王 俊,杜壯壯,賀智濤,姬江濤,王甲甲
仿蛛網(wǎng)農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)抗毀性量化指標(biāo)體系構(gòu)建
王 俊1,2,杜壯壯1,賀智濤1,姬江濤1,2,王甲甲1
(1.河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,洛陽(yáng) 471003;2.機(jī)械裝備先進(jìn)制造河南省協(xié)同創(chuàng)新中心,洛陽(yáng) 471003)
為解決傳統(tǒng)抗毀性量化指標(biāo)無(wú)法準(zhǔn)確描述網(wǎng)絡(luò)組件失效的耦合關(guān)系和全局作用,難以有效歸納、繼承蛛網(wǎng)抗毀性機(jī)制與規(guī)律的問(wèn)題,該文提出了一套基于節(jié)點(diǎn)平均路徑數(shù)和節(jié)點(diǎn)、鏈路平均使用次數(shù)的人工蛛網(wǎng)模型抗毀性量化指標(biāo)體系,評(píng)測(cè)失效網(wǎng)絡(luò)組件的全網(wǎng)影響度和權(quán)重等指標(biāo)。仿真試驗(yàn)表明該指標(biāo)體系可有效量化評(píng)價(jià)不同規(guī)模的人工蛛網(wǎng)模型的抗毀性,測(cè)評(píng)各網(wǎng)絡(luò)組件的抗毀性權(quán)重占比,其中,節(jié)點(diǎn)、弦鏈、輻鏈分別占50%、39.44%、10.56%,同時(shí)與傳統(tǒng)抗毀性量化指標(biāo)相比,該文提出的指標(biāo)具有獨(dú)特的優(yōu)勢(shì)。田間試驗(yàn)結(jié)果表明節(jié)點(diǎn)遭受不同程度損壞時(shí),仿蛛網(wǎng)部署仍可通過(guò)備用鏈路進(jìn)行數(shù)據(jù)傳輸,相較非交疊分簇部署、柵格部署具有更優(yōu)的抗毀性。人工蛛網(wǎng)模型抗毀性量化分析可為優(yōu)化農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)部署,實(shí)現(xiàn)規(guī)?;煽繎?yīng)用提供參考。
仿生;模型;傳感器;農(nóng)田無(wú)線傳感器網(wǎng)絡(luò);人工蛛網(wǎng);抗毀性;量化指標(biāo)
農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)眾多,具有多對(duì)一的通信特征,惡劣的部署環(huán)境易引起網(wǎng)絡(luò)組件故障,致使拓?fù)浣Y(jié)構(gòu)遭到破壞,路由動(dòng)態(tài)重構(gòu),導(dǎo)致難以有效完成環(huán)境監(jiān)測(cè)任務(wù)[1]。開(kāi)展農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的抗毀性量化研究,對(duì)提高網(wǎng)絡(luò)適應(yīng)性和生存能力具有重要參考價(jià)值。
現(xiàn)有農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)的研究工作主要集中于節(jié)點(diǎn)部署、組網(wǎng)設(shè)計(jì)、分簇路由算法開(kāi)發(fā)等方面[2-6],而對(duì)于提高網(wǎng)絡(luò)的抗毀性研究較少。具有自適應(yīng)性、魯棒性和自修復(fù)等特點(diǎn)的生物智能系統(tǒng),對(duì)提高農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)抗毀性研究具有重要意義。蜘蛛網(wǎng)是一種集優(yōu)雅、超輕、抗毀于一體的網(wǎng)狀結(jié)構(gòu),受其結(jié)構(gòu)啟發(fā)的人工蛛網(wǎng)模型具有分層分簇和中心對(duì)稱(chēng)性等特點(diǎn),繼承了蜘蛛網(wǎng)獨(dú)特的結(jié)構(gòu)優(yōu)勢(shì),具有極高的網(wǎng)絡(luò)抗毀能力[7-8],為農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)高抗毀性模型研究提供了新的參考。劉曉勝等人利用平均端到端延時(shí)和丟包率作為指標(biāo)評(píng)價(jià)網(wǎng)絡(luò)的抗毀性,表明人工蛛網(wǎng)相比星形網(wǎng)絡(luò)具有更優(yōu)異的連通度和抗毀能力,但未量化分析人工蛛網(wǎng)模型的抗毀性機(jī)制[9]。Mocanu B等[10]提出一種基于蜘蛛網(wǎng)自然結(jié)構(gòu)的新型點(diǎn)對(duì)點(diǎn)覆蓋結(jié)構(gòu),進(jìn)而分析兩節(jié)點(diǎn)之間的鏈路總數(shù)和跳數(shù),表明蛛網(wǎng)結(jié)構(gòu)覆蓋類(lèi)型下數(shù)據(jù)傳播性能優(yōu)于蜂窩和弦狀結(jié)構(gòu)。已有研究主要集中于人工蛛網(wǎng)拓?fù)浣Y(jié)構(gòu)優(yōu)勢(shì)繼承方面[11-14],而對(duì)其抗毀性量化的探討尚為空白。通過(guò)對(duì)人工蛛網(wǎng)模型中節(jié)點(diǎn)、鏈路的抗毀性進(jìn)行比較,可優(yōu)化節(jié)點(diǎn)、鏈路分層部署,為建立仿蛛網(wǎng)的農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)多路徑分層分簇路由協(xié)議提供決策依據(jù)。開(kāi)展人工蛛網(wǎng)模型組件抗毀性量化研究是實(shí)現(xiàn)該目標(biāo)的前提基礎(chǔ)。
