曹衛(wèi)彬,楊雙平,李樹峰,焦灝博,連國黨,牛 馳,安亮亮
梳夾式紅花采收機等高限位裝置參數(shù)優(yōu)化
曹衛(wèi)彬,楊雙平,李樹峰,焦灝博,連國黨,牛 馳,安亮亮
(石河子大學機械電氣工程學院,石河子 832000)
為提高梳夾式紅花采收機采收紅花的質(zhì)量,利用實驗室研制的梳夾式紅花采收裝置試驗臺,以新疆裕民無刺紅花為試驗對象,以梳夾式采摘頭轉(zhuǎn)速、限位桿安裝角度、限位桿與梳夾式采摘頭之間的限位間隙為影響因素,以采凈率、掉落率和花球損傷率為評價指標,進行三因素五水平正交中心組合優(yōu)化試驗。通過Design Expert 10軟件,建立了評價指標和各影響因素的數(shù)學回歸模型,分析了顯著因素對評價指標的影響,確定了最優(yōu)參數(shù)組合為:梳夾式采摘頭轉(zhuǎn)速83 r/min,限位桿安裝角度2°,限位間隙3 mm。取開花后1~5 d的紅花(含水率≥45%)進行花絲等高度采摘試驗,試驗結(jié)果表明:在優(yōu)化參數(shù)組合下,采凈率平均值為89.73%,掉落率為2.13%,花球損傷率為2.05%,表明梳夾式紅花采收機等高限位裝置能使梳夾式紅花采收裝置采收紅花質(zhì)量大幅度提高。該研究針對梳夾式采摘頭提出等高限位裝置并進行參數(shù)優(yōu)化,可為梳夾式紅花采收機具的設計提供參考依據(jù)。
機械化;優(yōu)化;收獲;紅花采收;梳夾式;試驗分析
紅花又名草紅花,是一種重要的經(jīng)濟作物,其花絲可以作為油料、染料、藥材、天然色素等,紅花籽可以提取飽含亞硝酸的紅花油,其功效可以防止動脈粥樣硬化[1-3]。新疆地區(qū)紅花的種植面積大,其產(chǎn)量占中國的80%以上[2]。由于紅花的獨特生長特性,花球在空間呈傘形分布,采摘定位困難;且花絲在采收完成后,仍可連續(xù)收獲2~3茬,花絲和花籽不在同時期成熟,要求在收獲花絲時不能損傷花球,因此機械化采收困難,目前仍以人工采收為主[1,4-9]。
目前現(xiàn)有的紅花花絲采收機主要為采收鮮花絲的切割式和氣吸切割式,采收干花絲的氣吸式等[1-4],但該類裝置都需要人工對花絲實現(xiàn)精確定位,即手持背負式,雖提高了工作效率,但人工勞動強度仍然較大。
本課題組提出一種梳夾式紅花絲采收裝置,利用動齒和定齒在彈簧預緊力的作用下實現(xiàn)花絲的夾緊,利用主軸的旋轉(zhuǎn)完成花絲的拉拔,利用端面凸輪實現(xiàn)動、定齒的分離,完成花絲的夾取、拉拔過程[10-16]。擬通過在豎直方向呈弧形布置多組采摘頭,不同高度的采摘頭負責采收該區(qū)域內(nèi)的花絲,以實現(xiàn)對花絲的機械化盲采,但在單個采摘頭采收試驗過程中發(fā)現(xiàn)花絲在喂入梳齒時花球抖動嚴重無法固定,喂入困難,花絲采凈率低。基于此,本文針對單個梳夾式采摘頭采收在一定高度范圍內(nèi)紅花絲出現(xiàn)的難喂入等問題,提出一種梳夾式紅花采收機等高限位裝置,利用限位桿輔助花絲進入,提高采凈率。
本文針對該裝置,擬通過試驗分析梳夾式采摘頭轉(zhuǎn)速、限位桿安裝角度、限位桿與梳夾式采摘頭之間的限位間隙等關(guān)鍵參數(shù)對采凈率、掉落率和花球損傷率的影響程度,分析影響采收裝置性能指標的影響因素,以期為梳夾式采收裝置的優(yōu)化設計提供技術(shù)依據(jù)。
梳夾式紅花采收機等高限位試驗裝置由主軸6、動齒11、定齒12、推桿9、彈簧10以及端面凸輪8組成梳夾式采摘頭。梳夾式采摘頭安裝在半封閉的氣吸罩3內(nèi),收集箱1固定安裝在機架2上,與氣吸罩3連接。伺服電機4通過鏈條5與鏈輪7連接,驅(qū)動梳夾式采摘頭運動。
如圖1所示,限位桿13安裝在梳夾式采摘頭下方,其安裝角度可以通過兩側(cè)限位桿安裝擋板14上腰型孔進行調(diào)節(jié),限位桿與梳夾式采摘頭之間的限位間隙可以通過改變安裝位置回轉(zhuǎn)半徑調(diào)節(jié),即更換兩側(cè)限位桿安裝擋板14進行調(diào)節(jié),梳夾式采摘頭轉(zhuǎn)速可以通過調(diào)節(jié)伺服電機4的轉(zhuǎn)速進行調(diào)節(jié)。
1.收集箱 2.機架 3.氣吸罩 4.伺服電機 5.鏈條 6.主軸 7.鏈輪 8.端面凸輪 9.推桿 10.彈簧 11.動齒 12.定齒 13.限位桿 14.限位桿安裝擋板 15.軸承座
