亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        回填土質(zhì)材料對地下?lián)Q熱器凍脹特性的影響研究

        2019-10-12 02:26:48王有鏜王春光李成宇毛明明劉旭陽
        農(nóng)業(yè)工程學(xué)報 2019年14期
        關(guān)鍵詞:砂土熱管換熱器

        王有鏜,鄭 斌,王春光,李成宇,毛明明,劉旭陽

        回填土質(zhì)材料對地下?lián)Q熱器凍脹特性的影響研究

        王有鏜,鄭 斌,王春光,李成宇,毛明明,劉旭陽

        (山東理工大學(xué)交通與車輛工程學(xué)院,淄博 255049)

        以地源熱泵技術(shù)在寒區(qū)設(shè)施農(nóng)業(yè)中的應(yīng)用為背景,開展地下?lián)Q熱器低溫凍脹特性研究。通過巖土埋管凍脹試驗,基于凍結(jié)半徑追蹤和管體應(yīng)變測量,開展凍結(jié)區(qū)發(fā)展規(guī)律以及埋管變形收縮特性的研究,對比砂土基和黏土基回填料對凍脹的影響,并進一步考察換熱管容積與流阻變化。結(jié)果表明,凍結(jié)區(qū)在進出水2管中心連線方向發(fā)展速度大于其垂直方向,受凍脹影響,U型換熱管產(chǎn)生橢圓化變形與收縮,砂土基回填比黏土基回填具有更大的凍結(jié)范圍,但前者換熱管變形和收縮程度卻小于后者。換熱管在100 h內(nèi)持續(xù)由0降至?10 ℃后,測得管容積減小率為0.4%,流阻增大率為6.5%,由此可知,埋管凍脹的變形與收縮成為循環(huán)流量減小和系統(tǒng)效率下降的原因之一。

        熱泵;傳熱;凍脹;地下?lián)Q熱器;回填料;埋管變形

        0 引 言

        近年來,地源熱泵技術(shù)在設(shè)施農(nóng)業(yè)領(lǐng)域中得以廣泛應(yīng)用[1],其中以日光溫室的應(yīng)用最為典型[2-3]。然而為了達到良好的采光效果,溫室的外圍護結(jié)構(gòu)通常采用單層玻璃或塑料膜,因此在光照條件不佳時,地下?lián)Q熱器的運行溫度受大氣溫度影響較大。對于中國廣大的北方嚴(yán)寒地區(qū)而言,地下?lián)Q熱器(埋管)運行溫度常持續(xù)低于0 ℃,由此致使換熱巖土發(fā)生凍脹,凍脹作用不但會擠壓埋管發(fā)生變形,而且也影響到系統(tǒng)運行效率及安全性[4-8]。

        對于凍脹巖土擠壓管道的研究,成果主要體現(xiàn)在油氣運輸和管渠輸水等工程領(lǐng)域中。理論研究方面,學(xué)者們主要應(yīng)用管-土模型計算管土作用[9-11]、預(yù)測管位移[12-13]、分析管變形應(yīng)力和應(yīng)變[14-16]。在試驗研究方面,研究者已針對埋管凍脹變形,開展了許多大規(guī)模的工程測試,諸如加拿大Calgary凍脹試驗[17]、法國Caen全尺寸管線凍脹測試[12,18]、美國Fairbanks高速路管線凍脹試驗[19-20]以及美國UAF凍脹隆起管線測試[21-22]。此外,學(xué)者們也在農(nóng)業(yè)設(shè)施的抗凍設(shè)計方面進行了一系列的理論探索[23-25]與驗證[26-27]。近年來,盡管有學(xué)者對與地下?lián)Q熱器相似的垂直埋管[28]和管道溫變影響[29]進行了管土凍脹研究,但由于應(yīng)用背景不同,對地?zé)釤岜霉こ倘匀狈︶槍π?。目前針對寒區(qū)地下?lián)Q熱器運行中易出現(xiàn)的凍脹問題開始得到關(guān)注,最初由加拿大工程師Lenarduzzi等[7]結(jié)合工程實際指出該問題的研究意義,此后中國學(xué)者鄭平等[30]提出了考慮凍脹的土壤源熱泵水熱力耦合數(shù)值模型,筆者通過建立巖土凍脹試驗系統(tǒng)探討了換熱管形態(tài)對其凍脹變形的影響[31],同時基于孔隙增長率函數(shù)建立了地下?lián)Q熱器的凍脹變形模型[32]。

        本文基于前述研究基礎(chǔ),針對工程中常用的砂土基與黏土基回填料,試驗研究豎埋U型管周圍土壤(以下簡稱圍土)凍脹以及管截面變形特性;對比2種回填料的影響;考察管變形給循環(huán)系統(tǒng)帶來的影響,為指導(dǎo)工程應(yīng)用提供參考。

