 151–167. doi: 10.1016/S0168- 1923(03)00115-1.
[10] ZHANG J H, HAN S J, YU G R. Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest [J]Agric For Meteorol, 2006, 137(3/4): 150–165. doi: 10. 1016/j.agrformet.2006.02.004.
[11] LUYSSAERT S, SCHULZE E D, B?RNER A, et al. Old-growth forests as global carbon sinks [J]Nature, 2008, 455(7210): 213–215. doi: 10.1038/nature07276.
[12] TAN Z H, ZHANG Y P, SCHAEFER D, et al. An old-growth subtropical Asian evergreen forest as a large carbon sink [J]Atmos Environ, 2011, 45(8): 1548–1554. doi: 10.1016/j.atmosenv.2010.12.041.
[13] ODUM E P. The strategy of ecosystem development [J]Science, 1969, 164(3877): 262–270. doi: 10.1126/science.164.3877.262.
[14] PHILLIPS O L, MALHI Y, HIGUCHI N, et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots [J]Science, 1998, 282(5388): 439–442. doi: 10.1126/science.282.5388.439.
[15] LEWIS S L, LOPEZ-GONZALEZ G, SONKé B, et al. Increasing carbon storage in intact African tropical forests [J]Nature, 2009, 457(7232): 1003–1006. doi: 10.1038/nature07771.
[16] MULLER-LANDAU H C. Carbon cycle: Sink in the African jungle [J]Nature, 2009, 457(7232): 969–970. doi: 10.1038/457969a.
[17] WANG J S, SUN J, XIA J Y, et al. Soil and vegetation carbon turnover times from tropical to boreal forests [J]Funct Ecol, 2018, 32(1): 71– 82. doi: 10.1111/1365-2435.12914.
[18] KEENAN R J, REAMS G A, ACHARD F, et al. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015 [J]For Ecol Manage, 2015, 352: 9–20. doi: 10.1016/j.foreco. 2015.06.014.
[19] SMITH P. Soil carbon sequestration and biochar as negative emission technologies [J]Glob Change Biol, 2016, 22(3): 1315–1324. doi: 10. 1111/gcb.13178.
[20] RUMPEL C, AMIRASLANI F, KOUTIKA L S, et al. Put more carbon in soils to meet Paris climate pledges [J]Nature, 2018, 564(7734): 32– 34. doi: 10.1038/d41586-018-07587-4.
[21] POST W M, EMANUEL W R, ZINKE P J, et al. Soil carbon pools and world life zones [J]Nature, 1982, 298(5870): 156–159. doi: 10.1038/ 298156a0.
[22] ESWARAN H, van den BERG E, REICH P. Organic carbon in soils of the world [J]Soil Sci Soc Amer J, 1993, 57(1): 192–194. doi: 10. 2136/sssaj1993.03615995005700010034x.
[23] LAL R. Forest soils and carbon sequestration [J]For Ecol Manage, 2005, 220(1/2/3): 242–258. doi: 10.1016/j.foreco.2005.08.015.
[24] TARNOCAI C, CANADELL J G, SCHUUR E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region [J]Glob Biogeochem Cycle, 2009, 23(2): GB2023. doi: 10.1029/2008GB003327.
[25] BATJES N H. Total carbon and nitrogen in the soils of the world [J]Eur J Soil Sci, 1996, 47(2): 151–163. doi: 10.1111/j.1365-2389.1996. tb01386.x
[26] JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]Ecol Appl, 2000, 10(2): 423–436. doi: 10.1890/1051-0761(2000)010[0423:TVD OSO]2.0.CO;2.
[27] YU Z C. Northern peatland carbon stocks and dynamics: A review [J]Biogeosciences, 2012, 9(10): 4071–4085. doi: 10.5194/bg-9-4071- 2012.
[28] HUGELIUS G, STRAUSS J, ZUBRZYCKI S, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps [J]Biogeosciences, 2014, 11(23): 6573–6593. doi: 10.5194/bg-11-6573-2014.
[29] DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems [J]Science, 1994, 263(5144): 185– 190. doi: 10.1126/science.263.5144.185.
[30] POST W M, KWON K C. Soil carbon sequestration and land-use change: Processes and potential [J]Glob Change Biol, 2000, 6(3): 317–327. doi: 10.1046/j.1365-2486.2000.00308.x.
[31] PAUL K I, POLGLASE P J, NYAKUENGAMA J G, et al. Change in soil carbon following afforestation [J]For Ecol Manage, 2002, 168 (1/2/3): 241–257. doi: 10.1016/S0378-1127(01)00740-X.
