郭慧瑩 王毅
摘 ?要: 針對基于DGA的變壓器故障診斷方法在實際操作中存在的不足,提出兩種解決方案:基于粒子群優(yōu)化支持向量機的變壓器故障診斷、基于差分進化支持向量機的變壓器故障診斷。通過分析兩種方案的算法原理建立支持向量機的變壓器故障診斷模型,從而完成參數(shù)的優(yōu)化,對得到的最優(yōu)參數(shù)進行驗證,獲取最優(yōu)的支持向量機模型。在Matlab軟件平臺上進行仿真實驗,結(jié)果證明,采用基于粒子群優(yōu)化支持向量機的變壓器故障診斷結(jié)果獲取的變壓器故障診斷率較高;基于差分進化支持向量機的變壓器故障診斷方法的誤判率較低,全局尋優(yōu)能力較好,相比于粒子群優(yōu)化算法,差分進化支持向量機的優(yōu)化精度更高。
關(guān)鍵詞: DGA; 支持向量機; 變壓器; 故障診斷; 參數(shù)優(yōu)化; SVM模型
中圖分類號: TN99?34 ? ? ? ? ? ? ? ? ? ? ? ?文獻標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)19?0154?05
Abstract: In view of the shortcomings of DGA?based transformer fault diagnosis methods in practical operation, two solutions are proposed, that is, transformer fault diagnosis based on particle swarm optimization support vector machine and transformer fault diagnosis based on differential evolution support vector machine. The transformer fault diagnosis model based on support vector machine is established by analyzing the algorithm principles of the two solutions, thus completing the parameters optimization, verifying the optimal parameters and obtaining the optimal support vector machine model. The simulation experiment was carried out on Matlab software platform. The results prove that the fault diagnosis rate of transformer based on particle swarm optimization support vector machine is higher; the fault diagnosis method based on differential evolution support vector machine has lower error rate and better global optimization ability. In comparison with particle swarm optimization, the differential evolution support vector machine has better global optimization ability and higher optimization accuracy.
Keywords: DGA; support vector machine; transformer; fault diagnosis; parameter optimization; SVM model
電力變壓器是電力系統(tǒng)的重要組成部分,其運行狀態(tài)的好壞關(guān)系到電力系統(tǒng)的可靠性,一旦電力變壓器出現(xiàn)故障,將會造成巨大的經(jīng)濟損失。變壓器出現(xiàn)故障后采取的診斷方式多種多樣,油中溶解氣體分析(DGA)法是檢測變壓器出現(xiàn)故障后最有效的手段之一,可以及時發(fā)現(xiàn)變壓器中存在的內(nèi)部故障,同時在對變壓器進行維護的過程中還可以排除變壓器中存在的故障隱患。當(dāng)變壓器出現(xiàn)故障后,通過產(chǎn)生的氣體使用不同的測試法進行故障分析診斷,特征氣體法、羅杰斯比值法以及改良三比值法是基于DGA的變壓器故障的主要診斷方法,在進行故障診斷時存在編碼盲點的問題,不能同時對多種故障進行診斷。因此,為了解決比值法存在的盲點問題,提出一種新的故障診斷方法對變壓器故障進行診斷[1]。
支持向量機算法以統(tǒng)計學(xué)習(xí)理論為基礎(chǔ),可以解決非線性、維度高等問題的機器,采用支持向量機對變壓器進行故障診斷分類,選擇的參數(shù)對故障診斷的結(jié)果影響較大。僅僅依靠基于DGA的變壓器故障診斷方法無法準(zhǔn)確地診斷出變壓器的故障位置所在?;诖?,本文提出一種基于粒子群優(yōu)化支持向量機的變壓器故障診斷方法和差分進化支持向量機的變壓器故障診斷方法,對變壓器進行故障診斷,以最快的速度確定故障所在位置并進行解決,確保電力系統(tǒng)的正常運行。
本文提出一種基于DGA差分進化支持向量機和基于粒子群優(yōu)化支持向量機的變壓器故障診斷方法。差分進化算法可以對支持向量機中的核函數(shù)進行優(yōu)化,并選出最佳參數(shù),從而對電力變壓器中經(jīng)常出現(xiàn)的故障進行診斷和識別;基于DGA的變壓器故障診斷方法無法對變壓器的故障進行準(zhǔn)確判斷,因此,需要在DGA的基礎(chǔ)上加入粒子群優(yōu)化支持向量機的故障診斷方法,對變壓器的故障進行診斷。實驗結(jié)果表明,基于粒子群優(yōu)化支持向量機的變壓器故障診斷結(jié)果準(zhǔn)確;基于差分進化算法支持向量機的仿真速度和識別精度較高,比粒子群優(yōu)化的支持向量機有更快的識別精度,具有較好的工程應(yīng)用價值。
參考文獻
[1] 賈立敬,張建文,王傳林,等.基于DGA的差分進化支持向量機電力變壓器故障診斷[J].高壓電器,2015(4):13?18.