已有的網(wǎng)絡(luò)模型抗毀性量化研究主要通過(guò)描述網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的基本統(tǒng)計(jì)特征表征其抗毀性,具體包括節(jié)點(diǎn)的度、簇系數(shù)、介數(shù)、平均路徑長(zhǎng)度、連通度等[15-17],但存在網(wǎng)絡(luò)抗毀性刻畫(huà)簡(jiǎn)單,缺乏對(duì)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)中節(jié)點(diǎn)和鏈路間的層間耦合關(guān)系、級(jí)聯(lián)失效情況綜合考慮等問(wèn)題,難以準(zhǔn)確反映人工蛛網(wǎng)模型中節(jié)點(diǎn)、鏈路失效及其耦合效應(yīng)引起的抗毀性能動(dòng)態(tài)演化。具體表現(xiàn)在:1)傳統(tǒng)抗毀性量化指標(biāo)主要用于評(píng)價(jià)去中心性網(wǎng)絡(luò)[18],人工蛛網(wǎng)模型則屬于有中心網(wǎng)絡(luò),中心節(jié)點(diǎn)采用集中式通信控制策略,經(jīng)由鏈路和中繼節(jié)點(diǎn)與外部節(jié)點(diǎn)通信,節(jié)點(diǎn)、鏈路的耦合關(guān)系易引起級(jí)聯(lián)失效,現(xiàn)有指標(biāo)無(wú)法量化各組件抗毀能力和定量分析級(jí)聯(lián)失效的影響;2)傳統(tǒng)分析指標(biāo)主要集中對(duì)同一類(lèi)型組件量化評(píng)價(jià)[19-21],未能對(duì)網(wǎng)絡(luò)內(nèi)部組件進(jìn)行全局綜合考慮,無(wú)法解析人工蛛網(wǎng)模型組件重要程度。因此,需要定義一種適應(yīng)人工蛛網(wǎng)模型的抗毀性量化指標(biāo)。
為解決人工蛛網(wǎng)模型抗毀性量化指標(biāo)缺失的問(wèn)題,針對(duì)人工蛛網(wǎng)模型中心對(duì)稱(chēng)性、分層分簇、鏈路冗余等特點(diǎn),利用節(jié)點(diǎn)、鏈路的使用頻次與重要性程度呈現(xiàn)顯著正相關(guān)關(guān)系,建立人工蛛網(wǎng)模型抗毀性量化指標(biāo)體系,描述網(wǎng)絡(luò)組件失效前后系統(tǒng)抗毀性能的動(dòng)態(tài)演化,總結(jié)節(jié)點(diǎn)、鏈路的耦合、級(jí)聯(lián)失效規(guī)律,用于指導(dǎo)仿蛛網(wǎng)農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)部署策略和分層路由協(xié)議的建立。
圓網(wǎng)蛛網(wǎng)結(jié)構(gòu)在蛛網(wǎng)進(jìn)化過(guò)程中占據(jù)著核心地位,本文基于圓網(wǎng)蛛網(wǎng)螺旋放大結(jié)構(gòu)建立人工蛛網(wǎng)模型拓?fù)浣Y(jié)構(gòu)如圖1所示[22-23],該模型由節(jié)點(diǎn)和連接節(jié)點(diǎn)的鏈路組成,分別與農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)的節(jié)點(diǎn)和通信鏈路對(duì)應(yīng),節(jié)點(diǎn)分為中心節(jié)點(diǎn)和普通節(jié)點(diǎn)2種類(lèi)型,對(duì)應(yīng)農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)的匯聚節(jié)點(diǎn)和普通節(jié)點(diǎn)。中心節(jié)點(diǎn)位于模型中心,負(fù)責(zé)發(fā)送控制信息和匯總各節(jié)點(diǎn)的信息,普通節(jié)點(diǎn)圍繞中心節(jié)點(diǎn)同心層次分布,負(fù)責(zé)向中心節(jié)點(diǎn)發(fā)送信息和接收中心節(jié)點(diǎn)的控制信息。鏈路分為弦鏈和輻鏈,弦鏈用于同層節(jié)點(diǎn)通信,輻鏈用于鄰層節(jié)點(diǎn)通信,人工蛛網(wǎng)模型拓?fù)浣Y(jié)構(gòu)參數(shù)定義如表1所示。
表1 人工蛛網(wǎng)模型拓?fù)浣Y(jié)構(gòu)參數(shù)定義
人工蛛網(wǎng)模型拓?fù)浣Y(jié)構(gòu)是由星形拓?fù)浜铜h(huán)形拓?fù)溆袡C(jī)結(jié)合的特殊結(jié)構(gòu),屬于典型的有中心分層網(wǎng)絡(luò),具有一對(duì)多、多對(duì)一的通信特點(diǎn),各節(jié)點(diǎn)與中心節(jié)點(diǎn)通信的所有不重復(fù)路徑中,經(jīng)過(guò)一個(gè)節(jié)點(diǎn)或者鏈路的次數(shù)越大,則該節(jié)點(diǎn)和鏈路愈重要[24]。節(jié)點(diǎn)路徑數(shù)、節(jié)點(diǎn)和鏈路被使用次數(shù)能很好反映其重要程度,據(jù)此定義抗毀性量化指標(biāo)為
失效組件的全網(wǎng)影響度η定義為
式中η越大,表明該組件失效對(duì)網(wǎng)絡(luò)抗毀性影響越大。
結(jié)合各組件對(duì)全網(wǎng)影響度的基礎(chǔ)上,建立人工蛛網(wǎng)各組件的抗毀性權(quán)重。各失效組件權(quán)重WW定義為
式中η、η和η分別表示節(jié)點(diǎn)、弦鏈和輻鏈在拓?fù)鋵拥挠绊懚龋?i>WW可以綜合評(píng)價(jià)模型各組件對(duì)全網(wǎng)抗毀性重要程度,WW越大,則該組件抗毀性能影響越重要。