        1 試驗裝置及方法

        1.1 試驗系統(tǒng)

        本試驗?zāi)M地下豎埋U型換熱器在飽和巖土環(huán)境中的低溫運行過程,U型埋管內(nèi)循環(huán)流動低溫液體,土壤由此發(fā)生凍脹而使換熱管受力變形。通過追蹤土體內(nèi)0 ℃凍結(jié)鋒面發(fā)展,研究凍結(jié)區(qū)發(fā)展特性,利用應(yīng)變測試手段研究換熱管截面變形特性。試驗系統(tǒng)主要包括巖土槽、圍土、U型換熱管和冷源循環(huán)系統(tǒng)等,如圖1所示。

        1.2 試驗及測試裝置

        圓柱形巖土槽的高為900 mm,內(nèi)徑為800 mm,槽身下部開4個補水口,控制槽內(nèi)濕巖土水位,槽內(nèi)底部鋪墊一層150 mm厚礫石,以利于補水均勻滲入,礫石上部添置試驗圍土(包含地層土壤和回填料),為更好體現(xiàn)凍脹特性,試驗采用均勻的飽和圍土。用PE板制作環(huán)套,使巖土槽外圍形成環(huán)腔空間,為槽內(nèi)巖土提供4 ℃恒定的邊界溫度,槽蓋和槽底做絕熱處理。U型換熱管豎向埋置于巖土槽中央,壁厚3.5 mm,外徑32 mm,U型間距為80 mm。循環(huán)液采用30%乙二醇溶液,由其將熱量從巖土槽運送至冷源。

        1.地層土壤 2.U型管 3.砂土基回填 4.黏土基回填 5.礫石層 6.排液管 7.巖土槽 8.補水口 9.溫控單元 10.循環(huán)泵 11.流量計 12.冷源 13.水箱 14.球閥 15.軟連接 16.壓差計 17.槽蓋 18.接線出口 19.環(huán)套

        1.Ground soil 2.U-pipe 3.Sand-based backfill 4.Clay-based backfill 5.Gravel 6.Bleeder pipe 7.Soil tank 8.Water supply 9.Temperature control unit 10.Pump 11.Flowmeter 12.Cold source 13.Water tank 14.Ball valve 15.Flexible connection 16.Differential pressure gauge 17.Tank cover 18.Wiring channel 19.Annular sleeve

        a. 結(jié)構(gòu)示意圖

        a. Structure diagram

        b. 試驗布置

        在U型管進出口布置熱電偶測試循環(huán)液溫度,在換熱管埋深200 mm(砂土基回填層)處和600 mm(黏土基回填層)處的水平面上分別布置熱電偶,以測試圍土溫度,如圖2所示。以進、出水2管中心連線為方向,與其垂直方向為方向,2管的中間位置為原點,建立直角坐標(biāo)系,在和方向上各對稱布置10個測點,相鄰測點間距為40 mm。電阻應(yīng)變片測試換熱管外壁周向應(yīng)變,利用應(yīng)變變化判斷管截面的變形,測試位置1′、1″和2′、2″分別在換熱管埋深180 mm(砂土基回填層)處和580 mm(黏土基回填層)處的進、出水管上,每處在和方向?qū)ΨQ布置Ⅰ、Ⅱ、Ⅲ和Ⅳ 4個應(yīng)變測點。U型壓差計接U型管同一水平高度的進口與出口,測量其間壓差變化。主要試驗測試儀器型號及規(guī)格見表1。

        注:1′、1″和2′、2″為應(yīng)變測試位置,Ⅰ、Ⅱ、Ⅲ和Ⅳ為應(yīng)變測點,上角標(biāo)′和上角標(biāo)″分別表示進水管和出水管。

        1.3 試驗方法

        《地源熱泵工程技術(shù)規(guī)范》中已經(jīng)指出:細砂和膨潤土的混合漿或?qū)S霉酀{材料宜作為回填材料,以實現(xiàn)保水防滲功能;然而,由于成本或施工便利等原因,工程中也存在回收使用鉆孔屑黏土基回填料的情況,因此,本文選擇以上2種回填料進行分析。地層土壤與黏土基回填料選用天然細粒黏土,砂土基回填料選用細砂和膨潤土混合物(質(zhì)量比為7:3),其基本特性參數(shù)見表2,模擬回填孔直徑為150 mm。試驗過程中,對圍土分層作填充-夯實-填充處理,回填料的填充以回填高度的一半為界(埋深375 mm處),下半部為黏土基回填,上半部為砂土基回填,如圖2所示。最后,通過補水口使土體達到飽和狀態(tài)。

        表2 回填料基本參數(shù)