[32] DENG L, WANG K, TANG Z, et al. Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (13C) [J]Agric, Ecosyst Environ, 2016, 221: 235–244. doi: 10.1016/j.agee.2016.01.048.
[33] DIOCHON A, KELLMAN L. Natural abundance measurements of13C indicate increased deep soil carbon mineralization after forest distur- bance [J]Geophys Res Lett, 2008, 35(14): L14402. doi: 10.1029/2008 GL034795.
[34] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage [J]Nat Commun, 2015, 6: 6707. doi: 10.1038/ncomms7707.
[35] SCHARLEMANN J P W, TANNER E V J, HIEDERER R, et al. Global soil carbon: Understanding and managing the largest terrestrial carbon pool [J]Carbon Manag, 2014, 5(1): 81–91. doi: 10.4155/cmt.13.77.
[36] SAYER E J, HEARD M S, GRANT H K, et al. Soil carbon release enhanced by increased tropical forest litterfall [J]Nat Clim Change, 2011, 1(6): 304–307. doi: 10.1038/nclimate1190.
[37] LEFF J W, WIEDER W R, TAYLOR P G, et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest [J]Glob Change Biol, 2012, 18(9): 2969–2979. doi: 10.1111/j.1365-2486.2012.02749.x.
[38] XU S, LIU L L, SAYER E J. Variability of above-ground litter inputs alters soil physicochemical and biological processes: A meta-analysis of litterfall-manipulation experiments [J]Biogeosciences, 2013, 10(11): 7423–7433. doi: 10.5194/bg-10-7423-2013.
[39] LUO Z K, FENG W T, LUO Y Q, et al. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions [J]Glob Change Biol, 2017, 23(10): 4430–4439. doi: 10.1111/gcb.13767.
[40] HUANG Y H, LI Y L, XIAO Y, et al. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in south China [J]For Ecol Manage, 2011, 261(7): 1170–1177. doi: 10.1016/j.foreco.2010.12.030.
[41] SUMIYOSHI Y, CROW S E, LITTON C M, et al. Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics [J]GCB Bioenergy, 2017, 9(4): 694–709. doi: 10.1111/gcbb.12379.
[42] RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation [J]Plant Soil, 2005, 269(1/2): 341–356. doi: 10.1007/s11104-004-0907-y.
[43] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]Nat Clim Change, 2015, 5(6): 588–595. doi: 10.1038/nclimate2580.
[44] FOEREID B, BELLARBY J, MEIER-AUGENSTEIN W, et al. Does light exposure make plant litter more degradable? [J]Plant Soil, 2010, 333(1/2): 275–285. doi: 10.1007/s11104-010-0342-1.
[45] CONANT R T, RYAN M G, ?GREN G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward [J]Glob Change Biol, 2011, 17(11): 3392–3404. doi: 10. 1111/j.1365-2486.2011.02496.x.
[46] HUANG W J, HALL S J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter [J]Nat Commun, 2017, 8(1): 1774. doi: 10.1038/s41467-017-01998-z.
[47] WYNN J G, BIRD M I, VELLEN L, et al. Continental-scale measure- ment of the soil organic carbon pool with climatic, edaphic, and biotic controls [J]Glob Biogeochem Cycle, 2006, 20(1): GB1007. doi: 10. 1029/2005GB002576.
[48] RASMUSSEN C, HECKMAN K, WIEDER W R, et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content [J]Biogeochemistry, 2018, 137(3): 297–306. doi: 10.1007/s 10533-018-0424-3.
[49] KIRKBY C A, RICHARDSON A E, WADE L J, et al. Nutrient availability limits carbon sequestration in arable soils [J]Soil Biol Biochem, 2014, 68: 402–409. doi: 10.1016/j.soilbio.2013.09.032.
[50] AINSWORTH E A, LONG S P. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]New Phytol, 2005, 165(2): 351–371. doi: 10.1111/j. 1469-8137.2004.01224.x.
[51] FANG X, ZHOU G Y, LI Y L, et al. Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest [J]Biol Fertil Soils, 2016, 52(3): 353–365. doi: 10.1007/s00374-015-1081-5.
[52] HE D, SHEN W J, EBERWEIN J, et al. Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest [J]Soil Biol Biochem, 2017, 115: 499–510. doi: 10.1016/j.soilbio.2017.09.023.
[53] MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China [J]Glob Change Biol, 2008, 14(2): 403–412. doi: 10.1111/j.1365-2486.2007.01503.x.