本文在MATLAB 2016 a軟件環(huán)境下對(duì)人工蛛網(wǎng)模型抗毀性進(jìn)行系列仿真試驗(yàn)。試驗(yàn)分為2部分,第1部分為全網(wǎng)試驗(yàn),通過(guò)比較3種不同規(guī)模人工蛛網(wǎng)模型是否具有一致的抗毀性規(guī)律,驗(yàn)證所提指標(biāo)的合理性;第2部分為失效試驗(yàn),為驗(yàn)證所提指標(biāo)有效性,以58的人工蛛網(wǎng)模型為例,分析全局范圍內(nèi)組件的耦合關(guān)系,驗(yàn)證所提指標(biāo)有效性。
注:模型1:q=4,p=7;模型2:q=5,p=8;模型3:q=6,p=9。圖中節(jié)點(diǎn)平均路徑數(shù)顯示至第5層。
為檢驗(yàn)不同規(guī)模人工蛛網(wǎng)模型節(jié)點(diǎn)、鏈路平均使用次數(shù)是否具有一致規(guī)律,分別對(duì)3種模型仿真分析,結(jié)果如圖3所示。由圖3可知,3種模型中抗毀性指標(biāo)均表現(xiàn)出相同的變化規(guī)律,隨著層號(hào)的增大,節(jié)點(diǎn)、弦鏈、輻鏈平均使用次數(shù)逐漸下降,模型1、2、3中內(nèi)層節(jié)點(diǎn)平均使用次數(shù)下降幅度為0.42‰;弦鏈平均使用次數(shù)下降幅度為0.018 4‰;輻鏈平均使用次數(shù)下降幅度為 0.000 66‰;最外層節(jié)點(diǎn)、弦鏈、輻鏈對(duì)應(yīng)的下降幅度依次是7.1%、6.3%、55.3%,內(nèi)層下降幅度較小,外層下降趨勢(shì)顯著,且隨著模型規(guī)模增大,下降趨勢(shì)愈加明顯。結(jié)果表明不同規(guī)模人工蛛網(wǎng)模型節(jié)點(diǎn)、鏈路平均使用次數(shù)具有一致規(guī)律,可用于評(píng)價(jià)人工蛛網(wǎng)模型抗毀性。
a. 模型1仿真結(jié)果
a. Simulation results of model 1
b. 模型2仿真結(jié)果
b. Simulation results of model 2
c. 模型3仿真結(jié)果
綜合分析上述2個(gè)仿真試驗(yàn)可知,人工蛛網(wǎng)模型中:1)模型1、2、3節(jié)點(diǎn)平均使用次數(shù)依次是弦鏈平均使用次數(shù)的1.31、1.27、1.24倍,是輻鏈平均使用次數(shù)的4.23、4.73、5.24倍,表明相同層號(hào)時(shí),節(jié)點(diǎn)的重要性最大,弦鏈次之,輻鏈最小。2)節(jié)點(diǎn)路徑數(shù),節(jié)點(diǎn)、弦鏈、輻鏈平均使用次數(shù)4個(gè)指標(biāo),在評(píng)價(jià)不同規(guī)模人工蛛網(wǎng)模型時(shí)具有相同的變化規(guī)律,表明本文所提指標(biāo)能有效評(píng)估人工蛛網(wǎng)模型抗毀性。
為了驗(yàn)證本文所提指標(biāo)的有效性,以模型2為例,逐層破壞第四條輻線上節(jié)點(diǎn)、弦鏈、輻鏈,仿真試驗(yàn)結(jié)果如圖4所示,可知: 1)圖4a中,節(jié)點(diǎn)、弦鏈、輻鏈?zhǔn)r(shí),失效位置內(nèi)層的節(jié)點(diǎn)平均路徑數(shù)和全網(wǎng)保持一致,失效位置及其外層分別下降至全網(wǎng)的40.8%、53.3%、87.5%,表明組件失效對(duì)失效位置所在層及其外層的節(jié)點(diǎn)平均路徑數(shù)均有影響,影響程度從高到低為:節(jié)點(diǎn)>弦鏈>輻鏈。2)圖4b中,節(jié)點(diǎn)、弦鏈、輻鏈?zhǔn)r(shí),失效位置所在層節(jié)點(diǎn)平均使用次數(shù)依次下降至28.3%、40.8%、87.5%,其余各層分別下降至全網(wǎng)的40.8%、53.3%、88.3%,表明組件失效對(duì)節(jié)點(diǎn)平均使用次數(shù)具有全網(wǎng)性的影響,失效位置所在層影響程度大于其余各層,影響程度按:節(jié)點(diǎn)>弦鏈>輻鏈的規(guī)律排列,圖4c和圖4d中,弦鏈平均使用次數(shù)和輻鏈平均使用次數(shù)具有與節(jié)點(diǎn)平均使用次數(shù)相同的規(guī)律。
注:圖4a、4b、4c與 4d為逐層破壞第4條輻線上節(jié)點(diǎn)、弦鏈、輻鏈。
分析可知,節(jié)點(diǎn)、弦鏈、輻鏈?zhǔn)r(shí),節(jié)點(diǎn)平均路徑數(shù)衰減具有單向擴(kuò)散性,即只對(duì)失效位置外層產(chǎn)生影響,節(jié)點(diǎn)、弦鏈、輻鏈平均使用次數(shù)衰減則具有雙向擴(kuò)散性,即對(duì)失效位置所在層內(nèi)、外兩側(cè)均產(chǎn)生影響,表明層間節(jié)點(diǎn)、鏈路存在明顯的相交耦合關(guān)系和層間耦合關(guān)聯(lián)特征。通過(guò)對(duì)人工蛛網(wǎng)模型不同組件失效激勵(lì),量化分析網(wǎng)絡(luò)動(dòng)態(tài)演化規(guī)律,對(duì)開(kāi)發(fā)高抗毀性路由協(xié)議,提高網(wǎng)絡(luò)抗毀性具有重要意義。
