羅萍萍 桑思晗 史文宗 楊超 顏凡江 李夢龍 蒙裴貝
基于FFT算法的激光有源非穩(wěn)腔光場分布數(shù)值計算方法
羅萍萍1,2桑思晗1,2史文宗1,2楊超1,2顏凡江1,2李夢龍1,2蒙裴貝1,2
(1 北京空間機(jī)電研究所,北京 100094)(2 中國空間技術(shù)研究院空間激光信息感知技術(shù)核心專業(yè)實驗室,北京 100094)
在激光器應(yīng)用中,激光發(fā)散角是重要的技術(shù)指標(biāo),可由光場分布得出。非穩(wěn)腔由于易于實現(xiàn)高光束質(zhì)量輸出的優(yōu)勢,是激光器的常用腔型。為了快速獲得有源非穩(wěn)腔激光器的光場分布,提高激光器設(shè)計仿真效率,在參考了現(xiàn)有激光器諧振腔數(shù)值算法的基礎(chǔ)上,建立了一種基于快速傅里葉變換算法的有源諧振腔光場分布計算模型;基于該模型,開展了有源非穩(wěn)腔的諧振腔特性研究,重點分析了小信號增益分布、輸出鏡反射率分布及諧振腔的腔鏡失諧等因素對激光器光場分布的影響,并量化分析了上述參數(shù)對激光器發(fā)散角的影響;同時,通過搭建激光器樣機(jī),獲得了激光輸出光斑分布、失諧發(fā)散角參數(shù)等試驗結(jié)果,并與光場分布計算模型的計算結(jié)果進(jìn)行了對比分析,認(rèn)為兩者的光斑分布及發(fā)散角隨腔鏡失諧角度變化的趨勢大致相同,驗證了光場分布計算模型的正確性。因而,在有源諧振腔設(shè)計中,應(yīng)用文章中建立的計算模型,可以對激光器的泵浦設(shè)計、腔鏡參數(shù)選擇等提供直觀、量化的參考。
有源諧振腔 光場分布 數(shù)值計算 激光器 航天遙感
近年來,空間激光雷達(dá)廣泛應(yīng)用于對地測繪、空間遙感、大氣探測等領(lǐng)域[1-4],已成為空間應(yīng)用的重要載荷。其中,激光器作為激光雷達(dá)的發(fā)射光源,其指標(biāo)對激光雷達(dá)的性能具有重大影響。為了有效探測目標(biāo),激光雷達(dá)對激光器的光場分布提出了較高要求,具體體現(xiàn)在光束質(zhì)量(Quality)這一指標(biāo)上。非穩(wěn)腔可獲得高光束質(zhì)量激光輸出,成為空間激光器常用腔型之一。在非穩(wěn)腔激光器設(shè)計中,需要根據(jù)指標(biāo)要求,設(shè)計合適的諧振腔參數(shù),其中能量、脈寬等指標(biāo)的計算方法較為成熟,但在激光器光場分布計算方面,由于涉及到復(fù)雜的光學(xué)諧振腔衍射積分方程理論,很難求出方程的解析解,進(jìn)而衍生出了許多數(shù)值解法[5-11]。在眾多的非穩(wěn)腔光場數(shù)值計算方法中,快速傅里葉變換(FFT)法由于計算效率高,運算速度快,成為了激光器光場計算的重要方法之一。文獻(xiàn)[12]率先利用FFT法計算了氣體激光器的光場分布以及腔鏡失諧對氣體激光器模式的影響;文獻(xiàn)[13]將FFT法用于分析增益分布及熱致折射率分布對端泵Nd:YVO4激光器的模場分布的影響;文獻(xiàn)[14]利用FFT法進(jìn)行了空腔下超高斯非穩(wěn)腔的光場計算;文獻(xiàn)[15]利用FFT法計算了CO2激光器的輸出模場。目前文獻(xiàn)中對諧振腔光場分析基本都是定性分析,對諧振腔設(shè)計的參考意義不明顯。
本文利用FFT法建立了有源激光諧振腔的光場分布計算模型,并將光場分析轉(zhuǎn)化為發(fā)散角指標(biāo)分析,獲得了小信號增益分布、輸出鏡反射率分布及諧振腔失諧等因素對激光器影響的量化結(jié)果,并進(jìn)行了試驗驗證。
非穩(wěn)腔數(shù)值計算方法的主要思路是基于衍射角譜理論,利用傅里葉變換法,把在空域中的衍射傳輸轉(zhuǎn)換成頻域中的乘積運算,通過光場的迭代計算,最終獲得自再現(xiàn)穩(wěn)定光場分布。
當(dāng)泵浦光作用于激光晶體時,晶體內(nèi)獲得了與空間坐標(biāo)相關(guān)的增益分布,光場通過激光晶體后,光場分布將受到影響從而發(fā)生改變。要精確計算光場分布,就要充分考慮非均勻增益分布對光場的影響。為此,本文提出了激光晶體的網(wǎng)格化薄片式模型來解決這一問題。
