王冠雅
摘 ?要: 針對云計(jì)算環(huán)境下滿足用戶服務(wù)質(zhì)量(QoS)約束條件的在線服務(wù)性產(chǎn)品任務(wù)流分配問題,提出一種基于QoS約束的差分進(jìn)化算法(QoS?DE算法),以便實(shí)現(xiàn)多目標(biāo)優(yōu)化全局最優(yōu)問題。該算法首先構(gòu)建了云計(jì)算環(huán)境下的QoS模型,并對在線服務(wù)性產(chǎn)品的工作流分配約束指標(biāo)進(jìn)行了分析。然后利用差分進(jìn)化算法實(shí)現(xiàn)約束條件下的計(jì)算資源多目標(biāo)優(yōu)化模型求解,并通過自適應(yīng)的慣性權(quán)重調(diào)節(jié),提高了全局優(yōu)化能力。CloudSim云仿真平臺上的測試結(jié)果表明,相比經(jīng)典Min?Min算法和QoS?GA算法,提出的QoS?DE算法能夠?qū)⑷蝿?wù)合理分配到對應(yīng)的節(jié)點(diǎn),并在執(zhí)行時(shí)間、執(zhí)行費(fèi)用等指標(biāo)方面上表現(xiàn)出更好的性能。
關(guān)鍵詞: 云計(jì)算; 服務(wù)質(zhì)量; 差分進(jìn)化算法; 在線服務(wù)任務(wù)分配; 多目標(biāo)優(yōu)化模型; QoS約束
中圖分類號: TN911.1?34; TP393 ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)19?0132?03
Abstract: In order to solve the problem of task flow assignment of online service products that meet the user′s constraint conditions for quality of service (QoS) in cloud computing environment, a differential evolution algorithm based on QoS constraints (QoS?DE algorithm) is proposed, so as to achieve multi?objective global optimization. The QoS model in the cloud computing environment is constructed for the algorithm. The workflow allocation constraint indicators of online service products are analyzed. The differential evolution algorithm is used to solve the multi?objective optimization model of computational resources under constraint conditions, and the global optimization ability is improved by adaptive inertia weight adjustment. The test results on the CloudSim cloud simulation platform show that, in comparison with the classical Min?Min algorithm and QoS?GA algorithm, the proposed QoS?DE algorithm can reasonably assign tasks to the corresponding nodes, and has better performance in the aspects of execution time and cost indicators.
Keywords: Cloud computing; QoS; differential evolution algorithm; online service task allocation; multi?objective optimization model; QoS constaint
隨著互聯(lián)網(wǎng)時(shí)代信息與數(shù)據(jù)的快速增長,人們對存儲資源、帶寬和在線計(jì)算等網(wǎng)絡(luò)服務(wù)的需求越來越大。云計(jì)算作為一種新興的按需付費(fèi)計(jì)算模式被提出來以便適應(yīng)這些需求。云計(jì)算平臺能夠?qū)?shù)據(jù)中心的資源虛擬化,并充分利用網(wǎng)絡(luò)上閑置的資源為用戶提供服務(wù)。但是如何在復(fù)雜、動(dòng)態(tài)、異構(gòu)的環(huán)境中對云計(jì)算中的各種資源進(jìn)行合理分配調(diào)度,并同時(shí)保證滿足用戶服務(wù)質(zhì)量且系統(tǒng)負(fù)載均衡,是云計(jì)算的關(guān)鍵技術(shù)也是行業(yè)中一直關(guān)注的熱點(diǎn)方向。
傳統(tǒng)基于Web 服務(wù)技術(shù)的在線服務(wù)性產(chǎn)品工作流技術(shù)存在流程固定、柔韌性較差的問題,無法應(yīng)對用戶的需求迅速增長、復(fù)雜性提高的新情況。不少動(dòng)態(tài)資源任務(wù)調(diào)度算法被提出,例如,文獻(xiàn)[1]提出基于CSP的能耗高效云計(jì)算資源調(diào)度模型與算法,利用約束滿足問題對異構(gòu)云數(shù)據(jù)中心的能耗優(yōu)化資源調(diào)度問題建模并求解,有效降低了云數(shù)據(jù)中心物理服務(wù)器的能耗。文獻(xiàn)[2]提出相對最小執(zhí)行時(shí)間方差的云計(jì)算任務(wù)調(diào)度算法min?variance,在CloudSim云仿真平臺測試的負(fù)載均衡和最早完成時(shí)間方面都達(dá)到較好的效果。大多數(shù)云計(jì)算資源調(diào)度問題可以視為一個(gè)NP全問題,即多目標(biāo)優(yōu)化的問題。因此,文獻(xiàn)[3]提出一種基于遺傳算法的云計(jì)算資源調(diào)度策略,通過遺傳算法結(jié)合在平均負(fù)載約束條件下尋求全局負(fù)載最優(yōu)效果,提高了資源利用率。