為探究人工蛛網(wǎng)模型組件失效的耦合影響規(guī)律,進(jìn)行5組試驗(yàn):1)試驗(yàn)1失效第1層節(jié)點(diǎn)((1,1)-(6,1)),弦鏈((1,1)-(6,1)),輻鏈((1,1)-(6,1))2)試驗(yàn)2、3、4、5分別失效2、3、4、5層對(duì)應(yīng)位置的組件。仿真試驗(yàn)結(jié)果表明,各組試驗(yàn)呈現(xiàn)一致的變化規(guī)律,以第3層為例進(jìn)行分析。從圖5a中可以看出,第3層部分組件失效時(shí),失效節(jié)點(diǎn)的節(jié)點(diǎn)路徑數(shù)下降至0,同層相鄰節(jié)點(diǎn)的節(jié)點(diǎn)路徑數(shù)下降至全網(wǎng)的13.33%,失效位置內(nèi)層節(jié)點(diǎn)的節(jié)點(diǎn)路徑數(shù)與全網(wǎng)時(shí)保持一致,外層節(jié)點(diǎn)的節(jié)點(diǎn)路徑數(shù)分別下降至全網(wǎng)的約3.56%和3.32%,結(jié)果表明,受失效組件影響,同層及外層節(jié)點(diǎn)的節(jié)點(diǎn)路徑數(shù)下降顯著。從圖5b中可以看出,第3層部分組件失效導(dǎo)致全網(wǎng)節(jié)點(diǎn)使用次數(shù)具有明顯的波動(dòng)規(guī)律,失效節(jié)點(diǎn)的節(jié)點(diǎn)使用次數(shù)下降至0,其同層位置下降至全網(wǎng)的4.23%,相鄰內(nèi)外層分別下降至全網(wǎng)的3.03%和3.00%,次內(nèi)層和次外層分別下降至3.38%和3.36%,試驗(yàn)表明,失效組件對(duì)網(wǎng)絡(luò)抗毀性的影響具有同層耦合和減弱擴(kuò)散的特征。從圖5c中可以看出,第3層部分組件失效后,弦鏈(7,3)保持有效且使用次數(shù)明顯高于其他各層弦鏈,在維持人工蛛網(wǎng)模型的穩(wěn)定性方面發(fā)揮重要的作用,受失效組件影響,失效位置內(nèi)外層弦鏈?zhǔn)褂么螖?shù)下降程度顯著。從圖5d中可以看出,第3層部分組件失效后,與其相鄰的內(nèi)層輻鏈?zhǔn)褂么螖?shù)明顯高于其余各層,而外層相鄰的第4層部分組件同步失效,失效位置所在層有效輻鏈的輻鏈?zhǔn)褂么螖?shù)達(dá)全網(wǎng)的13.33%,結(jié)果表明,輻鏈的失效可提高內(nèi)層組件的使用頻次,嚴(yán)重?fù)p毀外層組件的網(wǎng)絡(luò)通信功能,輻鏈在內(nèi)外層間聯(lián)系方面起著關(guān)鍵作用。
Note: In Fig. 5a, (3.32%) 25 200 respectively represents number of node paths as a percentage of the total network and number of node paths, same as below.
分析可知,人工蛛網(wǎng)模型中,局部組件失效產(chǎn)生的影響會(huì)波及整網(wǎng),同層及相鄰層影響效果更加顯著,表明人工蛛網(wǎng)模型組件失效過(guò)程表現(xiàn)出明顯的級(jí)聯(lián)擴(kuò)散特征,因此,開(kāi)展全局式量化分析,有助于人工蛛網(wǎng)模型抗毀性能動(dòng)態(tài)演化過(guò)程與級(jí)聯(lián)失效機(jī)理的深入研究。
表2為人工蛛網(wǎng)模型各組件破壞后各組件權(quán)重WW的仿真分析結(jié)果,其中,節(jié)點(diǎn)、弦鏈、輻鏈分別占50%、39.44%、10.56%,同層弦鏈、輻鏈相較于節(jié)點(diǎn)權(quán)重占比依次衰減約21%和79%,表明同層組件中節(jié)點(diǎn)具有更重要的地位;第1層節(jié)點(diǎn)、弦鏈、輻鏈權(quán)重占比達(dá)到全網(wǎng)的33.28%,最外層僅占全網(wǎng)的6.72%,表明靠近中心節(jié)點(diǎn)的各組件具有更為重要的地位。
為驗(yàn)證本文所提抗毀性量化指標(biāo)的優(yōu)越性,將提出的指標(biāo)與部分傳統(tǒng)評(píng)價(jià)指標(biāo)進(jìn)行比較,為使其概念適應(yīng)人工蛛網(wǎng)模型結(jié)構(gòu)特征,首先對(duì)傳統(tǒng)指標(biāo)的定義進(jìn)行擴(kuò)展補(bǔ)充。
表2 人工蛛網(wǎng)模型各組件破壞時(shí)仿真結(jié)果
度:網(wǎng)絡(luò)中某個(gè)節(jié)點(diǎn)的度k定義為與該節(jié)點(diǎn)相連接的其他節(jié)點(diǎn)數(shù)目[25],本文將節(jié)點(diǎn)度的定義擴(kuò)展到鏈路,某一條鏈路的度定義為將該鏈路收縮成為一個(gè)新的節(jié)點(diǎn),該新節(jié)點(diǎn)的度即為鏈路的度。一個(gè)節(jié)點(diǎn)、鏈路度越大,意味著該節(jié)點(diǎn)或鏈路屬于網(wǎng)絡(luò)中的關(guān)鍵部件,在某種意義上也越“重要”。鏈路收縮過(guò)程如圖6所示。
簇系數(shù):假設(shè)網(wǎng)絡(luò)中的一個(gè)節(jié)點(diǎn)有k條邊將它與其他節(jié)點(diǎn)相連,這k個(gè)節(jié)點(diǎn)稱(chēng)為節(jié)點(diǎn)的鄰居節(jié)點(diǎn),在這k個(gè)鄰居節(jié)點(diǎn)之間最多可能有k(k–1)/2條邊。節(jié)點(diǎn)的k個(gè)鄰居節(jié)點(diǎn)之間實(shí)際存在的邊數(shù)N和最多可能有的邊數(shù)k(k–1)/2之比定義為節(jié)點(diǎn)的簇系數(shù)[26],記為c,本文將節(jié)點(diǎn)簇系數(shù)的定義擴(kuò)展到鏈路,某一條鏈路的簇系數(shù)定義為將該鏈路收縮成為一個(gè)新的節(jié)點(diǎn),該新節(jié)點(diǎn)的簇系數(shù)即為鏈路的簇系數(shù)。節(jié)點(diǎn)的簇系數(shù)取值越大,表示節(jié)點(diǎn)周?chē)泥従舆B接越緊密,節(jié)點(diǎn)越重要。