在緩變振幅近似下,光場分布可表示為[16-17]
1.2.1 單程光場分布計算模型
圖1為有源諧振腔模型,以圖1為例計算光場分布。
圖1 有源諧振腔模型
從輸出鏡到全反鏡的光場分布計算模型也類似,計算時設(shè)定初始光場分布,經(jīng)過往返多次運算后,激光光場分布逐漸收斂,呈自再現(xiàn)的光場分布,此時認(rèn)為獲得了激光器的穩(wěn)定輸出光場,迭代結(jié)束。
1.2.2 增益飽和計算模型
在四能級系統(tǒng)中,小信號增益系數(shù)可近似表示為[18]
光場強(qiáng)度為
從式(10)可知,光強(qiáng)直接受光場的影響,而從式(4)可知,增益系數(shù)又直接影響光場的計算結(jié)果,增益系數(shù)與光場兩者互為影響。為了較為精確地計算光場分布,本文通過迭代法建立了增益飽和計算模型。具體方法如下:
運用計算模型,可開展激光器諧振腔設(shè)計。由于,激光器泵浦光學(xué)及諧振腔參數(shù)是影響激光器輸出指標(biāo)的重要參數(shù),也是激光器設(shè)計的重點,本文對這兩項開展仿真分析。
同理,在上述腔型中,可獲得不同參數(shù)高斯輸出鏡與激光發(fā)散角值的關(guān)系曲線,如圖3所示。從圖3可知,對特定的腔型及小信號增益分布,存在最佳的高斯輸出鏡參數(shù)。
(a)高斯階數(shù)n=2,高斯半徑不同(a)Different Gaussian radius with Gaussian order n=2(b)高斯半徑ωm=1.5mm,高斯階數(shù)不同(b)Different Gaussian order with Gaussian radius ωm=1.5mm
(a)高斯階數(shù)n=2,高斯半徑ωr不同(a)Different Gaussian radius ωr with Gaussian order n=2(b)高斯半徑ωr=1.8mm,高斯階數(shù)不同(b)Different Gaussian order with Gaussian radius ωr=1.8mm
綜上可知,利用光場分布計算模型,不僅可以完成激光諧振腔參數(shù)的仿真計算,還可以為激光器的泵浦光學(xué)設(shè)計提供設(shè)計依據(jù)。
在實際激光器應(yīng)用中,諧振腔失諧是無法完全避免的問題。激光器諧振腔失諧將會直接影響激光器的輸出性能,導(dǎo)致單脈沖能量、脈寬、發(fā)散角等指標(biāo)變差,因此,抗失諧設(shè)計是激光器設(shè)計的重要環(huán)節(jié)。目前,對于諧振腔失諧特性的研究大部分都集中于定性分析[20-22],鮮少定量分析失諧對激光發(fā)散角的影響。本文將諧振腔失諧量帶入到光場分布計算模型中,分析了失諧對激光發(fā)散角的影響。
在2.1節(jié)有源腔參數(shù)基礎(chǔ)上,設(shè)全反鏡沿軸旋轉(zhuǎn)角度,即引入方向腔鏡角度的傾斜,當(dāng)傾角分別為50,100,200,400μrad時,輸出光場強(qiáng)度最大值沿軸位移值、激光光軸指向偏移角度及發(fā)散角的計算值如表1所示,腔鏡失諧情況下的激光輸出光場分布如圖4所示。
從上述計算結(jié)果可知,隨著腔鏡傾斜角度的增大,最大光強(qiáng)的偏移量逐漸增加,發(fā)散角也逐漸增大,直至失諧損耗大于增益,諧振腔無法起振。
表1 腔鏡傾斜不同角度時的光場變化參數(shù)
Tab.1 Variation parameters of light field when cavity mirror inclines at different angles
(a)傾斜50μrad(a)Tilt angle 50μrad(b)傾斜100μrad(b)Tilt angle 100μrad(c)傾斜200μrad(c)Tilt angle 200μrad(d)傾斜400μrad(d)Tilt angle 400μrad
圖4 腔鏡傾斜不同角度時輸出光場分布