紅花花球在植株上分布不在同一高度,為解決花絲的機械化盲采,擬在豎直方向呈弧形布置多組梳夾式采摘頭,其工作原理如圖2所示,不同高度上的采摘頭負責采摘該區(qū)域內(nèi)花絲,本試驗中驗證單個采摘頭在限位裝置作用下采摘一定高度范圍內(nèi)紅花花絲的效果,以期為實現(xiàn)紅花花絲的機械化盲采提供依據(jù)。
圖2 梳夾式紅花采收裝置工作原理示意圖
單個梳夾式采收裝置在進行采收作業(yè)時,主軸旋轉(zhuǎn)帶動定齒、動齒、推桿、彈簧作旋轉(zhuǎn)運動,在端面凸輪升程段作用下,推桿上固定的動齒與定齒分開,隨著主軸旋轉(zhuǎn)花絲進入,在端面凸輪回程段,在彈簧預緊力的作用下,花絲被夾緊,通過主軸旋轉(zhuǎn)完成對花絲的拉拔過程,再回到端面凸輪升程段,推桿被頂開,動、定齒分離,夾取完成的花絲在氣吸罩內(nèi)負壓的作用下掉落,順著管道進入收集箱,完成整套的花絲采收過程。梳夾式紅花采收機等高限位裝置利用限位桿輔助花絲進入,即花球在進入時,首先碰到限位桿,后緊貼限位桿作短暫停留,這段時間內(nèi)梳夾式采摘頭完成采收過程。
本試驗以溫室種植的裕民無刺紅花品種為試驗對象,平均株高70~100 mm,全株花球10~30個,單個花球花絲根數(shù)40~107根。梳夾式紅花采收裝置主要對新鮮紅花進行采收,花絲含水率對裝置采收效果影響較大,通過前期測定紅花開花后含水率變化如圖3所示,開花后1~5 d的紅花,含水率在45%以上,第6天以后花絲含水率逐漸穩(wěn)定。為獲得較好的試驗效果,試驗選取紅花需要經(jīng)過預處理,即需要切除開花時間在5 d以上的花球,高度差在50 mm內(nèi)為等高度,將不在該范圍內(nèi)的花球切除,得到等高度試驗材料。試驗時間:2019年4月7至4月16日,試驗地點:石河子大學農(nóng)業(yè)試驗站。
圖3 紅花絲含水率隨時間變化曲線
2.2.1 影響因素的確定
如圖4所示,在限位桿的輔助作用下,梳夾式采摘齒進入花絲,完成對花絲的夾取動作。根據(jù)梳夾式紅花采收機等高限位試驗裝置的結(jié)構(gòu)參數(shù)與工作參數(shù),結(jié)合前期試驗,本次試驗選取影響紅花采收效果3個關(guān)鍵參數(shù):梳夾式采摘頭轉(zhuǎn)速1,限位桿安裝角度2,限位桿與梳夾式采摘頭之間的限位間隙3。
注:x1為梳夾式采摘頭轉(zhuǎn)速,r·min-1;x2為限位桿安裝角度,(°);x3為限位桿與梳夾式采摘頭之間的限位間隙,mm;R為梳夾式采摘頭半徑,mm;d為限位桿直徑,mm。
1)梳夾式采摘頭轉(zhuǎn)速
采摘頭的轉(zhuǎn)速直接影響花絲的采凈率,若轉(zhuǎn)速過小,則在單位時間內(nèi)單朵花球上采摘齒掃過的次數(shù)減少,即單朵花球上花絲的采凈率降低。若轉(zhuǎn)速過大,采凈率明顯提高,但在試驗過程中發(fā)現(xiàn),掉落率也會隨之增大,且轉(zhuǎn)速高功耗較大,易造成系統(tǒng)不穩(wěn)定。
如圖5所示,模擬實際采收過程,試驗裝置的前進速度根據(jù)一般農(nóng)業(yè)收獲機械的作業(yè)參數(shù)初步定為2.5 km/h[16]。根據(jù)前期靜態(tài)試驗,單朵花球花絲采凈率達到90%以上,至少需要單個采摘齒采摘(2~4)次。由于花莖彎曲,在限位桿的作用下,花球會在水平范圍內(nèi)相對于梳夾式采摘頭停留一段位移,即花球會隨著限位桿以速度移動一定的位移,在這段時間內(nèi)要保證梳夾式采摘頭將花絲采摘完成。即在試驗裝置移動的時間內(nèi),采摘齒需要采摘花球次。
注:v為梳夾式紅花采收機等高限位裝置前進速度,m·s-1。
則
式中為梳夾式采摘頭轉(zhuǎn)速,r/min;為轉(zhuǎn)動角速度,rad/s。根據(jù)試驗測量得到可近似取8 cm,將各值代入到式(2),得到梳夾式采摘頭轉(zhuǎn)速為65.1~130.2 r/min,故本次試驗中分別設置轉(zhuǎn)速1為49.6、70、100、130、150.5 r/min。
2)限位桿安裝角度
限位桿的安裝角度直接影響限位裝置輔助花絲喂入的效果,如圖5所示。若安裝角度負值過大,則限位桿對花球沒有起到限位固定作用時,梳夾式采摘齒已經(jīng)閉合,易導致采凈率低且花球損傷率高。若安裝角度正值過大,則限位桿使得花球提前受到限位作用,梳夾式采摘齒在還未工作時,限位桿已經(jīng)結(jié)束對花球的限位作用,易導致花絲采凈率低且掉落率高。
在不需要限位桿時,試驗測得端面凸輪的安裝角度為0時,采摘效果顯著,限位桿安裝角度與端面凸輪回程段相對應,故根據(jù)前期試驗,本次試驗中分別設置限位桿安裝角度2為?8.4°、?5°、0、5°、8.4°。