JIA Lijing, ZHANG Jianwen, WANG Chuanlin, et al. DGA?based differential evolution support vector machine for power transformer fault diagnosis [J]. High voltage appliances, 2015(4): 13?18.
[2] 韓世軍,朱菊,毛吉貴,等.基于粒子群優(yōu)化支持向量機的變壓器故障診斷[J].電測與儀表,2014,51(11):71?75.
HAN Shijun, ZHU Ju, MAO Jigui, et al. Transformer fault diagnosis based on particle swarm optimization support vector machine [J]. Electrical measurement and instrumentation, 2014, 51(11): 71?75.
[3] 陳歡,彭輝,舒乃秋,等.基于魯棒能量模型LS?TSVM和DGA的變壓器故障診斷[J].電力系統(tǒng)保護與控制,2017,45(21):134?139.
CHEN Huan, PENG Hui, SHU Naiqiu, et al. Transformer fault diagnosis based on robust energy model LS?TSVM and DGA [J]. Power system protection and control, 2017, 45 (21): 134?139.
[4] 袁海滿,雷帆,陳宇,等.基于DGA的粒子群相關(guān)向量機變壓器故障診斷[J].高壓電器, 2017(2):108?112.
YUAN Haiman, LEI Fan, CHEN Yu, et al. Transformer fault diagnosis based on particle swarm correlation vector machine based on DGA [J]. High voltage electrical appliances, 2017(2): 108?112.
[5] 汪可,李金忠,張書琦,等.變壓器故障診斷用油中溶解氣體新特征參量[J].中國電機工程學(xué)報,2016,36(23):6570?6578.
WANG Ke, LI Jinzhong, ZHANG Shuqi, et al. New characteristic parameters of dissolved gas in transformer fault diagnosis oil [J]. China journal of electrical engineering, 2016, 36(23): 6570?6578.
[6] 周妺末.基于DGA分析的電力變壓器多層次分級故障診斷技術(shù)研究[D].成都:西南交通大學(xué),2018.
ZHOU Momo. Research on multi?level hierarchical fault diagnosis technology of power transformer based on DGA analysis [D]. Chengdu: Southwest Jiaotong University, 2018.
[7] 閔亞琪,馬鑫,翟振剛,等.用于變壓器DGA故障診斷的改進PSO優(yōu)化SVM算法研究[J].現(xiàn)代電子技術(shù),2018,41(15):124?128.
MIN Yaqi, MA Xin, ZHAI Zhengang. Study on SVM algorithm optimized by improved PSO used for transformer DGA fault diagnosis [J]. Modern electronics technique, 2018, 41 (15): 124?128.
[8] 李華中,楊景花.基于改進支持向量機的推薦系統(tǒng)托攻擊檢測方法[J].現(xiàn)代電子技術(shù),2016, 39(18):96?98.
LI Huazhong, YANG Jinghua. Method of improved support vector machine based shilling attack detection for recommendation system [J]. Modern electronics technique, 2016, 39(18): 96?98.