        試驗主要基于變形的應(yīng)變測量,分析變形的基本形態(tài)。初始截面為圓形的換熱管(此時應(yīng)變=0)受到擠壓后,如果其截面為橢圓化變形,則橢圓化向外凸出的管壁曲率變大時,該處外壁面將承受拉應(yīng)力,即表現(xiàn)為拉應(yīng)變(>0);橢圓化向內(nèi)收縮的管壁曲率變小時,該處外壁面將承受壓應(yīng)力,即表現(xiàn)為壓應(yīng)變(<0),如圖3所示。

        圖3 變形與應(yīng)變

        試驗過程中,直接測量參數(shù)的不確定度可由公式(1)確定

        式中u為參數(shù)的不確定度,u1,u2, …, u為相互獨立的不確定因素。

        本試驗中,溫度測量的不確定度為±2.02%,應(yīng)變測量的不確定度為±4.08%,液柱差測量的不確定度為±4.54%。

        2 結(jié)果及分析

        2.1 凍結(jié)區(qū)發(fā)展分析

        使系統(tǒng)連續(xù)運行100 h,換熱管內(nèi)流體溫度由0 ℃逐漸降低至?10 ℃,如圖4所示。由于U型換熱管的長度僅為0.9 m,運行過程中其進、出口的溫度差異不大(不超過0.5 ℃),進、出水2管及其軸向溫度可視為均勻一致。

        圖4 換熱管進出口溫度

        以點為基準(zhǔn)點,定義凍結(jié)鋒面的0 ℃點與基準(zhǔn)點之間的距離為凍結(jié)半徑,如圖5a所示,以衡量凍結(jié)區(qū)范圍。圍土內(nèi)和方向的凍結(jié)半徑發(fā)展如圖5b所示,可見凍結(jié)半徑在不同回填層內(nèi)發(fā)展規(guī)律一致。以黏土基回填層為例,和方向的凍結(jié)半徑發(fā)展至56 mm所用時間分別為11和36 h,二者相差25 h,此后2方向凍結(jié)半徑發(fā)展至96和136 mm位置的時間差分別為16和13 h,可見凍結(jié)區(qū)在方向的發(fā)展速度始終大于方向,同時隨著凍結(jié)范圍的擴大,2方向的發(fā)展差異逐漸減小。顯然,不對稱的凍結(jié)區(qū)發(fā)展特性源于換熱管的布置方式,進、出水2管位于方向上,凍結(jié)范圍較小時,凍結(jié)區(qū)形態(tài)受到管結(jié)構(gòu)的影響較大,隨著凍結(jié)區(qū)邊緣(凍結(jié)鋒面)距離換熱管越遠,其形態(tài)受管結(jié)構(gòu)的影響逐漸減弱。

        試驗過程中,砂土基回填層的凍結(jié)半徑發(fā)展平均速度(向:1.64 mm/h;向:1.43 mm/h)要略快于黏土基回填層(向:1.58 mm/h;向:1.37 mm/h)。事實上,除了砂土導(dǎo)熱性能良好之外,在初始含水率相差不大的情況下,由于砂土基回填料內(nèi)膨潤土中親水礦物的作用,使得回填料會吸收地層土壤中的水,這種水分遷移作用,可使正在凍結(jié)的區(qū)域冰晶含量不斷增大[33],冰的導(dǎo)熱系數(shù)大于水和土顆粒。因此冰晶較多的砂土基回填層具有更大的凍結(jié)范圍。

        a. 凍結(jié)區(qū)a. Freezing areab. 凍結(jié)半徑對比b. Comparison offreezing radius

        2.2 管截面變形分析

        取各應(yīng)變測試位置處每25 h的應(yīng)變變化,如圖6所示。

        圖6 管體應(yīng)變變化

        由圖6可以發(fā)現(xiàn),各處測點均為負應(yīng)變(壓應(yīng)變),且應(yīng)變值不斷增大,然而各測點變化規(guī)律卻有所差異,Ⅰ和Ⅲ測點應(yīng)變值普遍大于Ⅱ和Ⅳ測點。事實上,所測管體應(yīng)變?nèi)Q于2個因素:溫度和變形,管壁不斷的降溫收縮使得壓應(yīng)變值不斷增大,而變形使管壁附加了額外的拉壓應(yīng)力。由應(yīng)變測試結(jié)果及前述變形與應(yīng)變關(guān)系可知,相當(dāng)于Ⅰ和Ⅲ測點附加了壓應(yīng)變,Ⅱ和Ⅳ測點附加了拉應(yīng)變,管段發(fā)生了橢圓化變形,且橢圓長軸在向。

