亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于分類思想的改進粒子群優(yōu)化算法

        2019-10-14 03:18:09仝秋娟李萌趙豈
        現(xiàn)代電子技術 2019年19期

        仝秋娟 李萌 趙豈

        摘 ?要: 針對粒子群算法存在收斂速度慢、收斂精度低且易收斂到局部極值的問題,提出一種基于分類思想的粒子群改進算法。該算法將粒子適度值和適度值均值做差與適度值標準差進行比較,從而將粒子所在區(qū)域劃分為拒絕域、親近域、合理域。根據(jù)不同區(qū)域中粒子的特點選取不同慣性權重和學習因子,使粒子高效地選擇自身經(jīng)驗或種群經(jīng)驗,合理增強或減弱粒子全局搜索能力和局部搜索能力。數(shù)值實驗結果表明,與其他粒子群改進算法相比,新的分類粒子群算法有效加快了粒子的收斂速度,提高了算法的收斂精度,有效改善了算法尋優(yōu)性能。

        關鍵詞: 粒子群優(yōu)化; 參數(shù)改進; 適度值; 適度值均值; 適度值標準差; 粒子分類; 有效經(jīng)驗

        中圖分類號: TN911.1?34; TP18 ? ? ? ? ? ? ? ? ? ? 文獻標識碼: A ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)19?0011?04

        Abstract: In order to solve the problems of slow convergence speed, low convergence precision and easy convergence to local extremum, an improved particle swarm optimization algorithm based on classification is proposed. The difference between the moderate value and the mean of moderate value is compared with the standard deviation of moderate value in this algorithm, then the region where the particles are located is divided into rejection domain, close proximity domain, and reasonable domain. According to the characteristics of particles in different regions, different inertia weights and learning factors are selected to ensure that the particles can efficiently select their own experience or population experience, and reasonably enhance or weaken the global search ability and the local search ability of the particles. The numerical results show that, in comparison with other particle swarm optimization algorithms, the proposed particle swarm optimization algorithm can more effectively accelerate the convergence speed of particles, and improve the convergence precision and optimization performance of the algorithm.

        Keywords: particle swarm optimization; parameter improvement; moderate value; mean of the moderate value; standard deviation of moderate value; particle classification; effective experience

        0 ?引 ?言

        粒子群優(yōu)化算法(Particle Swarm Optimization,PSO)是受到鳥魚群搜索食物策略的啟發(fā)而提出的一種群智能優(yōu)化算法[1]。它以隨機解為出發(fā)點,用適度值評價解的優(yōu)劣,通過迭代尋找最優(yōu)解。相比其他智能算法,PSO算法設置參數(shù)少、迭代快、易理解、工程上易實現(xiàn)。目前PSO算法在函數(shù)優(yōu)化[2]、神經(jīng)網(wǎng)絡訓練[3]、圖像處理[4]以及其他工程領域都得到了廣泛應用。但該算法沒有嚴格的理論指導,收斂精度低、易收斂到局部極值。對此,學者們提出各種改進算法,有基于模式結構的改進、基于種群多樣性的改進、基于參數(shù)改進等[5?7]。其中,對算法參數(shù)的改進是一個重要方向。文獻[8]先將慣性權重系數(shù)引入粒子速度更新公式中,后又加以改進,使慣性權重系數(shù)線性遞減[9],有效加快了算法收斂速度。文獻[10]提出基于時間變化的學習因子的改進,動態(tài)調節(jié)前后期粒子的搜索策略,加快了算法的收斂速度,但在多峰函數(shù)中極易陷入局部最優(yōu)。文獻[11]提出一種用正弦函數(shù)調節(jié)慣性權重的改進算法,提高了算法的收斂速度。但是這些方法在收斂精度上依然有所欠缺。

        綜上所述,無論是在求解單峰函數(shù)還是復雜的多峰函數(shù),基于分類思想的改進算法在收斂速度和收斂精度上整體優(yōu)于另外三種算法。

        4 ?結 ?語

        本文提出一種基于分類思想的粒子群優(yōu)化算法,改變了傳統(tǒng)算法中粒子采取統(tǒng)一迭代公式的做法,針對不同區(qū)域的粒子,利用不同的慣性權重系數(shù)和學習因子對粒子的全局尋優(yōu)能力和局部尋優(yōu)能力進行合理地調整。實驗結果表明,相比一些傳統(tǒng)的算法,新算法不僅收斂速度有所提升,收斂精度也有所提高,算法尋優(yōu)性能明顯改善。將此算法應用到其他領域是下一步的研究方向。

        參考文獻

        [1] KENNEDY J, EBERHART R C. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE, 1995: 1942?1948.