[54] MAYOR J R, WRIGHT S J, SCHUUR E A G, et al. Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest [J]Biogeo- chemistry, 2014, 119(1/2/3): 293–306. doi: 10.1007/s10533-014-9966-1.
[55] van GROENIGEN K J, QI X, OSENBERG C W, et al. Faster decom- position under increased atmospheric CO2limits soil carbon storage [J]Science, 2014, 344(6183): 508–509. doi: 10.1126/science.1249534.
[56] LI Y Y, ZHOU G Y, HUANG W J, et al. Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest [J]Plant Soil, 2016, 409(1/2): 247–257. doi: 10.1007/s11104-016-2966-2.
[57] PAN Q M, TIAN D S, NAEEM S, et al. Effects of functional diversity loss on ecosystem functions are influenced by compensation [J]Ecology, 2016, 97(9): 2293–2302. doi: 10.1002/ecy.1460.
[58] HUANG Y Y, CHEN Y X, CASTRO-IZAGUIRRE N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment [J]Science, 2018, 362(6410): 80–83. doi: 10.1126/science. aat6405.
[59] YAN J H, ZHANG W, WANG K Y, et al. Responses of CO2, N2O and CH4fluxes between atmosphere and forest soil to changes in multiple environmental conditions [J]Glob Change Biol, 2014, 20(1): 300–312. doi: 10.1111/gcb.12327.
[60] LIU J X, LIU S G, LI Y Y, et al. Warming effects on the decomposition of two litter species in model subtropical forests [J]Plant Soil, 2017, 420(1/2): 277–287. doi: 10.1007/s11104-017-3392-9.
[61] BERG B. Litter decomposition and organic matter turnover in northern forest soils [J]For Ecol Manage, 2000, 133(1/2): 13–22. doi: 10.1016/ S0378-1127(99)00294-7.
[62] SANDERMAN J, AMUNDSON R. A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils [J]Biogeochemistry, 2008, 89(3): 309–327. doi: 10. 1007/s10533-008-9221-8.
[63] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The microbial efficiency-Matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? [J]Glob Change Biol, 2013, 19 (4): 988–995. doi: 10.1111/gcb.12113.
[64] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matterbiochemical and physical pathways of litter mass loss [J]Nat Geosci, 2015, 8(10): 776–779. doi: 10.1038/ngeo2520.
[65] MANZONI S, ?APEK P, MOOSHAMMER M, et al. Optimal metabolic regulation along resource stoichiometry gradients [J]Ecol Lett, 2017, 20(9): 1182–1191. doi: 10.1111/ele.12815.
[66] CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest [J]Science, 2013, 339(6127): 1615–1618. doi: 10.1126/science.1231923.
[67] BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]Annu Rev Plant Biol, 2006, 57: 233–266. doi: 10.1146/annurev.arplant.57.032905. 105159.
[68] PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2fumigation [J]Ecol Lett, 2011, 14(2): 187–194. doi: 10.1111/j.1461-0248.2010.01570.x.
[69] LAJTHA K, TOWNSEND K L, KRAMER M G, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems [J]Biogeo- chemistry, 2014, 119(1/2/3): 341–360. doi: 10.1007/s10533-014-9970-5.
[70] ROVIRA P, VALLEJO V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach [J]Geoderma, 2002, 107(1/2): 109–141. doi: 10.1016/S0016-7061(01)00143-4.
[71] KNORR W, PRENTICE I C, HOUSE J I, et al. Long-term sensitivity of soil carbon turnover to warming [J]Nature, 2005, 433(7023): 298– 301. doi: 10.1038/nature03226.
[72] SOLLINS P, HOMANN P, CALDWELL B A. Stabilization and desta- bilization of soil organic matter: Mechanisms and controls [J]Geo- derma, 1996, 74(1/2): 65–105. doi: 10.1016/S0016-7061(96)00036-5.
[73] CHEN X M, LIU J X, DENG Q, et al. Effects of elevated CO2and nitrogen addition on soil organic carbon fractions in a subtropical forest [J]Plant Soil, 2012, 357(1/2): 25–34. doi: 10.1007/s11104-012-1145-3.
[74] CHENG X L, YANG Y H, LI M, et al. The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China [J]Plant Soil, 2013, 366(1/2): 415–424. doi: 10.1007/s11104-012-1446-6.
[75] BRONICK C J, LAL R. Soil structure and management: A review [J]Geoderma, 2005, 124(1/2): 3–22. doi: 10.1016/j.geoderma.2004.03.005.