        凍結(jié)區(qū)的不均勻發(fā)展導(dǎo)致了凍脹力的不均勻產(chǎn)生,由管截面的變形可知,來自向的凍脹力大于向,這也與所測凍結(jié)區(qū)發(fā)展特性相一致。同時,隨著運行時間增加,Ⅰ和Ⅲ測點壓應(yīng)變與Ⅱ和Ⅳ測點壓應(yīng)變的差距也在不斷增大,表明管截面橢圓化變形程度不斷加重。

        對比可知,1′和1″在各個測試時間的變形都要小于2′和2″位置,處于砂土基回填層的管段,其橢圓化變形程度要小于黏土基回填層的管段。這表明相同條件下,黏土基回填層凍結(jié)所產(chǎn)生的凍脹力要比砂土基回填層的大。由于進出水2管溫差不大,2管周圍凍結(jié)區(qū)的發(fā)展較相似,因此相同埋深位置處,進出水2管段的變形程度差別不大。

        2.3 管截面收縮分析

        由各測試位置的管體應(yīng)變(圖6)可以看出,管截面在不斷橢圓化的同時,也在不斷收縮。管體平均應(yīng)變(ε)反映了截面周長的變化率,進而可反映管截面脹縮程度。試驗中采用4個測點應(yīng)變的平均值近似表示測試位置處的管體平均應(yīng)變(ε),如圖7a所示。可見在前30 h內(nèi),4處測試位置的ε基本維持在相同的水平,而大約運行至30 h時,2′和2″位置的ε開始大于1′和1″位置,且差距逐漸增大,最終前者的ε值達到?2 500×10-6左右,后者僅為?1 900×10-6左右。表明當(dāng)凍結(jié)發(fā)展至一定程度時,黏土基回填層內(nèi)的管截面收縮程度要比砂土基回填層內(nèi)的大。

        事實上,在低溫運行環(huán)境下,管截面的收縮取決于溫降和凍脹擠壓作用的大小。溫降引起的截面收縮應(yīng)變ε可由公式(2)求得。

        因此,試驗中各測試位置的εε之差可體現(xiàn)凍脹擠壓作用對管體應(yīng)變的影響,如圖7b所示??梢娫谇?0 h內(nèi),4處測試位置的凍脹應(yīng)變值不斷增大且增幅水平相當(dāng),從30 h至100 h,1′和1″處凍脹應(yīng)變值由?400×10-6僅下降至?500×10-6左右,而在2′和2″處凍脹應(yīng)變值卻降至?1 000×10-6以下。表明當(dāng)凍結(jié)區(qū)發(fā)展超過一定范圍,黏土基回填對換熱管的凍脹作用將大于砂土基回填,且差距逐漸增大。砂土基回填料中的膨潤土存在遇水膨脹軟化特性,從而使其強度降低[35],凍脹力對換熱管的作用相對減弱,因此在砂土中適量添加膨潤土,可減輕凍脹產(chǎn)生的換熱管變形與收縮程度。對于寒區(qū)地源熱泵工程,從地下?lián)Q熱器安全運行角度而言,按照規(guī)范使用砂土基回填料顯得尤為必要。

        a. 管體平均應(yīng)變ε

        a. Mean strains in pipe surfaceε

        b. 凍脹作用應(yīng)變εm-εT

        2.4 管容積與流阻分析

        在運行溫度不斷降低和凍脹作用力不斷加大的情況下,換熱管降溫收縮和橢圓化變形會使截面面積減小,從而導(dǎo)致管容積減小。對于內(nèi)徑為25 mm的換熱管,結(jié)合4個應(yīng)變測點的平均值ε,可求得凍脹變形后管體容積,再根據(jù)初始管容積0,可得容積變化量=0?,如圖8所示??梢婋S著運行時間的增加,管容積呈現(xiàn)不斷減小的趨勢,運行最終,換熱管有約3.3 mL的容積減少量,與計算管段(管長750 mm)的初始容積0=736 mL相比,減少了0.4%。

        圖8 換熱管容積減少量

        換熱管的變形與收縮同樣也會增大系統(tǒng)的流動阻力,系統(tǒng)流阻的變化可通過U型壓差計的液柱差來反映。凍脹試驗過程中的液柱差變化如圖9所示,可見液柱差不斷增大,且增幅隨運行時間有增加的趨勢,這與不斷增大的管體變形程度有關(guān)。在100 h的運行時間內(nèi),液柱差由137 mm增至146 mm,表明U型換熱管的流阻有6.5%的增加量。

        事實上,換熱管由于凍脹變形造成的容積減小以及流阻增大問題,在文獻[6]和[7]中所闡述的工程問題中已有提及,由此所帶來的諸如循環(huán)液溢流、系統(tǒng)流量減小以及COP(性能系數(shù),coefficient of performance)下降等問題不容忽視,在工程設(shè)計中應(yīng)加以考慮。