        [2] 周勇,胡中功.改進的快速遺傳算法在函數(shù)優(yōu)化中的應用[J].現(xiàn)代電子技術,2018,41(17):153?157.

        ZHOU Yong, HU Zhonggong. Application of improved fast?convergent genetic algorithm in function optimization [J]. Modern electronics technique, 2018, 41(17): 153?157.

        [3] 李鈺曼.改進的PSO?RBF神經(jīng)網(wǎng)絡在復雜工業(yè)過程中的應用[D].石家莊:河北科技大學,2018.

        LI Yuman. Application of improved PSO?RBF neural network in complex industrial processes [D]. Shijiazhuang: Hebei University of Science and Technology, 2018.

        [4] 呂微微,張宏立.基于協(xié)同進化粒子群算法的系統(tǒng)辨識[J].計算機仿真,2016,33(1):336?339.

        L? Weiwei, ZHANG Hongli. Identification of system co?evolution based on particle swarm optimization algorithm [J]. Computer simulation, 2016, 33(1): 336?339.

        [5] 章云霞.基于粒子群算法的結構損傷診斷研究[D].柳州:廣西科技大學,2015.

        ZHANG Yunxia. Research on structural damage detection based on particle swarm optimization algorithm [D]. Liuzhou: Guangxi University of Science and Technology, 2015.

        [6] 王博建.粒子群算法在復雜函數(shù)優(yōu)化中的學習策略及其改進[D].南昌:華東交通大學,2018.

        WANG Bojian. The learning strategy and improvement of particle swarm optimization in complex function optimization [D]. Nanchang: East China Jiaotong University, 2018.

        [7] 段曉東,王存睿,劉向東.粒子群算法及其應用[M].沈陽:遼寧大學出版社,2007:42?74.

        DUAN Xiaodong, WANG Cunrui, LIU Xiangdong. Particle swarm optimization and application [M]. Shenyang: Liaoning University Publishing House, 2007: 42?74.

        [8] SHI Y H, EBERHART R C. A modified particle swarm optimizer [C]// 1998 IEEE International Conference on Evolutio?nary Computation Proceedings. Anchorage: IEEE, 1998: 69?71.

        [9] SHI Y H, EBERHART R C. Empirical study of particle swarm optimization [C]// Proceedings of the 1999 Congress on Evolutionary Computation?CEC99 (Cat. No. 99TH8406). Washington: IEEE, 1999: 1380.

        [10] RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self?organizing hierarchical particle swarm optimizer with time?varying acceleration coefficients [J]. IEEE transactions on evolutionary computation, 2004, 8(3): 240?255.

        [11] 南杰瓊,王曉東.改進慣性權值的粒子群優(yōu)化算法[J].西安工程大學學報,2017,31(6):835?840.

        NAN Jieqiong, WANG Xiaodong. Particle swarm optimization algorithm with improved inertia weight [J]. Journal of Xian Polytechnic University, 2017, 31(6): 835?840.

        [12] KENNEDY J. The behavior of particles [C]// Proceedings of the Seventh Annual Conference on Evolutionary Programming. New York: [s.n.], 1998: 581?589.

        国产一区二区三区视频大全| 国产超碰人人爽人人做人人添| 老师脱了内裤让我进去| 亚洲色大成网站www在线观看| 日韩av在线不卡一二三区| 国内嫩模自拍诱惑免费视频| 亚洲成在人线在线播放无码| 福利一区视频| 免费人成黄页网站在线观看国产 | 欧美人与动牲交片免费| 亚洲一区二区三区在线最新| 亚洲欧美日韩另类精品一区| 少妇人妻在线视频| 亚洲欧洲无码精品ⅤA| 一区二区三区蜜桃av| 日本艳妓bbw高潮一19| 波多野结衣视频网址| av资源在线播放网站| 日日噜噜噜夜夜狠狠久久蜜桃| 亚洲国产成人久久综合一区77| 97久久草草超级碰碰碰| 亚洲av之男人的天堂网站| 日韩成人无码v清免费| 亚洲福利一区二区不卡| 亚洲另类无码专区首页| 97精品人妻一区二区三区香蕉| 制服无码在线第一页| av在线不卡一区二区| 国产成人精品a视频一区| 在线免费日韩| 久久亚洲精精品中文字幕早川悠里| 成人自慰女黄网站免费大全| 亚洲国产韩国欧美在线| 老熟女一区二区免费| 少妇太爽了在线观看免费| 中文无码日韩欧| 亚洲AV无码成人精品区网页| 蜜桃传媒免费观看视频| 国产色在线 | 日韩| 伊人久久大香线蕉免费视频| 一本久道在线视频播放|