圖6 鏈路收縮過(guò)程
介數(shù):節(jié)點(diǎn)的介數(shù)定義為網(wǎng)絡(luò)中所有的最短路徑中,經(jīng)過(guò)節(jié)點(diǎn)的數(shù)量,用B表示,同理,某一鏈路的介數(shù)定義為網(wǎng)絡(luò)中所有的最短路徑中,經(jīng)過(guò)鏈路的數(shù)量[27],用B表示,本文中所有的最短路徑數(shù)即為各層節(jié)點(diǎn)與中心節(jié)點(diǎn)的最短通信路徑數(shù)。節(jié)點(diǎn)、鏈路的介數(shù)反映了該節(jié)點(diǎn)、鏈路在網(wǎng)絡(luò)中的影響力,影響力大小與介數(shù)大小正相關(guān)。
表3為本文所提出的各組件權(quán)重指標(biāo)與部分傳統(tǒng)指標(biāo)在評(píng)價(jià)模型2時(shí)的對(duì)比結(jié)果??梢钥闯?,傳統(tǒng)指標(biāo)中,度、簇系數(shù)均無(wú)法有效評(píng)價(jià)各組件的重要性程度,介數(shù)在評(píng)價(jià)節(jié)點(diǎn)和弦鏈上有較好的效果,但無(wú)法對(duì)輻鏈進(jìn)行準(zhǔn)確的評(píng)價(jià),而本文所提指標(biāo)在評(píng)價(jià)各組件時(shí)具有明顯的優(yōu)勢(shì),可以精確量化任意位置組件,可為深入解析人工蛛網(wǎng)模型結(jié)構(gòu)特征,優(yōu)化節(jié)點(diǎn)、鏈路部署,提升網(wǎng)絡(luò)的抗毀性提供有益借鑒。
表3 本文指標(biāo)和傳統(tǒng)指標(biāo)的比較
為檢驗(yàn)本文人工蛛網(wǎng)模型抗毀性量化研究用于優(yōu)化農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)部署的可行性,在試驗(yàn)農(nóng)田分別開(kāi)展仿蛛網(wǎng)部署、非交疊分簇部署、柵格部署的無(wú)線傳輸試驗(yàn),田間試驗(yàn)方案如圖7所示,中心位置為匯聚節(jié)點(diǎn),仿蛛網(wǎng)部署和柵格部署中節(jié)點(diǎn)1~4、節(jié)點(diǎn)5~8、節(jié)點(diǎn)9~12分別對(duì)應(yīng)1-3層,相鄰節(jié)點(diǎn)通信距離為50 m、非交疊分簇部署中節(jié)點(diǎn)1~3、節(jié)點(diǎn)4~7、節(jié)點(diǎn)8~12分別對(duì)應(yīng)1~3層,相鄰簇間通信距離為50 m,試驗(yàn)時(shí)間為2019年6月5日至2019年6月7日(09:00-18:00),各網(wǎng)絡(luò)部署分別試驗(yàn)1 d。
圖7 試驗(yàn)設(shè)備及方案
試驗(yàn)設(shè)備包括12個(gè)普通節(jié)點(diǎn)、1個(gè)匯聚節(jié)點(diǎn)和1臺(tái)筆記本電腦。匯聚節(jié)點(diǎn)與普通節(jié)點(diǎn)均采用Freescale公司MC13213無(wú)線通信模塊,普通節(jié)點(diǎn)具備中繼路由和終端設(shè)備功能,設(shè)置發(fā)射功率為1 dBm,有效通信半徑為70 m,試驗(yàn)中節(jié)點(diǎn)通信波特率設(shè)置為57 600 B/s,8位數(shù)據(jù)位,無(wú)奇偶效驗(yàn)位,1位停止位,采用5 dBi增益棒狀天線,天線中心高度為1.0 m。網(wǎng)絡(luò)采用無(wú)線信道時(shí)分復(fù)用(TDMA)方式為各節(jié)點(diǎn)分配固定的無(wú)線信道使用時(shí)段,避免節(jié)點(diǎn)之間相互干擾,節(jié)點(diǎn)采用最短路徑主動(dòng)向匯聚節(jié)點(diǎn)發(fā)送包含自身ID的數(shù)據(jù)包,發(fā)包頻率1 Hz。筆記本電腦通過(guò)串口連接匯聚節(jié)點(diǎn),接收各節(jié)點(diǎn)發(fā)送的數(shù)據(jù)包信息。3種田間部署方案分別進(jìn)行全網(wǎng)、節(jié)點(diǎn)1~3失效、節(jié)點(diǎn)5~7失效、節(jié)點(diǎn)9~11失效試驗(yàn),全網(wǎng)和節(jié)點(diǎn)失效試驗(yàn)時(shí)間分別設(shè)置為60和45 min,各個(gè)節(jié)點(diǎn)分配固定時(shí)段5 min,重復(fù)試驗(yàn)5次得出各節(jié)點(diǎn)耗能平均值,并計(jì)算出仿蛛網(wǎng)部署丟包率、延遲、跳數(shù)等網(wǎng)絡(luò)性能指標(biāo)的平均值。
由表4可知,3種田間部署條件下,全網(wǎng)部署時(shí)節(jié)點(diǎn)均沿徑向以多跳或單跳的形式進(jìn)行數(shù)據(jù)傳輸,3種部署方案中節(jié)點(diǎn)耗能基本相同。節(jié)點(diǎn)1~3失效時(shí),3種部署方案最外層節(jié)點(diǎn)耗能與全網(wǎng)時(shí)基本保持一致,仿蛛網(wǎng)部署因節(jié)點(diǎn)4、節(jié)點(diǎn)8承擔(dān)較多的數(shù)據(jù)收發(fā)任務(wù),耗能相比全網(wǎng)增加了約14個(gè)百分點(diǎn),非交疊分簇部署和柵格部署中節(jié)點(diǎn)5、6、7需增大發(fā)射功率以直接與匯聚節(jié)點(diǎn)通信,此時(shí)耗能相較全網(wǎng)增加了約38個(gè)百分點(diǎn)。