        圖9 液柱差增幅

        3 結(jié)論與討論

        本試驗基于U型埋管地下?lián)Q熱器的持續(xù)降溫運行過程,針對不同回填土質(zhì)材料(砂土基和黏土基),開展圍土凍結(jié)區(qū)發(fā)展以及埋管變形特性等基礎(chǔ)研究,得出如下結(jié)論:

        1)受U型結(jié)構(gòu)影響,圍土凍結(jié)區(qū)域不均勻發(fā)展,凍結(jié)區(qū)在進出水2管中心連線方向發(fā)展速度大于其垂直方向,該差距隨凍結(jié)范圍增大而減小,砂土基回填可較黏土基回填具有更大的凍結(jié)范圍。

        2)換熱管截面產(chǎn)生橢圓化變形和收縮,橢圓短軸在2管中心連線方向,隨著凍結(jié)區(qū)發(fā)展,變形與收縮程度不斷加重,黏土基回填料中由凍脹產(chǎn)生的換熱管變形與收縮程度更為嚴(yán)重,對于寒區(qū)地源熱泵工程,使用添加膨潤土的砂土基回填料顯得尤為必要。

        3)巖土凍脹所致的換熱管截面變形及收縮,會引發(fā)管容積減小以及流阻增大問題,運行100 h、溫降10 ℃的試驗條件下測得管容積減小率為0.4%,流阻增大率為6.5%,該問題應(yīng)在工程設(shè)計中加以考慮。

        事實上,凍脹特性主要取決于土壤、含水率和溫度。工程中回填土質(zhì)呈現(xiàn)多樣化特點,土壤粒徑和結(jié)構(gòu)不盡相同,即使對于相同材質(zhì)的回填料,土體強度也會由于回填深度不同而產(chǎn)生差異;孔隙含水率的變化可致使回填料熱學(xué)和力學(xué)特性產(chǎn)生差異,同樣,凍融變化也會對孔隙結(jié)構(gòu)及含水率產(chǎn)生影響;此外,環(huán)境溫度的變化也會影響地下?lián)Q熱器的低溫運行模式。因此,上述因素均會影響地下?lián)Q熱器的結(jié)構(gòu)凍變特性,進而作用于管土換熱效率,限于篇幅,擬在后續(xù)對相關(guān)問題進行深入探討。

        [1] 方慧,楊其長,王柟,等. 淺層地?zé)嵩垂?jié)能技術(shù)及其在設(shè)施農(nóng)業(yè)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(10):286-290.

        Fang Hui, Yang Qichang, Wang Nan, et al. Geothermal technology and its applications in protected agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CSAE), 2008, 24(10): 286-290. (in Chinese with English abstract)

        [2] 孫維拓,張義,楊其長,等. 溫室主動蓄放熱-熱泵聯(lián)合加溫系統(tǒng)熱力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(14):179-188.

        Sun Weituo, Zhang Yi, Yang Qichang, et al. Thermodynamic analysis of active heat storage-release associated with heat pump heating system in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(14): 179-188. (in Chinese with English abstract)

        [3] 石惠嫻,任亦可,孟祥真,等. 植物工廠水蓄能型地下水源熱泵供熱系統(tǒng)節(jié)能運行特性研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(23):157-163.

        Shi Huixian, Ren Yike, Meng Xiangzhen, et al. Research on energy-saving operating characteristics of water storage groundwater source heat pump heating system in plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 157-163. (in Chinese with English abstract)

        [4] 李南生,謝利輝,陳薛浩. 寒區(qū)淺埋輸油管線凍脹安全性分析[J]. 結(jié)構(gòu)工程師,2008,24(1):35-40.

        Li Nansheng, Xie Lihui, Chen Xuehao. Frozen-heaving of frost-soil bed of shallow-buried oil-pipeline in cold region[J]. Structural Engineers, 2008, 24(1): 35-40. (in Chinese with English abstract)

        [5] 胡宗柳,吳明,陳楊,等. 輸油管道凍脹安全性研究現(xiàn)狀與趨勢[J]. 油氣儲運,2011,30(12):881-883.

        Hu Zongliu, Wu Ming, Chen Yang, et al. Progress in the safety study of frost heaving of oil pipeline[J]. Oil and Gas Storage and Transportation, 2011, 30(12): 881-883. (in Chinese with English abstract)

        [6] Gabrielsson A, Lehtmets M, Moritz L, et al. Heat storage in soft clay field tests with heating (70℃) and freezing of the soil[R]. Sweden: Swedish Geotechnical Institute, 1997.

        [7] Lenarduzzi Frank J, Cragg Chris B H, Radhakrishna H S. Importance of grouting to enhance the performance of earth energy systems[J]. ASHRAE Transactions, 2000, 106: 424-434.