3)限位桿與梳夾式采摘頭之間的限位間隙
限位間隙取值的大小直接影響裝置對花球的輔助喂入效果。如圖5所示,若限位間隙過大,限位桿擋在花莖上,不能起到對花球的限位固定作用,易使花球進入間隙,造成花球損傷。若限位間隙過小,在梳夾式采摘頭高速轉(zhuǎn)動時,由于振動容易發(fā)生限位桿與采摘齒干涉等情況。限位間隙3其計算公式為
式中為限位桿安裝位置回轉(zhuǎn)半徑,mm。
由于限位桿是與花球接觸的,若限位桿直徑過小,在花球碰撞過程中易造成花球損傷,且抖動幅度大,輔助固定效果差。若限位桿直徑過大,超過花球大小,則在與花球接觸時,為圓形點接觸,使得花絲與梳夾式采摘頭間的距離變長,會導致花絲采凈率降低,掉落率增大。通過前期試驗可知,紅花花球大小在15~25 mm,故本次試驗選取限位桿直徑為14 mm。
梳夾式采摘頭回轉(zhuǎn)半徑為=70 mm,考慮到限位桿直徑大小,限位桿安裝位置回轉(zhuǎn)半徑要大于80 mm?;ㄇ虻淖钚≈睆郊s為15 mm左右,則要求限位桿與梳夾式采摘頭間隙值不小于15 mm,否則花球在采摘齒的沖擊作用下,花莖彎曲,花球夾在間隙內(nèi)直接切斷,因此限位桿安裝位置回轉(zhuǎn)半徑最大可取85 mm。即本次試驗中限位桿安裝位置回轉(zhuǎn)半徑為80~85 mm。在限位桿直徑一定時,限位桿安裝位置回轉(zhuǎn)半徑越大,限位間隙越大,故由式(3)得到限位間隙取值范圍為3~8 mm,本次試驗中分別設置限位間隙為1.3、3、5.5、8和9.7 mm。
2.2.2 響應函數(shù)
按照紅花花絲采收裝置的性能要求及紅花質(zhì)量評價程度[2,17-20],選用采凈率1,掉落率2,花球損傷率3作為其效果評價指標。
1)采凈率1
指單朵花球上被梳夾式紅花采收裝置采收下來的紅花花絲與單朵花球上花絲的總質(zhì)量的百分比。其計算公式為
式中1為梳夾式紅花采收裝置采摘齒梳夾下來的花絲質(zhì)量,g;2為梳夾過程中掉落損失的紅花質(zhì)量,g;3為花球上殘留的花絲質(zhì)量,g。
2)掉落率2
采收過程中,單朵花球上因采摘動作而掉落未被收集到的花絲質(zhì)量與單朵花球上花絲總質(zhì)量的百分比。其計算公式為
3)花球損傷率3
采收過程中,梳夾式采摘齒對其碰到的花球會造成一定的損傷,要求在限位桿的作用下盡量避免花球碰觸到采摘齒,因此花球損傷率也是評價紅花采收裝置性能的重要參數(shù)?;ㄇ驌p傷率為在一定樣本內(nèi)采摘完成后受損傷的花球與總樣本數(shù)的百分比,其計算公式為
式中1為采摘完成后受損傷的花球個數(shù),為同一次試驗中的樣本總數(shù)。
2.2.3 試驗設計
試驗采用三因素五水平正交旋轉(zhuǎn)中心組合優(yōu)化試驗方法[21-24],試驗方案如表1所示,試驗裝置如圖6所示,共進行20組試驗,每組試驗重復進行3次,取3次測試結(jié)果的均值作為試驗結(jié)果。試驗方案設計及結(jié)果分析應用Design Expert 10軟件完成。
表1 紅花采收試驗因素與水平
1.端面凸輪 2.限位桿 3.限位桿安裝擋板
二次旋轉(zhuǎn)正交組合試驗方案[25-28]及結(jié)果如表2所示,通過Design Expert 10軟件進行方差分析,得到分別以紅花花絲采凈率1,掉落率2,花球損傷率3為響應函數(shù),以各影響因素為自變量的編碼回歸數(shù)學模型。
1)采凈率1回歸模型的建立與顯著性檢驗
通過試驗以及對試驗數(shù)據(jù)進行多元回歸擬合,得到各因素對采凈率1影響的回歸模型?;貧w方程的顯著性檢驗如表3所示,可知這個模型的擬合度是極顯著的(<0.01)。各項的檢驗均極顯著或顯著,說明相關(guān)試驗因素對響應值的影響存在二次關(guān)系。對于失擬項=0.198 2,不顯著,說明不存在其他影響指標的主要因素,剔除不顯著因素后的回歸模型如式(7)。
y
1
=90.39+2.11
x
1
+1.31
x
2
?1.85
x
3
?0.88
x
1
x2
+0.43
x
1
x
3
+0.47
x
2
x
3
?2.27
x
1
2
?2.64
x
2
2
?0.47
x
3
2
(7)
表2 二次旋轉(zhuǎn)正交組合試驗方案及結(jié)果
注:1為采凈率,%;2為掉落率,%;3為花球損傷率,%。
Note:1is the removal rate, %;2is the drop rate, %;3is the damage rate of flower ball, %.