節(jié)點(diǎn)5、6、7失效時(shí),仿蛛網(wǎng)部署中節(jié)點(diǎn)4、節(jié)點(diǎn)8需要承擔(dān)更多的收發(fā)任務(wù),耗能相較全網(wǎng)顯著升高,非交疊分簇部署和柵格部署中9、10、11節(jié)點(diǎn)耗能相較全網(wǎng)增加了約40個(gè)百分點(diǎn)。最外層節(jié)點(diǎn)9、10、11失效時(shí),對(duì)內(nèi)層節(jié)點(diǎn)能量損耗影響較小,剩余節(jié)點(diǎn)耗能與全網(wǎng)基本保持一致。試驗(yàn)結(jié)果表明,全網(wǎng)部署時(shí)3種網(wǎng)絡(luò)部署節(jié)點(diǎn)能耗差異較小;當(dāng)網(wǎng)絡(luò)遭受不同程度損壞時(shí),仿蛛網(wǎng)部署仍可通過(guò)備用鏈路進(jìn)行同層數(shù)據(jù)傳輸,繼而將數(shù)據(jù)沿徑向鏈路發(fā)送,僅有少數(shù)節(jié)點(diǎn)耗能有所增加,且耗能增加速度緩慢,非交疊分簇部署和柵格部署則需要提高部分節(jié)點(diǎn)的發(fā)射功率以增大傳輸距離,實(shí)現(xiàn)數(shù)據(jù)有效傳輸,致使多數(shù)節(jié)點(diǎn)能耗顯著增加,表明仿蛛網(wǎng)部署具有更優(yōu)的網(wǎng)絡(luò)抗毀與節(jié)能性能。
從表5中可知,仿蛛網(wǎng)部署條件下,全網(wǎng)時(shí)節(jié)點(diǎn)距離匯聚節(jié)點(diǎn)越遠(yuǎn),丟包率愈大,隨著跳數(shù)的增多,延遲逐漸增大;1、2、3節(jié)點(diǎn)失效時(shí),第2、3層節(jié)點(diǎn)丟包率約是全網(wǎng)的2.5和3.5倍,延遲時(shí)間分別增加了約150%和120%;5、6、7節(jié)點(diǎn)失效時(shí),第3層節(jié)點(diǎn)丟包率約是全網(wǎng)的1.8倍,延遲時(shí)間增加了約120%,9、10、11節(jié)點(diǎn)失效時(shí),內(nèi)層節(jié)點(diǎn)丟包率和延遲基本與全網(wǎng)保持一致。田間試驗(yàn)結(jié)果表明,失效節(jié)點(diǎn)造成外層相鄰節(jié)點(diǎn)的丟包率約是全網(wǎng)的1.8~3.5倍、延遲時(shí)間增加1.2~1.5倍、跳數(shù)在全網(wǎng)的基礎(chǔ)上增加1~2跳,內(nèi)層節(jié)點(diǎn)幾乎未受到影響。對(duì)比可知,該結(jié)果與仿真分析中節(jié)點(diǎn)、弦鏈、輻鏈?zhǔn)r(shí),內(nèi)層的節(jié)點(diǎn)平均路徑數(shù)與全網(wǎng)保持一致,失效位置外層的節(jié)點(diǎn)平均路徑數(shù)顯著下降,具有高度的一致性,表明人工蛛網(wǎng)模型抗毀性量化研究可為農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)部署提供新的理論依據(jù)。
表4 不同部署方案下各節(jié)點(diǎn)耗能
表5 仿蛛網(wǎng)部署網(wǎng)絡(luò)性能指標(biāo)對(duì)比
為提高農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)的抗毀性,本文針對(duì)人工蛛網(wǎng)模型提出基于節(jié)點(diǎn)平均路徑數(shù)和節(jié)點(diǎn)、鏈路平均使用次數(shù)的抗毀性量化指標(biāo),試驗(yàn)表明所提指標(biāo)合理有效,相較于其他傳統(tǒng)指標(biāo)表現(xiàn)較為優(yōu)越,能夠用于改善農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)的生存能力,主要表現(xiàn)為以下幾點(diǎn):
1)本文所提指標(biāo)可以有效量化網(wǎng)絡(luò)模型中不同組件失效時(shí)對(duì)網(wǎng)絡(luò)抗毀性能的影響,獲得不同組件失效影響量化分布規(guī)律,能夠精細(xì)刻畫(huà)層間節(jié)點(diǎn)、鏈路存在的耦合關(guān)系和級(jí)聯(lián)擴(kuò)散特征。
2)通過(guò)指標(biāo)評(píng)價(jià)體系分析得出全網(wǎng)任意組件重要度,組件重要性排布具有內(nèi)層>外層、同層節(jié)點(diǎn)>同層弦鏈>同層輻鏈的規(guī)律,可為仿蛛網(wǎng)農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)的構(gòu)建提供理論基礎(chǔ)。
3)田間試驗(yàn)表明,節(jié)點(diǎn)失效會(huì)導(dǎo)致相鄰?fù)鈱庸?jié)點(diǎn)丟包率、延遲時(shí)間、跳數(shù)增加,與理論仿真結(jié)果相近似,相較于其他田間網(wǎng)絡(luò)部署方案,仿蛛網(wǎng)部署在節(jié)約能耗和數(shù)據(jù)可靠傳輸方面具有更大優(yōu)勢(shì),本文開(kāi)展的仿蛛網(wǎng)農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)抗毀性量化研究,可為農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)部署、組網(wǎng)提供高抗毀性的解決方案。
[1] 雷剛,王衛(wèi)星,孫寶霞,等. 大面積水稻田無(wú)線傳感器網(wǎng)絡(luò)組網(wǎng)設(shè)計(jì)與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(11):180-187.