Fig.4 Distribution of output light field when cavity mirror inclines at different angles
圖5 激光器試驗裝置
由式(9)可知,激光晶體內(nèi)小信號增益分布與吸收泵浦光分布一致,吸收泵浦光分布可通過幾何光學(xué)追跡方法獲得[25],間接獲得小信號增益分布。試驗激光器三面泵浦結(jié)構(gòu)如圖6(a)所示,通過錐形結(jié)構(gòu)的鍍金反射面勻化泵浦光,入射到激光晶體上,錐形角度為15°,圓弧直徑為6mm,鍍金反射面的反射率為0.95,LD快軸方向設(shè)為高斯分布,發(fā)散角(半高全寬)為35°,慢軸方向角度較小,近似認(rèn)為泵浦功率沿晶體軸向均勻分布。運用光線追跡法對激光晶體吸收泵浦光分布進(jìn)行仿真,仿真結(jié)果如圖6(b)所示。
(a)泵浦結(jié)構(gòu)(a)Pump structure(b)吸收泵浦光仿真結(jié)果(b)Simulation results of absorbing pump light
根據(jù)吸收泵浦光仿真結(jié)果,建立激光晶體的薄片模型,運用光場分布計算模型,最終可獲得含有實際小信號增益分布的激光器輸出光場分布。
耦合透鏡焦平面處的光場分布仿真值及實測值,如圖7所示。從圖7可知,兩者光場分布近似,光斑呈三角形,與吸收泵浦光分布進(jìn)行對比后,認(rèn)為這與激光晶體的吸收泵浦光分布有關(guān),這也印證了2.1節(jié)的分析結(jié)果,即激光晶體的吸收泵浦光分布將影響激光輸出模式。
(a)計算結(jié)果(a)Calculated result(b)試驗結(jié)果(b)Experiment test result
將激光反射鏡繞軸微轉(zhuǎn)角度,使激光器腔鏡失諧,用CCD測試失諧時激光發(fā)散角變化情況。激光發(fā)散角隨腔鏡失諧角度變化的試驗結(jié)果及仿真結(jié)果如圖8所示,從圖中可知,兩條曲線的變化趨勢基本一致。仿真計算可獲得激光器發(fā)散角受腔鏡影響的相對變化結(jié)果,但仿真結(jié)果整體優(yōu)于試驗測試結(jié)果,這是因為:1)仿真計算時未考慮激光器熱透鏡效應(yīng)的影響;2)激光晶體的吸收泵浦光分布采用幾何光學(xué)追跡方法,在LD建模、泵浦結(jié)構(gòu)建模等方面與實際情況存在差異;3)未考慮諧振腔其他損耗的影響。
圖8 激光器遠(yuǎn)場發(fā)散角與腔鏡失諧角度的關(guān)系
本文提出了一種基于快速傅里葉變換法的有源諧振腔光場分布計算模型,通過該模型可以獲得有源非穩(wěn)腔情況下光場分布及發(fā)散角的計算結(jié)果。文中利用計算模型,開展了對不同小信號增益分布及不同輸出鏡反射率分布下的激光器光場分布及發(fā)散角的計算仿真,并量化分析了激光器腔鏡失諧對輸出光場分布的影響。最后,通過激光器試驗結(jié)果與理論計算結(jié)果的對比,驗證了光場分布計算模型的正確性。因此,本文建立的光場分布計算模型可以用于空間激光器有源諧振腔的設(shè)計,特別是對腔型設(shè)計、泵浦光學(xué)設(shè)計等方面可以提供直觀的數(shù)據(jù),為諧振腔抗失諧設(shè)計提供參考,提高空間激光器的研制能力,縮短研制周期。
[1] 許春曉, 周峰. 星載激光遙感技術(shù)的發(fā)展及應(yīng)用[J]. 航天返回與遙感, 2009, 30(4): 26-31. XU Chunxiao, ZHOU Feng. Development and Applications of Spaceborne Laser Remote Sensing Technology[J]. Spacecraft Recovery&Remote Sensing, 2009, 30(4): 26-31. (in Chinese)
[2] STEPHEN M A, YU A W, KRAINAK MA, et a1. Spaceborne Laser Development for Future Remote Sensing Applications[J]. SPIE, 2011, 8154: 815406.