        [8] Tafreshi S N M, Khalaj O. Laboratory tests of small-diameter HDPE pipes buried in reinforced sand under repeated-load[J]. Geotextiles and Geomembranes, 2008, 26: 145-163.

        [9] Selvadurai A P S, Hu J, Konuk I. Computational modelling of frost heave induced soil-pipeline interaction I. Modelling of frost heave[J]. Cold Regions Science and Technology, 1999, 29(3): 215-228.

        [10] Selvadurai A P S, Hu J, Konuk I. Computational modelling of frost heave induced soil-pipeline interaction II. Modelling of experiments at the Caen test facility[J]. Cold Regions Science and Technology, 1999, 29(3): 229-257.

        [11] Michalowski R L, Zhu M. Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 703-722.

        [12] White T L. Pipelines in Permafrost and Freezing Ground, Engineering Resource Library and Database Indexes[M]. Canada: Permafrost Environmental Consulting Inc, 2006.

        [13] Susan A T, Ian D, Moore, Muge Balkaya. Parametric study of frost-induced bending moments in buried cast iron water pipes[J]. Tunnelling and Underground Space Technology, 2016, 51: 291-300.

        [14] Wu Yaping, Sheng Yu, Wang Yong. Stresses and deformations in a buried oil pipeline subject to differential frost heave in permafrost regions[J]. Cold Regions Science and Technology, 2010, 64(3): 256-261.

        [15] Wang Jiabin, Niu Ditao, He Hui. Frost durability and stress–strain relationship of lining shotcrete in cold environment[J]. Construction and Building Materials, 2019, 198(2): 58-69.

        [16] Razaqpur A G, Wang D. Frost-induced deformations and stresses in pipelines[J]. International Journal of Pressure Vessels and Piping, 1996, 69(2): 105-118.

        [17] Carlson L E, Nixon, J F. Subsoil investigation of ice lensing at the Calgary, Canada, frost heave facility[J]. Canadian Geotechnical Journal, 1988, 25(2): 307-319.

        [18] Williams P J, Riseborough D W, Smith M W. France-Canada joint study of deformation of an experimental pipe line by differential frost heave[J]. International Journal of Offshore and Polar Engineering, 1993, 3(1): 56-60.

        [19] Nixon J F. The role of convective heat transport in the thawing of frozen soils[J]. Canadian Geotechnical Journal, 1975, 12(3): 425-429.

        [20] Nixon J F. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal, 1991, 28(6): 843-859.

        [21] Huang S L, Bray M T, Akagawa S, et al. Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska[J]. Journal of Cold Regions Engineering, 2004, 18(1): 2-34.

        [22] Kim K, Zhou W, Huang S L. Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology, 2008, 53(3): 382-396.

        [23] 謝崇寶,白靜,吳志琴,等. 季節(jié)性凍土區(qū)灌溉管道排空防凍模式設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(21):82-88.

        Xie Chongbao, Bai Jing, Wu Zhiqin, et al. Design of irrigation pipeline emptying anti-freezing mode in seasonal frozen soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 82-88. (in Chinese with English abstract)

        [24] 唐少容,王紅雨,潘鑫,等. U 形混凝土襯砌結(jié)構(gòu)凍脹性能離心模型試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(1):157-163.

        Tang Shaorong, Wang Hongyu, Pan Xin, et al. Frost heave performance of U-shaped canal concrete lining based on centrifuge model test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 157-163. (in Chinese with English abstract)

        [25] 白靜,謝崇寶,吳志琴. 季節(jié)性凍土區(qū)管道淺埋換填防凍模式研究[J]. 水利學(xué)報,2018,49(5):588-597.

        Bai Jing, Xie Chongbao, Wu Zhiqin. Research on anti-freezing pattern of shallow buried pipe by replacement filling of pipe trench in seasonal frozen area[J]. Journal of Hydraulic Engineering, 2018, 49(5): 588-597. (in Chinese with English abstract)

        [26] 戴佳琦. 寒區(qū)村鎮(zhèn)飲用水輸配管道的保溫防凍分析[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2014.

        Dai Jiaqi. Research on the Insulation of the Pipeline in Cold Area[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese with English abstract)

        [27] 宋玲,歐陽輝,余書超. 混凝土防滲渠道冬季輸水運行中凍脹與抗凍脹力驗算[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(18):114-120.

        Song Ling, Ouyang Hui, Yu Shuchao. Frozen heaving and capacity of frozen heaving resistance of trapezoidal concrete lining canal with water in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 114-120. (in Chinese with English abstract)

        [28] 汪恩良,張安琪,包天鵝,等. 寒區(qū)不同材質(zhì)垂直埋管土壤凍結(jié)深度測量差異性分析[J]. 水利學(xué)報,2017,48(1):86-95.