表3 試驗結(jié)果方差分析
2)掉落率2回歸模型的建立與顯著性檢驗
通過試驗以及對試驗數(shù)據(jù)進行多元回歸擬合,得到各因素對掉落率2影響的回歸模型。回歸方程的顯著性檢驗如表3所示,可知這個模型的擬合度是極顯著的(<0.01)。但是梳夾式采摘頭轉(zhuǎn)速和限位桿間隙的交互項(13)的值>0.05,說明該項對掉落率的影響不顯著,其他各項的檢驗均極顯著或顯著,說明相關(guān)試驗因素對響應值的影響存在二次關(guān)系。對于失擬項=0.807 2,不顯著,說明不存在其他影響指標的主要因素,剔除不顯著因素后的回歸模型如式(8)。
y
2
=2.60+0.31
x
1
?0.13
x
2
+0.2
x
3
?0.025
x
1
x
2
+0.038
x
2
x
3
+0.039
x
1
2
+0.12
x
2
2
+0.059
x
3
2
(8)
3)花球損傷率3回歸模型的建立與顯著性檢驗
通過試驗以及對試驗數(shù)據(jù)進行多元回歸擬合,得到各因素對花球損傷率3影響的回歸模型?;貧w方程的顯著性檢驗如表3所示,可知這個模型的擬合度是極顯著的(<0.01),其他各項的檢驗均極顯著或顯著,說明相關(guān)試驗因素對響應值的影響存在二次關(guān)系。對于失擬項=0.143 9,不顯著,說明不存在其他影響指標的主要因素,剔除不顯著因素后的回歸模型如式(9)。
y
3
=2.27+0.22
x
1
?0.21
x
2
+0.19
x
3
+0.041
x
1
x
2
+0.061
x
1
x
3
+0.054
x
2
x
3
?0.032
x
1
2
+0.086
x
2
2
+0.067
x
3
2
(9)
如圖7所示為試驗因素對采凈率的影響。
如圖7a所示,限位間隙不變時,梳夾式采摘頭轉(zhuǎn)速和限位桿安裝角度的交互作用對采凈率的影響規(guī)律:采凈率隨著梳夾式采摘頭轉(zhuǎn)速的增大而增大;隨著限位桿安裝角度的增大,采凈率先增大后逐漸降低,在0時取得極值;響應面沿著梳夾式采摘頭轉(zhuǎn)速方向變化較快,因此,在試驗水平下,梳夾式采摘頭轉(zhuǎn)速對采凈率的影響比限位桿安裝角度的影響顯著,適當提高梳夾式采摘頭轉(zhuǎn)速有助于提高花絲采凈率。
如圖7b所示,限位桿安裝角度不變時,梳夾式采摘頭轉(zhuǎn)速和限位間隙的交互作用對采凈率的影響規(guī)律:采凈率隨著梳夾式采摘頭轉(zhuǎn)速的增大而增大,隨著限位間隙的增大而降低;響應面沿著梳夾式采摘頭轉(zhuǎn)速方向變化較快,在試驗水平下,梳夾式采摘頭轉(zhuǎn)速對采凈率的影響比限位間隙的影響顯著,適當降低限位間隙有助于提高花絲采凈率。
圖7 試驗因素對采凈率的影響
如圖7c所示,梳夾式采摘頭轉(zhuǎn)速不變時,限位桿安裝角度和限位間隙的交互作用對采凈率的影響規(guī)律:限位桿安裝角度增大,采凈率增大;限位桿安裝角度趨近于0時,采凈率取得最值;從0繼續(xù)增大時,采凈率逐漸降低;采凈率隨限位間隙的增大而降低;響應面沿著限位間隙方向變化較快,在試驗水平下,限位間隙對采凈率的影響比限位桿安裝角度的影響顯著,適當降低限位間隙值有利于提高花絲采凈率。
結(jié)果分析:梳夾式采摘頭轉(zhuǎn)速決定了在相同條件下,同一花球所能采摘的次數(shù),轉(zhuǎn)速越高,采摘次數(shù)越多,采凈率越高;限位桿安裝角度決定了花絲在何處被限定位置,梳齒臨近閉合前,即端面凸輪回程段開始前,限位桿開始作用,輔助梳齒進入,完成夾取、拉拔過程,即限位桿安裝角度要與端面凸輪安裝角度相一致;限位桿安裝位置回轉(zhuǎn)半徑和限位桿直徑?jīng)Q定了限位間隙,間隙越小,采凈率越高。
如圖8所示為試驗因素對掉落率的影響。如圖8a所示,限位間隙不變時,梳夾式采摘頭轉(zhuǎn)速和限位桿安裝角度的交互作用對掉落率的影響規(guī)律:掉落率隨著梳夾式采摘頭轉(zhuǎn)速的增大而增大;隨著限位桿安裝角度的增大,掉落率先降低后逐漸增大,限位桿安裝角度為0時掉落率取得極值。
a.2(1,2, 5.5)
b. y2(100,x2, x3)
圖8 試驗因素對掉落率的影響
Fig.8 Effect of experiment factors on drop rate
響應面沿著梳夾式采摘頭轉(zhuǎn)速方向變化較快,在試驗水平下,梳夾式采摘頭轉(zhuǎn)速對掉落率的影響比限位桿安裝角度的影響顯著,適當降低梳夾式采摘頭轉(zhuǎn)速有利于降低花絲掉落率。
如圖8b所示,梳夾式采摘頭轉(zhuǎn)速不變時,限位間隙和限位桿安裝角度的交互作用對掉落率的影響規(guī)律:掉落率隨著限位間隙的減小而降低,隨著限位桿安裝角度的增大,掉落率先降低后逐漸趨于平緩。當限位桿安裝角度趨近于0時,掉落率取得最值。響應面沿著限位間隙方向變化較快,因此,在試驗水平下限位間隙對掉落率的影響比限位桿安裝角度的影響顯著,適當減小限位間隙,有利于降低掉落率。
結(jié)果分析:限位桿安裝位置回轉(zhuǎn)半徑和限位桿直徑?jīng)Q定了采摘頭與限位桿之間的間隙,即限位間隙越小,梳齒夾緊花絲的位置越好,掉落率越低;限位桿安裝角度決定限位桿對花球作用的位置,與端面凸輪的安裝位置相適應,趨近于0時,喂入效果顯著,掉落率降低;梳夾式采摘頭轉(zhuǎn)速越大,在夾取花絲過程中對花絲沖擊越大,且易在周圍形成高負壓場,造成花絲掉落率升高。
3.4 試驗因素對花球損傷率影響結(jié)果分析
如圖9所示為試驗因素對花球損傷率的影響。
如圖9a所示,限位間隙不變時,梳夾式采摘頭轉(zhuǎn)速和限位桿安裝角度的交互作用對花球損傷率的影響規(guī)律:花球損傷率隨著梳夾式采摘頭轉(zhuǎn)速的增大而增大,隨著限位桿安裝角度的增大而降低。響應面沿著梳夾式采摘頭轉(zhuǎn)速方向變化較快,在試驗水平下,梳夾式采摘頭轉(zhuǎn)速對花球損傷率的影響顯著,適當減低梳夾式采摘頭轉(zhuǎn)速,提高限位桿安裝角度,有利于降低花球損傷率。
圖9 試驗因素對花球損傷率的影響 Fig.9 Effect of test factors on damage rate of flower ball
如圖9b所示,限位桿安裝角度不變時,梳夾式采摘頭轉(zhuǎn)速和限位間隙的交互作用對花球損傷率的影響規(guī)律:花球損傷率隨著限位間隙和梳夾式采摘頭轉(zhuǎn)速的增大而增大;響應面沿著梳夾式采摘頭轉(zhuǎn)速方向變化較快,因此,在試驗水平下梳夾式采摘頭轉(zhuǎn)速對花球損傷率的影響比限位間隙的影響顯著,適當減小梳夾式采摘頭轉(zhuǎn)速和限位間隙,有利于降低花球損傷率。