[3] MICHLLE S, CARL W, EILEEN S, et al. On-orbit Models of the CALIOP Lidar for Enabling Future Mission Design[J]. SPIE, 2010, 7807: 78070F.
[4] YU A W, SHAW G B, ANNE M N, et a1. In Space Performance of the LOLA Laser Transmitter[J]. SPIE, 2011, 8182: 818208.
[5] SELLERI S, VINCETTI L, CACINOTTA A, et al. Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions[J]. Optical and Quantum Electronics, 2001, 33(4/5): 359-371.
[6] MANENKOV A B, ROZLMEV A G. Optical Dielectric Waveguide Analysis Based on the Modified Finite Element and Integral Equation Methods[J]. Optical and Quantum Electronics, 1998, 30(1): 61-70.
[7] HELEFERT S F, PREGLA R. A Finite Difference Beam Propagation Algorithm Based on Generalized Transmission Line Equations[J]. Optical and Quantum Electronics, 2000, 32(6/8): 681-690.
[8] POLYCHRONOPOLLLOS S J, ATHANASOLLLIAS G B, UZUNOGLU N K. Advanced Mode Solver Using an Integral Equation Technique and Entire Domain Plane Wave Basis Functions[J]. Optical and Quantum Electronics, 1997, 29(2): 127-137.
[9] LüSSE P, RAMM K, UNGER H J, et al. Comparison of Vectorial and New Semivectorial-finite Difference Approach for Optical Waveguides[J]. Optical and Quantum Electronics, 1997, 29(2): 115-120.
[10] 秦應(yīng)雄, 唐霞輝, 鐘如濤, 等. 基于傳輸矩陣的激光諧振腔模式計算[J]. 中國激光, 2008, 35(10): 1463-1468. QIN Yingxiong, TANG Xiahui, ZHONG Rutao, et a1. Study on Mode Calculation of Transmission Matrix for Laser Resonator[J]. Chinese Journal of Lasers, 2008, 35(10): 1463-1468. (in Chinese)
[11] SIEGMAN A E, SZIKLAS E A. Mode Calculation in Unstable Resonators with Flowing Saturable Gain 1: Hermite-Gaussian Expansion[J]. Applied Optics, 1974, 13(12): 2275-2792.
[12] SZIKLAS E A, SIEGMAN A E. Mode Calculation in Unstable Resonators with Flowing Saturable Gain 2: Fast Fourier Transform Method[J]. Applied Optics, 1975, 14(8): 1874-1889.
[13] SERRAT C, EXTER M P, DRUTEN N J, et al. Transverse Mode Formation in Micro-lasers by Combined Gain-and Index-guiding[J]. IEEE Journal of Quantum Electronics, 1999, 35(9): 1314-1321.
[14] 田兆碩, 陳衛(wèi)標(biāo), 胡企銓. 變反射鏡諧振腔光場分布的三維數(shù)值計算[J]. 激光技術(shù), 2004, 28(4): 390-393. TIAN Zhaoshuo, CHEN Weibiao, HU Qiquan. 3-D Numerical Simulation of Optic Field Distribution in Unstable Resonators with Variable Reflectance Mirrors[J]. Laser Technology, 2004, 28(4): 390-393. (in Chinese)
[15] 彭玉峰, 陳靖, 呂珍龍, 等. FFT模擬腔鏡畸變情況下高能CO2激光器輸出模場[J]. 激光技術(shù), 2007, 31(1): 106-108. PENG Yufeng, CHEN Jing, Lyu Zhenlong, et al. Output Mode Simulation for High-energy CO2Laser with Mirror Deformati on by Means of FFT[J]. Laser Technology, 2007, 31(1): 106-108. (in Chinese)
[16] MAES C F, WRIGHT E M. Mode Properties of an External-cavity Laser with Gaussian Gain[J]. Optics Letters, 2004, 29(3): 229-231.