        Wang Enliang, Zhang Anqi, Bao Tiane, et al. Variability analysis of freezing depth mode of vertical buried pipes with different materials in cold area[J]. Journal of Hydraulic Engineering, 2017, 48(1): 86-95. (in Chinese with English abstract)

        [29] 陳繼,李昆,盛煜,等. 季節(jié)凍土區(qū)埋地管道水溫的變化規(guī)律及其影響因素分析[J]. 冰川凍土,2014,36(4):836-844.

        Chen Ji, Li Kun, Sheng Yu, et al. Variations and influencing factors of the water temperature within the pipe buried in seasonally frozen ground areas[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 836-844. (in Chinese with English abstract)

        [30] 鄭平,吳明,趙玲. 寒區(qū)土壤源熱泵換熱埋管的水熱力耦合分析[J]. 土木建筑與環(huán)境工程,2011,33(3):100-106.

        Zheng Ping, Wu Ming, Zhao Ling. Thermal dynamic analysis of buried hent exchanger in ground-source heat pump system in cold region[J]. Journal of Civil, Architectural and Environmental Engineering, 2011, 33(3): 100-106. (in Chinese with English abstract)

        [31] 王有鏜,高青,朱曉林,等. 地下?lián)Q熱管凍脹變形實驗研究[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2014,22(4):744-751.

        Wang Youtang, Gao Qing, Zhu Xiaolin, et al. Experimental research on deformation of ground heat exchange pipe due to frost heave[J]. Journal of Basic Science and Engineering, 2014, 22(4): 744-751. (in Chinese with English abstract)

        [32] 白莉,王有鏜,高青,等. 地下?lián)Q熱管土結(jié)構(gòu)凍脹變形模擬[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(18):118-124.

        Bai Li, Wang Youtang, Gao Qing, et al. Simulation on underground pipe-soil heat exchange structure deformation due to frost heave[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 118-124. (in Chinese with English abstract)

        [33] 趙學(xué)文. 凍脹融沉試驗方法及粘土凍脹特性研宄[D]. 北京:北京交通大學(xué),2014.

        Zhao Xuewen. Research on Test Method of Frost Heave and Thawing Settlement and Frost Heave Characteristic of Clay[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese with English abstract)

        [34] 天華化工機械及自動化研究設(shè)計院. 腐蝕與防護手冊(第1卷)腐蝕理論、試驗及監(jiān)測[M]. 北京:化學(xué)工業(yè)出版社,2009.

        [35] 賈迪,孫德安,張龍. 鹽溶液及摻砂率對高廟子膨潤土強度的影響[J]. 上海大學(xué)學(xué)報:自然科學(xué)版,2018,24(6):1002-1013.

        Jia Di, Sun Dean, Zhang Long. Effects of saline solution and sand rate on strength of GMZ bentonite[J]. Journal of Shanghai University: Natural Science, 2018, 24(6): 1002-1013. (in Chinese with English abstract)

        Effects of backfill materials on frost heave characteristic of ground heat exchanger

        Wang Youtang, Zheng Bin, Wang Chunguang, Li Chengyu, Mao Mingming, Liu Xuyang

        (255049,)

        Based on the ground source heat pump technology (GSHP) application in facility agriculture in cold regions, the frost heave characteristics of ground heat exchanger were studied. The research, based on the freezing radius tracking and pipe surface strains measurement, was carried out by frost heave experimental system. The experimental system mainly included soil tank, surrounding soil (ground soil and backfill material), U-type heat exchange pipe and cold source circulation system. In order to reflect better the effects of soil frost heave on pipe, uniform and saturated surrounding soil was used, the initial temperature of which was 4 ℃. The effects of sand-based and clay-based backfill materials on frost heave were contrasted. The frost-susceptible natural clay was applied as ground soil and clay-based backfill material, the mixture of fine sand and bentonite was applied as sand-based backfill material. In the experiment, the cryogenic fluid circulated in the U-pipe for 100 hours continuously, the temperature of which reduced from 0 to -10 ℃. The research on the characteristics of freezing area growth, buried pipe deformation and contraction were developed. Moreover, the changes of heat exchange pipe volume and flow resistance due to pipe deformation were investigated. In this study, thedirection was defined as the line through two centers of inlet pipe and outlet pipe, thedirection was perpendicular todirection. It could be found in both backfill materials, the running time in thedirection was less than thedirection at the corresponding freezing radius. This was related to the structure of U-pipe with two side-by-side pipes. The difference decreased with the increase of freezing area. In contrast, the freezing radius growth rate in the sand-based backfill (the rates inanddirection were 1.64 and 1.43 mm/h respectively) was slightly larger than that of the clay-based backfill (the rates inanddirection were 1.58 and 1.37 mm/h respectively). This indicated the freezing area in the sand-based backfill was greater than that in the clay-based backfill. As the freezing area increased, the pipe surface strains in both backfills showed gradually increasing and regular difference, which indicated the pipes’ cross-sections became more and more elliptical. The major axes of elliptical cross-sections coincided with thedirection. Meanwhile, the decrease of the mean strains on the pipe surface indicated that the pipes’ cross-sections were contracting. It was found that the elliptical deformation and the contraction of the pipe in the clay-based backfill were more serious than that in the sand-based backfill. By eliminating the influence of temperature drop from the mean strains, it could be found that the frost heave effect on the heat exchange pipe in clay-based backfill could be greater than that in sand-based backfill, when the freezing area exceeded a certain range. After the temperature of U-pipe dropped from 0 to -10 ℃ within 100h, it could be found that the pipe volume reduced 0.4%, the flow resistance increased 6.5%. Consequently, the pipe deformation with ovalization and contraction could be one reason for the decrease in circulation flow rate and system efficiency.