Lei Gang, Wang Weixing, Sun Baoxia, et al. Design and optimization of wireless sensor networking in big paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2014, 30(11): 180-187.(in Chinese with English abstract)
[2] 江冰,毛天,唐大衛(wèi),等. 基于農(nóng)田無(wú)線傳感網(wǎng)絡(luò)的分簇路由算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):182-187.
Jiang Bing, Mao Tian, Tang Dawei, et al. Clustering routing algorithm based on farmland wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 182-187. (in Chinese with English abstract)
[3] 張波,羅錫文,蘭玉彬,等. 基于無(wú)線傳感器網(wǎng)絡(luò)的無(wú)人機(jī)農(nóng)田信息監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):176-182.
Zhang Bo, Luo Xiwen, Lan Yubin, et al. Agricultural environment monitor system based on UAV and wireless sensor networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 176-182. (in Chinese with English abstract)
[4] 杜克明,褚金翔,孫忠富,等. Web GIS在農(nóng)業(yè)環(huán)境物聯(lián)網(wǎng)監(jiān)測(cè)系統(tǒng)中的設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(4):171-178.
Du Keming, Zhu Jinxiang, Sun Zhongfu, et al. Design and implementation of monitoring system for agricultural environment based on Web GIS with Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 171-178. (in Chinese with English abstract)
[5] 劉卉,孟志軍,徐敏,等. 基于規(guī)則網(wǎng)格的農(nóng)田環(huán)境監(jiān)測(cè)傳感器節(jié)點(diǎn)部署方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(8):265—270.
Liu Hui, Meng Zhijun, Xu Min, et al. Sensor nodes deployment based on regular patterns in farmland environmental monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 265-270. (in Chinese with English abstract)
[6] 孫玉文,沈明霞,周良,等. 農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)的節(jié)點(diǎn)部署仿真與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(8):211-215.
Sun Yuwen, Shen Mingxia, Zhou Liang, et al. Simulation and realization of farmland wireless sensor networks nodes deployment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 211-215. (in Chinese with English abstract)
[7] Qin Z, Compton B G, Lewis J A, et al. Structural optimization of 3D-printed synthetic spider webs for high strength[J]. Nature Communications, 2015, 6: 7038.
[8] Yu H, Yang J L, Sun Y X. Energy absorption of spider orb webs during prey capture: A mechanical analysis[J]. Journal of Biomimetic Engineering, 2015, 12(3): 453-463.
[9] 劉曉勝,林建偉,徐殿國(guó). 基于標(biāo)簽交換的蜘蛛網(wǎng)路由策略及其性能分析[C]//第五屆中國(guó)高校電力電子與電力傳動(dòng)學(xué)術(shù)年會(huì),2011:1-5.
Liu Xiaosheng, Lin Jianwei, Xu Dianguo. Spider webs routing strategies based on the label switching[C]// The 5th China University Power Electronics and Electric Drive Academic Annual Conference, 2011: 1-5. (in Chinese with English abstract)
[10] Mocanu B, Pop F, Mocanu A M, et al. Spider: A bio-inspired structured peer-to-Peer overlay for data dissemination[C]// 2015 10th International Conference on P2P, 2015: 291-295.
[11] Lanzara G, Salowitz N, Guo Z, et al. A spider-web-like highly expandable sensor network for multifunctional materials[J]. Advanced Materials, 2010, 22(41): 4643-4648.
[12] Canovas A, Lloret J, Macias E, et al. Web spider defense technique in wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2014, 2014(1/2): 1-7.
[13] Ramón Z, Soler A, Teus J. Uncovering changes in spider orb-web topology owing to aerodynamic effects[J]. Journal of the Royal Society Interface, 2014, 11(98): 1-10.
[14] Das R, Kumar A, Patel A, et al. Biomechanical characterization of spider webs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 67: 101-109.
[15] Chen J, Sun L. Evaluation of node importance in complex networks[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 426-429.
[16] Mao G Y, Zhang N. A multilevel simplification algorithm for computing the average shortest-path length of scale-free complex network[J]. Journal of Applied Mathematics, 2014, 2014(4): 1-6.
[17] Shargel B, Sayama H, Epstein I R, et al. Optimization of robustness and connectivity in complex networks[J]. Physical Review Letters, 2003, 90(6): 068701.
[18] Kremenova I, Gajdos M. Decentralized networks: The future internet[J]. Mobile Networks and Applications, 2019,2: 1-8.
[19] Runlao R Y, Wang S Y, Bai J D, et al. Node importance measurement based on neighborhood similarity in complex network[J]. Acta Physica Sinica, 2017, 66(3): 038902.
[20] 陳勇,胡愛(ài)群,蔡天佑,等. 通信網(wǎng)中鏈路重要性的評(píng)價(jià)方法[J]. 電子學(xué)報(bào),2003,31(4):573-575.
Chen Yong, Hu Aiqun, Cai Tianyou, et al. Evaluation method for link importance in communication networks[J]. Acta Electronica Sinica, 2003, 31(4): 573-575. (in Chinese with English abstract)
[21] 陳勇,胡愛(ài)群,胡嘯. 通信網(wǎng)中節(jié)點(diǎn)重要性的評(píng)價(jià)方法[J]. 通信學(xué)報(bào),2004,25(8):129-134.