4.規(guī)范設計實驗流程和實驗方案。設計和實施實驗,必須有環(huán)環(huán)相扣的規(guī)范性實驗流程和實驗方案,任何環(huán)節(jié)出現(xiàn)差錯,都會導致實驗結(jié)果的偏差甚至致命的錯誤和失敗。每一個實驗項目的流程和方案都必須符合該實驗的特殊要求。實驗的過程是任何環(huán)節(jié)都不能允許出現(xiàn)差錯的。
如圖9c所示,梳夾式采摘頭轉(zhuǎn)速不變時,限位間隙和限位桿安裝角度的交互作用對花球損傷率的影響規(guī)律:花球損傷率隨著限位間隙增大而增大,隨著限位桿安裝角度的增大而逐漸降低;響應面沿著限位間隙方向變化較快,因此,在試驗水平下限位間隙對花球損傷率的影響比限位桿安裝角度的影響顯著,適當減小限位間隙,增大限位桿安裝角度,有利于降低花球損傷率。
結(jié)果分析:梳夾式采摘頭轉(zhuǎn)速越高,對花球沖擊越大,造成花球損傷率越高;限位間隙越小,花球進入間隙的可能性就越小,從而被有效保護;限位桿安裝角度越大,花球被及時限定在采摘頭前方區(qū)域,有效降低梳齒對花球的損傷。
3.5 參數(shù)優(yōu)化與驗證
參數(shù)優(yōu)化時,要求裝置效果有高采凈率、低掉落率和低花球損傷率,應用Design Expert 10軟件對建立的3個指標的全因子二次回歸模型優(yōu)化分析,約束條件為:1)目標函數(shù):y1[max];y2[min];y3[min];由于裝置主要目標為提高采凈率,故將采凈率作為主要評價指標,掉落率相對花球損傷率對采摘效果影響較大,因此根據(jù)經(jīng)驗取其權(quán)重分配比為5:3:2。2)影響因素約束:梳夾式采摘頭轉(zhuǎn)速49.6~150.5 r/min;限位桿安裝角度?8.4°~8.4°;限位桿與梳夾式采摘頭之間的限位間隙1.3~9.7 mm。通過Design Expert 10軟件選取滿意度最高的組合,得出最佳參數(shù)組合[29-31],并將各影響因素圓整后為:梳夾式采摘頭轉(zhuǎn)速83 r/min,限位桿安裝角度2°,限位間隙3 mm,模型預測的采凈率為90.01%,掉落率為2.23%,花球損傷率為1.92%。
現(xiàn)階段急性心肌梗死的發(fā)病率持續(xù)增高,且極具危重性,對患者生活質(zhì)量與身心健康造成了嚴重的影響[1]。腸溶性阿司匹林和氯吡格雷都是臨床治療急性心肌梗死的常用藥物,本次選取我院急性心肌梗死患者展開研究,分析聯(lián)合用藥方案對臨床患者凝血功能、總有效率的影響,希望能夠在醫(yī)院治療決策中提供參考依據(jù)?,F(xiàn)將研究內(nèi)容作如下報告:
本試驗在梳夾式紅花采收限位試驗裝置試驗臺上進行,采用已選出的最佳參數(shù)組合,選取開花后1~5 d的紅花(含水率≥45%),以試驗裝置采摘頭高度為基準,在豎直方向取高度差為50 mm內(nèi)的紅花,切除不在該范圍內(nèi)的花球,得到等高處理后的試驗材料,進行10次重復驗證試驗,對試驗結(jié)果取平均值得出:采凈率為89.73%,掉落率為2.13%,花球損傷率為2.05%,與理論預測值絕對誤差低于5%,說明最佳參數(shù)方案可行。采摘試驗見圖10。
a. 梳夾式紅花采收機等高限位裝置樣機
a. Height limiting device for comb-type safflower harvesting machine
b. 采摘試驗
b. Picking test
1.電源 2.直流電機 3.機架 4.梳夾式采摘頭 5.限位桿
1.Power supply 2.DC motor 3.Rack 4.Comb-type picking head 5.Limit rod
圖10 梳夾式紅花采收機等高限位裝置及試驗
Fig.10 Height limiting device for comb-type safflower harvesting machine and test
4 結(jié)論與討論
本文針對梳夾式紅花采收機等高限位裝置,通過試驗分析梳夾式采摘頭轉(zhuǎn)速、限位桿安裝角度、限位桿與梳夾式采摘頭之間的限位間隙等關(guān)鍵參數(shù)對采凈率、掉落率和花球損傷率的影響程度。
1)試驗結(jié)果表明,在試驗水平內(nèi),當限位桿安裝角度和限位桿與梳夾式采摘頭之間的限位間隙一定時,增大梳夾式采摘頭轉(zhuǎn)速,采凈率增大,掉落率增大,花球損傷率增大;當梳夾式采摘頭轉(zhuǎn)速和限位桿與梳夾式采摘頭之間的限位間隙一定時,增大限位桿安裝角度,采凈率先增大后減小,掉落率先減小后增大,花球損傷率逐漸降低;當限位桿安裝角度和梳夾式采摘頭轉(zhuǎn)速一定時,增大限位間隙,采凈率降低,掉落率和花球損傷率均增大。
2)通過Design Expert 10軟件對試驗結(jié)果進行優(yōu)化,得到梳夾式采收限位裝置的最佳參數(shù)組合:梳夾式采摘頭轉(zhuǎn)速為83 r/min,限位桿安裝角度為2°,限位間隙3 mm。在該參數(shù)組合下,通過試驗驗證采凈率為89.73%,掉落率為2.13%,花球損傷率為2.05%,與理論預測值絕對誤差低于5%,效果理想。
由于紅花為頂生類植物,其花球在植株上分布呈傘形,單個梳夾式采收裝置并不能滿足對紅花機械化采收的要求。擬在今后設計中在豎直方向布置多組梳夾式采摘頭覆蓋紅花花球在植株的分布區(qū)域,以期實現(xiàn)對紅花絲的機械化盲采。
[參 考 文 獻]
[1] 葛云,張立新,韓丹丹,等. 紅花絲機械采收的現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)機化研究,2014,36(11):265-268.
Ge Yun, Zhang Lixin, Han Dandan, et al. Current status and development trend of mechanical harvesting of safflower filaments[J]. Journal of Agricultural Mechanization Research, 2014, 36(11): 265-268. (in Chinese with English abstract)