        heat pumps; heat transfer; frost heave; ground heat exchanger; backfill material; buried pipe deformation

        2018-02-24

        2019-06-28

        國家自然科學(xué)基金資助項目(51806130);山東省自然科學(xué)基金資助項目(ZR2017LEE031);山東省重點研發(fā)計劃資助項目(2019GHY112076)

        王有鏜,講師,博士,主要從事淺層地能利用研究。Email:wyt@sdut.edu.cn

        10.11975/j.issn.1002-6819.2019.14.026

        S215; TK521

        A

        1002-6819(2019)-14-0205-07

        王有鏜,鄭 斌,王春光,李成宇,毛明明,劉旭陽. 回填土質(zhì)材料對地下?lián)Q熱器凍脹特性的影響研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(14):205-211. doi:10.11975/j.issn.1002-6819.2019.14.026 http://www.tcsae.org

        Wang Youtang, Zheng Bin, Wang Chunguang, Li Chengyu, Mao Mingming, Liu Xuyang. Effects of backfill materials on frost heave characteristic of ground heat exchanger[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 205-211. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.026 http://www.tcsae.org

        猜你喜歡
        砂土熱管換熱器
        ASM-600油站換熱器的國產(chǎn)化改進
        能源工程(2021年3期)2021-08-05 07:26:14
        飽和砂土地層輸水管道施工降水方案設(shè)計
        翅片管式換熱器的傳熱研究進展
        制冷(2019年2期)2019-12-09 08:10:36
        龍之中華 龍之砂土——《蟠龍壺》創(chuàng)作談
        導(dǎo)熱冠軍——熱管(下)
        導(dǎo)熱冠軍——熱管(上)
        310S全焊式板殼型換熱器的焊接
        焊接(2016年10期)2016-02-27 13:05:35
        U型換熱管試壓胎具設(shè)計
        城市淺埋隧道穿越飽和砂土復(fù)合地層時適宜的施工工法
        大直徑重疊式浮頭式換熱器的制造
        低溫與特氣(2014年4期)2014-03-20 13:36:49
        伊人久久成人成综合网222| 亚洲av日韩av卡二| 日本19禁啪啪吃奶大尺度| 又硬又粗又大一区二区三区视频| 亚洲天天综合色制服丝袜在线| 最新国产精品国产三级国产av| 国产精品成人观看视频国产奇米 | 精品日韩一区二区三区av| 999zyz玖玖资源站永久| 波多野结衣av手机在线观看| 中文字幕精品久久天堂一区 | 亚洲精品国产av成拍色拍| 国产午夜av秒播在线观看| 中文字幕有码无码av| 国产成人香蕉久久久久| 亚洲天堂av黄色在线观看| 欧美亚洲日本国产综合在线美利坚 | 日本少妇爽的大叫高潮了| 91国产精品自拍在线观看| 久久精品国产亚洲av无码娇色 | 日本久久伊人特级黄色| 亚洲狠狠婷婷综合久久久久图片| 色丁香色婷婷| av天堂手机一区在线| 男人天堂网2017| 亚洲国产成人久久综合电影| 亚洲九九九| 亚洲国产人成综合网站| 十八禁在线观看视频播放免费| 黄色资源在线观看| 青青草视频在线你懂的| 在线视频国产91自拍| 中文字幕日韩精品无码内射| 欧美激情精品久久999| 国产亚洲精品一区在线| 久久成人国产精品免费软件 | 开心久久婷婷综合中文字幕| 日韩精品无码中文字幕电影| 久久久综合九色合综国产| 亚洲hd高清在线一区二区| 宅男66lu国产在线观看|