[76] RABOT E, WIESMEIER M, SCHLüTER S, et al. Soil structure as an indicator of soil functions: A review [J]Geoderma, 2018, 314: 122– 137. doi: 10.1016/j.geoderma.2017.11.009.
[77] SIX J, PAUSTIAN K, ELLIOTT E T, et al. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-asso- ciated carbon [J]Soil Sci Soc Amer J, 2000, 64(2): 681–689. doi: 10. 2136/sssaj2000.642681x.
[78] TANG X Y, LIU S G, LIU J X, et al. Effects of vegetation restoration and slope positions on soil aggregation and soil carbon accumulation on heavily eroded tropical land of Southern China [J]J Soil Sediment, 2010, 10(3): 505–513. doi: 10.1007/s11368-009-0122-9.
[79] LüTZOW M V, K?GEL-KNABNER I, EKSCHMITT K, et al. Stabili- zation of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions: A review [J]Eur J Soil Sci, 2006, 57(4): 426–445. doi: 10.1111/j.1365-2389.2006.00809.x.
[80] ABIVEN S, MENASSERI S, CHENU C. The effects of organic inputs over time on soil aggregate stability: A literature analysis [J]Soil Biol Biochem, 2009, 41(1): 1–12. doi: 10.1016/j.soilbio.2008.09.015.
[81] KARAMI A, HOMAEE M, AFZALINIA S, et al. Organic resource management: Impacts on soil aggregate stability and other soil physico- chemical properties [J]Agric Ecosyst Environ, 2012, 148: 22–28. doi: 10.1016/j.agee.2011.10.021.
[82] SCHUUR E A G, CHADWICK O A, MATSON P A. Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests [J]Ecology, 2001, 82(11): 3182–3196. doi: 10.1890/0012-9658(2001)082 [3182:CCASCS]2.0.CO;2.
[83] PRESCOTT C E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? [J]Biogeo- chemistry, 2010, 101(1/2/3): 133–149. doi: 10.1007/s10533-010-9439-0.
[84] MAKKONEN M, BERG M P, HANDA I T, et al. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient [J]Ecol Lett, 2012, 15(9): 1033–1041. doi: 10.1111/j.1461-0248.2012.01826.x.
[85] ZHOU G Y, GUAN L L, WEI X H, et al. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China [J]Plant Soil, 2008, 311(1/2): 61–72. doi: 10.1007/s11104-008-9658-5.
[86] ZHOU T, SHI P J, HUI D F, et al. Global pattern of temperature sensi- tivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback [J]J Geophys Res-Biogeo, 2009, 114(G2): G02016. doi: 10.1029/2008JG000850.
[87] LU X K, MAO Q G, GILLIAM F S, et al. Nitrogen deposition contri- butes to soil acidification in tropical ecosystems [J]Glob Change Biol, 2014, 20(12): 3790–3801. doi: 10.1111/gcb.12665.
[88] HOBBIE S E. Nitrogen effects on decomposition: A five-year experi- ment in eight temperate sites [J]Ecology, 2008, 89(9): 2633–2644. doi: 10.1890/07-1119.1.
[89] RIGGS C E, HOBBIE S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils [J]Soil Biol Biochem, 2016, 99: 54–65. doi: 10.1016/j.soilbio.2016.04.023.
[90] ZAK D R, HOLMES W E, WHITE D C, et al. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? [J]Ecology, 2003, 84(8): 2042–2050. doi: 10.1890/02-0433.
[91] BATJES N H, SOMBROEK W G. Possibilities for carbon sequestration in tropical and subtropical soils [J]Glob Change Biol, 1997, 3(2): 161–173. doi: 10.1046/j.1365-2486.1997.00062.x.
[92] de DEYN G B, CORNELISSEN J H C, BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes [J]Ecol Lett, 2008, 11(5): 516–531. doi: 10.1111/j.1461-0248.2008.01164.x.
[93] CARVALHAIS N, FORKEL M, KHOMIK M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems [J]Nature, 2014, 514(7521): 213–217. doi: 10.1038/nature13731.
[94] DOETTERL S, STEVENS A, SIX J, et al. Soil carbon storage controlled by interactions between geochemistry and climate [J]Nat Geosci, 2015, 8(10): 780–783. doi: 10.1038/ngeo2516.
[95] O’ROURKE S M, ANGERS D A, HOLDEN N M, et al. Soil organic carbon across scales [J]Glob Change Biol, 2015, 21(10): 3561–3574. doi: 10.1111/gcb.12959.