[2] 葛云,張立新,谷家偉,等. 對輥式紅花采收裝置參數(shù)優(yōu)化及試驗[J]. 農(nóng)業(yè)工程學報,2015,31(21):35-42.
Ge Yun, Zhang Lixin, Gu Jiawei, et al. Parameter optimization and experiment of roller safflower harvesting device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 35-42. (in Chinese with English abstract)
[3] 李景彬,王曉華,坎雜,等. 紅花物料特性測定與分析[J]. 江蘇農(nóng)業(yè)科學,2014,42(2):235-237.
Li Jingbin, Wang Xiaohua , Kan Za, et al. Determination and analysis of safflower material characteristics[J]. Jiangsu Agricultural Sciences, 2014, 42(2): 235-237. (in Chinese with English abstract)
[4] Shahbazi1 F, Nazari G M. Bending and shearing properties of safflower stalk[J]. Journal of Agricultural Science & Technology, 2012, 14(4): 743-754.
[5] Shahbazi F, Tensile F. Strength of safflower stalk as affected by moisture content stalk region and loading rate[J]. Agricultural Engineering International: CIGR Journal, 2012, 14(4): 203-208.
[6] 葛云,張立新,韓丹丹,等. 收獲期紅花絲力學特性與形態(tài)特性測定與分析[J]. 農(nóng)機化研究,2015,37(4):168-171.
Ge Yun, Zhang Lixin, Han Dandan, et al. Determination and analysis of mechanical properties and morphological characteristics of safflower filaments during harvest[J]. Journal of Agricultural Mechanization Research, 2015, 37(4): 168-171. (in Chinese with English abstract)
[7] Anil K R. Development of Safflower Petal Collector[D]. Nimbkar Agricultural Research Institute (NARI), 2005.
[8] Azimi S. Design and construction of a harvesting safflower petals machine[C]// Richard. The ninth international livestock environment symposium (ILES IX), CIGR-AgEng 2012, 2012: 1-6.
[9] Ehlert D, Beier K. Development of picking devices for chamomile harvesters[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2014, 1(3): 73-60.
[10] 孫胃嶺,曹衛(wèi)彬,古樂樂,等. 基于紅花力學特性的梳夾式采摘機構(gòu)的設計與試驗[J]. 農(nóng)機化研究,2018,40(5):46-51.
Sun Weiling, Cao Weibin, Gu Lele, et al. Design and experiment of comb-clamping picking mechanism based on mechanical properties of safflower[J]. Agricultural Mechanization Research, 2018, 40(5): 46-51. (in Chinese with English abstract)
[11] 王崧浩,曹衛(wèi)彬,趙宏政,等. 紅花采收機花絲夾取機構(gòu)設計與分析[J]. 農(nóng)機化研究,2017,39(11):103-106.
Wang Songhao, Cao Weibin, Zhao Hongzheng, et al. Design and analysis of the filament picking mechanism of safflower harvesting machine[J]. Journal of Agricultural Mechanization Research, 2017, 39(11): 103-106. (in Chinese with English abstract)
[12] 孫胃嶺,曹衛(wèi)彬,楊萌,等. 紅花分枝力學特性測試及運動分析[J]. 農(nóng)機化研究,2018,40(12):212-216.
Sun Weiling, Cao Weibin, Yang Meng, et al. Mechanical properties test and motion analysis of safflower branches[J]. Agricultural Mechanization Research, 2018, 40(12): 212-216. (in Chinese with English abstract)
[13] 陳棒棒,曹衛(wèi)彬,李華,等. 梳齒式紅花絲采摘凸輪機構(gòu)的設計與仿真[J]. 農(nóng)機化研究,2018,40(11):131-135.