Chen Yong, Hu Aiqun, Hu Xiao, Evaluation method for node importance in communication networks[J]. Journal on Communications, 2004, 25(8): 129-134. (in Chinese with English abstract)
[22] Hilton F, Japyassú, Caires R A. Hunting tactics in a cobweb spider (Araneae- Theridiidae) and the evolution of behavioral plasticity[J]. Journal of Insect Behavior, 2008, 21(4): 258-284.
[23] Opell B D, Bond J E. Capture thread extensibility of orb-weaving spiders: Testing punctuated and associative explanations of character evolution[J]. Biological Journal of the Linnean Society, 2000, 70(1): 107-120.
[24] Freeman L C, Borgatti S P, White D R. Centrality in valued graphs: A measure of betweenness based on network flow[J]. Social Networks, 1991, 13(2): 141-154.
[25] Zhu T, Zhang S P, Guo R X, et al. Improved evaluation method for node importance based on node contraction in weighted complex networks[J]. Systems Engineering and Electronics, 2009, 31(8): 1902-1905.
[26] Guo L, Harfoush K, Xu H. Distribution of the node degree in MANETs[C]// Fourth International Conference on Next Generation Mobile Applications, 2010: 162-167.
[27] 王亮,劉艷,顧雪平,等. 綜合考慮節(jié)點(diǎn)重要度和線路介數(shù)的網(wǎng)絡(luò)重構(gòu)[J]. 電力系統(tǒng)自動(dòng)化,2010,34(12):29-33.
Wang Liang, Liu Yan, Gu Xueping, et al. Skeleton-network reconfiguration based on node importance and line betweenness[J]. Automation of Electric Power Systems, 2010, 34(12): 29-33. (in Chinese with English abstract)
Construction of quantitative indicator system of invulnerability for bionic spider-web farmland wireless sensor network
Wang Jun1,2, Du Zhuangzhuang1, He Zhitao1, Ji Jiangtao1,2, Wang Jiajia1
(1.,,471003,;2,471003,)
Combining the unique advantages of spider web with communication technology of wireless sensor network, presents high research value and broad development prospects. Nevertheless, the traditional quantitative index of invulnerability can not accurately describe the coupling relationship and overall function of failed network components, which leads to the difficulty in effectively inheriting the invulnerability mechanism of the artificial spider web model. In this paper, a sort of quantitative index system of invulnerability was proposed based on average number of node paths and average usage number of nodes and links, as the indicators for evaluating the impact degree and weight assignment of failed network components. In order to investigate effectiveness and availability of the index system, 3 independent artificial spider web models were involved in simulation analysis. The simulation experiment showed that the average number of node paths, the average usage number of nodes, chord chains and spoke chains were in consistent with the approximate regulations for different scale artificial spider-web models. Among them, in the case of the failure of nodes, chord chains and spoke chains, the attenuation of average number of node paths had unidirectional diffusion, namely the failure only affected the outer layers of failure location. Meanwhile, the attenuation of average usage number of nodes, chord chains and spoke chains had bidirectional diffusivity, and the failure affected both inside and outside of the layer where it was located. It showed that there were obvious cross-coupling relations and inter-layer coupling correlation between nodes and links. At the same time, the failure of local components would affect the whole network, and the effect of the same layer and the adjacent layer was more significant, indicating that the failure process of artificial spider-web model had obvious cascade diffusion characteristics. Moreover, the number of node paths of any node was exponentially positively correlated with the scale of the model and the number of layers in which it was located. As the layer number increasing, the average usage times of nodes, chord chains and spoke chains gradually decreased, the inner layers decreased slightly, and the outer layers had significant downward trend. In conclusion, the index system could effectively quantify the invulnerability of artificial spider web model, and evaluate the weight proportion of each network component, and the nodes, chord and spoke chains account for 50%, 39.44% and 10.56% respectively. The weight ratio of the first layer node, chord chain and spoke chain reached 33.28%, and the outermost layer only accounted for 6.72%. It manifested that the importance of nodes and chord chains was much higher than that of spoke chains, and the components closer to the network center had had higher value. Compared with the traditional index, the index system proposed in this paper had unique advantages. Field experiment adopted 3 network deployment schemes consisting of one sink node and 12 common nodes respectively. Node energy consumption, packet loss rate, delay and hops were applied as the indicators. The results showed that spider web deployment had better invulnerability than non-overlapping clustering deployment and grid deployment. In addition, the failure of nodes would cause the increase of packet loss rate, delay time and hops of adjacent outer nodes, which was similar to the theoretical simulation results. Quantitative analysis of the invulnerability of artificial spider web model can provide useful guidance for optimizing the deployment of farmland wireless sensor network and achieving reliable applications.
bionic; models; sensors; farmland wireless sensor network; artificial spider web; invulnerability; quantitative index
2019-05-22
2019-06-15
國(guó)家自然科學(xué)基金(61771184);河南省高等學(xué)校青年骨干教師培訓(xùn)計(jì)劃2016GGJS-063
王 俊,副教授,博士,主要從事精細(xì)農(nóng)業(yè)系統(tǒng)集成研究。Email:wj@haust.edu.cn
姬江濤,教授,博士,主要從事智能農(nóng)業(yè)裝備技術(shù)研究。Email:jjt0907@163.com
10.11975/j.issn.1002-6819.2019.14.022
S24
A
1002-6819(2019)-14-0174-09
王 俊,杜壯壯,賀智濤,姬江濤,王甲甲. 仿蛛網(wǎng)農(nóng)田無(wú)線傳感器網(wǎng)絡(luò)抗毀性量化指標(biāo)體系構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):174-182. doi:10.11975/j.issn.1002-6819.2019.14.022 http://www.tcsae.org
Wang Jun, Du Zhuangzhuang, He Zhitao, Ji Jiangtao, Wang Jiajia. Construction of quantitative indicator system of invulnerability for bionic spider-web farmland wireless sensor network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 174-182. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.022 http://www.tcsae.org