[96] HARDEN J W, HUGELIUS G, AHLSTR?M A, et al. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter [J]Glob Change Biol, 2018, 24(2): e705-e718. doi: 10.1111/gcb.13896.
[97] KING J S, KUBISKE M E, PREGITZER K S, et al. Tropospheric O3compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2[J]New Phytol, 2005, 168(3): 623–636. doi: 10.1111/j.1469-8137. 2005.01557.x.
[98] TALHELM A F, PREGITZER K S, ZAK D R. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon [J]Ecol Lett, 2009, 12(11): 1219–1228. doi: 10.1111/j. 1461-0248.2009.01380.x.
[99] BAER S G, BLAIR J M. Grassland establishment under varying resource availability: A test of positive and negative feedback [J]Ecology, 2008, 89(7): 1859–1871. doi: 10.1890/07-0417.1.
[100]FORNARA D A, TILMAN D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition [J]Ecology, 2012, 93(9): 2030–2036. doi: 10.1890/12-0292.1.
[101]JOHNSON D W, CURTIS P S. Effects of forest management on soil C and N storage: Meta analysis [J]For Ecol Manage, 2001, 140(2/3): 227–238. doi: 10.1016/S0378-1127(00)00282-6.
[102]WANG G S, HUANG W J, MAYES M A, et al. Soil moisture drives microbial controls on carbon decomposition in two subtropical forests [J]Soil Biol Biochem, 2019, 130: 185–194. doi: 10.1016/j.soilbio. 2018.12.017.
[103]ZHOU G Y, GUAN L L, WEI X H, et al. Litterfall production along successional and altitudinal gradients of subtropical monsoon ever- green broadleaved forests in Guangdong, China [J]Plant Ecol, 2007, 188(1): 77–89. doi: 10.1007/s11258-006-9149-9.
[104]ZHOU G Y, PENG C H, LI Y L, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad- leaved forest in southern China [J]Glob Change Biol, 2013, 19(4): 1197–1210. doi: 10.1111/gcb.12128.
[105]HUANG W J, ZHOU G Y, LIU J X. Nitrogen and phosphorus status and their influence on aboveground production under increasing nitrogen deposition in three successional forests [J]Acta Oecol, 2012, 44: 20– 27. doi: 10.1016/j.actao.2011.06.005.
[106]LIU L, GUNDERSEN P, ZHANG T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China [J]Soil Biol Biochem, 2012, 44(1): 31–38. doi: 10.1016/j.soilbio.2011.08.017.
[107]LIANG G H, LIU X Z, CHEN X M, et al. Response of soil respiration to acid rain in forests of different maturity in southern China [J]PLoS One, 2013, 8(4): e62207. doi: 10.1371/journal.pone.0062207.
[108]ZHOU G Y, WEI X H, WU Y P, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China [J]Glob Change Biol, 2011, 17(12): 3736–3746. doi: 10.1111/j.1365-2486.2011.02499.x.
Exploration History of Soil Organic Carbon Formation Mechanisms
ZHOU Guo-yi1, XIONG Xin1,2
(1. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences,Beijing 100049, China)
Soil organic carbon (SOC) is an important asset of ecosystems and plays a key role in the global carbon balance. Since the 2015 Paris Climate Conference, promoting SOC accumulation in terrestrial ecosystems has received special attention and is considered to be the most important land-based action of mitigating the rising atmospheric CO2concentration. Starting from serving this goal, this paper reviews and summarizes the history of the global exploration of SOC formation mechanisms over the recent decades. Including the global distribution law of SOC, the SOC cycle processes and the corresponding physical, chemical and biological mechanisms at scales that are smaller than plot, and the mechanisms of soil carbon sequestration at scales that are larger than plot. Finally, an example of the SOC accumulation mechanisms of mature forest is given. So, the exploration process of the SOC formation mechanisms is actually the process of seeking theoretical guidance for promoting soil carbon sequestration.
SOC; Formation; Sequestration; Mechanism
10.11926/jtsb.4094
2019–05–16
2019–07–05
中國科學院前沿科學重點研究項目(DYZDJ-SSW-DQC003);國家自然科學基金項目(41430529, 41573077)資助
This work was supported by the Key Research Projects in Frontier Science of Chinese Academy of Sciences (Grant No. DYZDJ-SSW-DQC003), and the National Natural Science Foundation of China (Grant No. 41430529, 41573077).
周國逸(1963~ ),男,研究員,博士生導師,研究方向為生態(tài)系統(tǒng)生態(tài)學和生態(tài)水文學。E-mail: gyzhou@scib.ac.cn