Chen Bangbang, Cao Weibin, Li Hua, et al. Design and Simulation of comb-type safflower filaments picking cam mechanism[J]. Journal of Agricultural Mechanization Research, 2018, 40(11): 131-135. (in Chinese with English abstract)
[14] 古樂樂,曹衛(wèi)彬,孫胃嶺,等. 紅花絲采收機扶禾器升降裝置設計及仿真分析[J]. 農(nóng)機化研究,2018,40(3):17-21.
Gu Lele, Cao Weibin, Sun Weiling, et al. Design and simulation analysis of lifting device for safflower harvesting[J]. Agricultural Mechanization Research, 2018, 40(3): 17-21. (in Chinese with English abstract)
[15] 曹衛(wèi)彬,焦灝博,劉姣娣,等. 基于TRIZ理論的紅花絲盲采裝置設計與試驗[J]. 農(nóng)業(yè)機械學報,2018,49(8):76-82.
Cao Weibin, Jiao Haobo, Liu Jiaodi, et al. Design and experiment of blush blind blind mining device based on TRIZ theory[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(8): 76-82. (in Chinese with English abstract)
[16] 曹衛(wèi)彬,連國黨,牛馳,等. 梳夾式紅花絲采摘頭等高采收性能試驗與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2018,34(22):36-44.
Cao Weibin, Lian Guodang, Niu Chi, et al. High-recovery performance test and parameter optimization of comb-clamping safflower picking head[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 36-44. (in Chinese with English abstract)
[17] 全國農(nóng)業(yè)機械標準化技術(shù)委員會農(nóng)業(yè)機械化分技術(shù)委員會.NY/T1133-2006采棉機作業(yè)質(zhì)量[S]. 北京:中國農(nóng)業(yè)出版社,2006.
[18] 周鐵梅,翟曉茹,劉永江,等. 新疆裕民華衛(wèi)紅花GAP基地紅花采收時間的研究[J]. 安徽農(nóng)業(yè)科學,2013,41(10):4316-4317.
Zhou Tiemei, Zhai Xiaoru, Liu Yongjiang, et al. Study on the harvest time of safflower in GAP base of Yumin Huawei, Xinjiang[J]. Journal of Anhui Agricultural Sciences, 2013, 41(10): 4316-4317. (in Chinese with English abstract)
[19] 席鵬洲,張燕,馬存德,等. 不同采收時間對紅花質(zhì)量的影響[J]. 現(xiàn)代中藥研究與實踐,2016,30(3):1-3.
Xi Pengzhou, Zhang Yan, Ma Cunde, et al. Effects of different harvesting time on the quality of safflower[J]. Research and Practice on Chinese Medicines, 2016, 30(3): 1-3. (in Chinese with English abstract)
[20] 康東健,譚勇,羅美,等. 不同生育期新疆紅花品質(zhì)分析研究[J]. 時珍國醫(yī)國藥,2016,27(9):2253-2255.
Kang Dongjian, Tan Yong, Luo Mei, et al. Study on the quality of Xinjiang safflower in different growth stages[J]. Shizhen Guo Ma Guo Yao, 2016, 27(9): 2253-2255. (in Chinese with English abstract)
[21] 于昭洋,胡志超,王海鷗,等. 大蒜果秧分離機構(gòu)參數(shù)優(yōu)化及試驗[J]. 農(nóng)業(yè)工程學報,2015,31(1):40-46.
Yu Zhaoyang, Hu Zhichao, Wang Haiou, et al. Parameter optimization and experiment of garlic fruit separation mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 40-46. (in Chinese with English abstract)
[22] 張秀花,趙慶龍,王澤河,等. 可調(diào)五輥式對蝦剝殼機剝殼參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)工程學報,2016,32(15):247-254.
Zhang Xiuhua, Zhao Qinglong, Wang Zehe, et al. Optimization experiment of shelling parameters of adjustable five-roller shrimp sheller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 247-254. (in Chinese with English abstract)
[23] 阮競蘭,向光波,程相法,等. 膠輥礱谷機性能參數(shù)試驗與優(yōu)化[J]. 農(nóng)業(yè)工程學報,2011,27(5):353-357.
Ruan Jinglan, Xiang Guangbo, Cheng Xiangfa, et al. Test and optimization of performance parameters of rubber roller mill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 353-357. (in Chinese with English abstract)
[24] 雷小龍,廖宜濤,李兆東,等. 油菜小麥兼用氣送式集排器攪種裝置設計及充種性能試驗[J]. 農(nóng)業(yè)工程學報,2016,32(18):26-34.
Lei Xiaolong, Liao Yitao, Li Zhaodong, et al. Design and filling performance test of rapeseed wheat combined with gas-gathering collectors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 26-34. (in Chinese with English abstract)
[25] 高國華,馮天翔,李福,等. 斜入式穴盤苗移栽手爪工作參數(shù)優(yōu)化及試驗驗證[J]. 農(nóng)業(yè)工程學報,2015,31(24):16-22.
Gao Guohua, Feng Tianxiang, Li Fu, et al. Optimization and experimental verification of working parameters of transplanting claws in oblique plugging seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 16-22. (in Chinese with English abstract)
[26] 劉姣娣,曹衛(wèi)彬,田東洋,等. 基于苗缽力學特性的自動移栽機執(zhí)行機構(gòu)參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)工程學報,2016,32(16):32-39.
Liu Jiaodi, Cao Weibin, Tian Dongyang, et al. Parameter optimization experiment of automatic transplant actuator based on mechanical properties of nursery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 32-39. (in Chinese with English abstract)
[27] 李霞,張東興,王維新,等. 受迫振動深松機性能參數(shù)優(yōu)化與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(21):17-24.
Li Xia, Zhang Dongxing, Wang Weixin, et al. Optimization and experiment of performance parameters of forced vibration subsoiler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 17-24. (in Chinese with English abstract)
[28] 童俊華,蔣煥煜,蔣卓華,等. 缽苗自動移栽機器人抓取指針夾持苗坨參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)工程學報,2014,30(16):8-16.