本文提出基于QoS約束的差分進(jìn)化算法(QoS?DE算法),能夠?qū)崿F(xiàn)云平臺中在線服務(wù)性產(chǎn)品任務(wù)流分配問題,實(shí)現(xiàn)滿足用戶需求QoS約束條件(執(zhí)行成本最低和執(zhí)行時(shí)間最短)的計(jì)算資源,保證系統(tǒng)的負(fù)載均衡并為每個(gè)任務(wù)尋找合適的計(jì)算節(jié)點(diǎn)。通過仿真模擬驗(yàn)證了QoS?DE算法在總執(zhí)行時(shí)間和總執(zhí)行費(fèi)用這兩個(gè)指標(biāo)上的性能表現(xiàn),優(yōu)于其他現(xiàn)有的方法。本文QoS約束的內(nèi)容尚未包括云計(jì)算環(huán)境下的服務(wù)信譽(yù)等因素,考慮該因素在內(nèi)的調(diào)度分配研究將會(huì)是下一步工作的重點(diǎn)。
參考文獻(xiàn)
[1] 林偉偉,劉波,朱良昌,等.基于CSP的能耗高效云計(jì)算資源調(diào)度模型與算法[J].通信學(xué)報(bào),2013,34(12):33?41.
LIN Weiwei, LIU Bo, ZHU Liangchang, et al. Model and algorithm for energy?efficient cloud computing resource scheduling based on CSP [J]. Journal of communications, 2013, 34(12): 33?41.
[2] 李水泉,鄧泓.相對最小執(zhí)行時(shí)間方差的云計(jì)算任務(wù)調(diào)度算法[J].計(jì)算機(jī)技術(shù)與發(fā)展,2018(7):34?37.
LI Shuiquan, DENG Hong. Min?variance tasks scheduling algorithm for cloud computing system [J]. Computer technology and development, 2018(7): 34?37.
[3] 徐文忠,彭志平,左敬龍.基于遺傳算法的云計(jì)算資源調(diào)度策略研究[J].計(jì)算機(jī)測量與控制,2015,23(5):1653?1656.
XU Wenzhong, PENG Zhiping, ZUO Jinglong. Research on cloud computing resource scheduling strategy based on genetic algorithm [J]. Journal of computer measurement and control, 2015, 23(5): 1653?1656.
[4] YU W J, SHEN M, CHEN W N, et al. Differential evolution with two?level parameter adaptation [J]. IEEE transactions on cybernetics, 2017, 44(7): 1080?1099.
[5] WANG J, LIAO J, ZHOU Y, et al. Differential evolution enhanced with multiobjective sorting?based mutation operators [J]. IEEE transactions on cybernetics, 2017, 44(12): 2792?2805.
[6] ABUL KALAM AZAD M, FERNANDES E M G P. A modified differential evolution based solution technique for economic dispatch problems [J]. Journal of industrial & management optimization, 2017, 8(4): 1017?1038.
[7] ALI M, SIARRY P, PANT M. An efficient differential evolution based algorithm for solving multi?objective optimization problems [J]. European journal of operational research, 2018, 217(2): 404?416.
[8] HONG Z, JIANG H, BO L, et al. A framework for truthful online auctions in cloud computing with heterogeneous user demands [J]. IEEE transactions on computers, 2016, 65(3): 805?818.
[9] WEI Z, LIN Y, SHENG X, et al. Privacy preserving ranked multi?keyword search for multiple data owners in cloud compu?ting [J]. IEEE transactions on computers, 2016, 65(5): 1566?1577.
[10] WANG Y, LI J, WANG H H. Cluster and cloud computing framework for scientific metrology in flow control [J]. Cluster computing, 2017(1): 1?10.
[11] YOU C, HUANG K, CHAE H. Energy efficient mobile cloud computing powered by wireless energy transfer [J]. IEEE journal on selected areas in communications, 2016, 34(5): 1757?1771.
[12] DENG Ruilong, LU Rongxing, LAI Chengzhe, et al. Optimal workload allocation in fog?cloud computing toward balanced delay and power consumption [J]. IEEE internet of things journal, 2017, 3(6): 1171?1181.