Tong Junhua, Jiang Huanyu, Jiang Zhuohua, et al. Optimization experiment of fingerling nursery parameters in automatic transplanting robot of seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 8-16. (in Chinese with English abstract)
[29] 周福君,蘆杰,杜佳興,等. 玉米缽苗移栽機圓盤式栽植機構(gòu)參數(shù)優(yōu)化及試驗[J]. 農(nóng)業(yè)工程學報,2014,30(1):18-24.
Zhou Fujun, Lu Jie, Du Jiaxing, et al. Parameter optimization and experiment of disc planting mechanism for corn seedling transplanting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 18-24. (in Chinese with English abstract)
[30] 楊艷麗,辜松,李愷,等. 大粒種子定向精量播種裝置參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)工程學報,2013,29(13):15-22.
Yang Yanli, Gu Song, Li Kai, et al. Parameter optimization experiment of directional precision seeding device for large grain seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 15-22. (in Chinese with English abstract)
[31] 葉秉良,劉安,俞高紅,等. 蔬菜缽苗移栽機取苗機構(gòu)人機交互參數(shù)優(yōu)化與試驗[J]. 農(nóng)業(yè)機械學報,2013,44(2):57-62.
Ye Bingliang, Liu An, Yu Gaohong, et al. Optimization and experiment of human-computer interaction parameters of seedlings in vegetable seedling transplanting machine[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(2): 57-62. (in Chinese with English abstract)
Parameter optimization of height limiting device for comb-type safflower harvesting machine
Cao Weibin, Yang Shuangping, Li Shufeng, Jiao Haobo, Lian Guodang, Niu Chi, An Liangliang
(College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China)
Abstract: Safflower is a kind of high-value economic crop, but due to its growth characteristics, it is very difficult to realize mechanized harvesting. At present, the mechanized harvesting technology of safflower has some disadvantages, for example, precise position is required, which means the labor intensity is still large. Therefore comb-type safflower harvesting device was been designed, which was expected to achieve mechanized blind mining and reduce labor costs. When it’s working, it pushed the moving teeth by the pre-tightening force of the spring in the cam returning section, so that the moving teeth and the fixed teeth were closed, and the filament was clamped. The rotation of the main shaft driven the clamped filament to rotate, and the pulling action of the filament was completed. In the cam lift section, the push rod was topped, the spring was pressed, the moving teeth was separated from the fixed teeth, the filament was dropped, and the harvesting work was completed. In order to further study the comb-type device and improve the work quality for the comb-type machine, the height limiting device for comb-type safflower harvesting machine was designed, which was a limit rod mounted under the comb-type picking head and could be adjusted by the mounting plates on both sides. This device could stabilize the safflower flower ball, making it easier for the filament to enter the comb-type picking teeth gap, thereby increasing the recovery rate. At the same time, by limiting the position of the flower ball, the device could also reduce the damage to the flower ball. In this test, a single comb-type picking device and its corresponding height limiting device were used to analyze the effect of the height limiting device on the picking of individual flower filaments. The experiment chose the safflower of “Yu Min stingless” as the object. In order to determine the operation parameters of height limiting device for comb-type safflower harvesting machine, according to its structural parameters and working parameters, the response surface experiment with 3 factors and 5 levels was completed on the height limiting device for comb-type safflower harvesting machine. 3 parameters, including comb-type picking head speed, limit rod mounting angle and limit gap were selected as the input variables, and removal rate, drop rate and damage rate of the flower ball were selected as the output parameters. Quadratic orthogonal rotary regressive experimental design was employed to develop the second order polynomial regression model, which explained the relationship between the input and output parameters. By the Design Expert 10 software, the corresponding mathematical regression model was established, the influence of significant factor on the quality of operation was analyzed, and the experimental parameters were optimized. The optimal combination of parameters determined was as follows: comb-type picking head speed was 83 r/min, limit rod mounting angle was 2° and limit gap was 3 mm. From the results of predicting model, the average of removal rate was 90.01%, the drop rate was 2.23% and the damage rate of the flower ball was 1.92%. In order to verify the feasibility of the parameter matching, with the optimal parameters, the verification test of the machine was done on the safflower after the flowering between 1-5 d. The results showed that, under the combination of optimization parameters, the average of removal rate was 89.73%, the drop rate was 2.13% and the damage rate of flower ball is 2.05%. The experimental results had little difference with the results predicted by the model. Though the safflower harvesting experiments, the height limiting device for comb-type safflower harvesting machine was basically consistent with the technical requirement. The research results can provide reference for the comb-type picking machine.
Keywords: mechanization; optimization; harvesting; safflower harvesting; comb-type; experimental analysis
收稿日期:2018-09-14
修訂日期:2019-06-12
基金項目:新疆生產(chǎn)建設兵團科技攻關(guān)項目( 2015AB020)
作者簡介:曹衛(wèi)彬,教授,博士生導師,主要從事農(nóng)業(yè)信息化與機械自動化研究。Email:wbc828@163.com
doi:10.11975/j.issn.1002-6819.2019.14.006
中圖分類號:S225.99
文獻標志碼:A
文章編號:1002-6819(2019)-14-0048-09
曹衛(wèi)彬,楊雙平,李樹峰,焦灝博,連國黨,牛 馳,安亮亮. 梳夾式紅花采收機等高限位裝置參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2019,35(14):48-56. doi:10.11975/j.issn.1002-6819.2019.14.006 http://www.tcsae.org
Cao Weibin, Yang Shuangping, Li Shufeng, Jiao Haobo, Lian Guodang, Niu Chi, An Liangliang. Parameter optimization of height limiting device for comb-type safflower harvesting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 48-56. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.006 http://www.tcsae.org