[17] 呂百達(dá). 固體激光器件[M]. 北京: 北京郵電大學(xué)出版社, 2002: 89-94, 153-154. Lyu Baida. Solid State Laser Device[M]. Beijing: Beijing University Press of Posts and Telecommunications, 2002: 89-94, 153-154. (in Chinese)
[18] 克希耐爾 W. 固體激光工程[M]. 孫文, 江澤文, 程國祥, 譯. 北京: 科學(xué)出版社, 2002: 245. KOECHNER W. Solid-state Laser Engineering [M]. Translated by SUN Wen, JIANG Zewen, CHENG Guoxiang. Beijing: Science Press, 2002: 245. (in Chinese)
[19] 呂百達(dá). 激光光學(xué)光束描述、傳輸變換與光腔技術(shù)物理[M]. 北京: 高等教育出版社, 2003. Lyu Baida. Laser Optical Beam Description, Transmisson, Transformation and Optical Cavity Technology Physics[M]. Beijing: Higher Education Press, 2003. (in Chinese)
[20] 黃宇, 馮國英, 李瑋, 等. 復(fù)雜像散腔的2維失調(diào)靈敏度的矩陣表示[J]. 激光技術(shù), 2008, 32(5): 460-464. HUANG Yu, FENG Guoying, LI Wei, et al. Matrix Expression for 2-D Misalignment Sensitivity of Complex Astigmatic Resonator[J]. Laser Technology, 2008, 32(5): 460-464. (in Chinese)
[21] 王寧, 陸雨田. 部分端面抽運板條激光器腔鏡傾斜問題研究[J]. 中國激光, 2005, 32(12): 1593-1598. WANG Ning, LU Yutian. Sensitivity to Mirror Tilt of Off-axis Hybrid Resonator for Innoslab[J]. Chinese Journal of Lasers, 2005, 32(12): 1593-1598. (in Chinese)
[22] SOBAJIMA M, KOIKE H, YOKOYAMA M, et al. Numerical Study of Optical-cavity Misalignment Effects for a Far-infrared FEL[J]. Nuclear Instruments and Methods in Physics Research A, 2002, 483(1): 240-244.
[23] YU D L, SANG F T, JIN Y Q et al. Study of Drift and Deformation for Coil Output Beam Spot[J]. High Power Laser and Particle Beams, 2001, 13(2): 15l-154. (in Chinese)
[24] 蒙裴貝, 史文宗, 顏凡江, 等. 諧振腔失諧對二極管泵浦Nd:YAG激光器性能的影響[J]. 紅外與激光工程, 2017, 46(6):19-25. MENG Peibei, SHI Wenzong, YAN Fanjiang, et al. Influence of Resonator Misalignment on Performance of Diode-pumped Nd:YAG Laser[J]. Infrared and Laser Engineering, 2017, 46(6): 19-25. (in Chinese)
[25] 顏凡江, 桑思晗, 李夢龍, 等. 高效率基模模式匹配側(cè)面泵浦結(jié)構(gòu)設(shè)計與實驗研究[J]. 航天返回與遙感, 2017, 38(2): 55-63. YAN Fanjiang, SANG Sihan, LI Menglong, et al. Design and Experimental Study of High Efficiency Fundamental-mode Matching Side Pump Structure[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(2): 55-63. (in Chinese)
Numerical Calculation Method of Light Field Distribution for Active Unstable CavityResonator Based on FFT Algorithm
LUO Pingping1,2SANG Sihan1,2SHI Wenzong1,2YANG Chao1,2YAN Fanjiang1,2LI Menglong1,2MENG Peibei1,2
(1 Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China)(2 Key Laboratory for Space Laser Information Perception Technology of CAST, Beijing 100094, China)
In laser applications, laser divergence angle is an important technical index, which can be obtained from light field distribution. Unstable cavity is the common cavity type of laser owing to its advantage of easy realization in high beam quality output. In order to quickly obtain the light field distribution of the active unstable resonator laser and improve the simulation efficiency of laser design, a calculation model of the light field distribution of the active resonator based on fast Fourier transform algorithm is established on the basis of the existed numerical algorithm of laser resonator. Based on the obtained model, the resonant cavity characteristics of the active unstable cavity are studied. The influences of small signal gain distribution, output mirror reflectivity distribution and cavity mirror detuning of the resonant cavity on the laser light field distribution are emphatically analyzed, and then the influences of the above parameters on the laser divergence angle are quantitatively computed. At the same time, the experimental results of laser output spot distribution and detuned divergence angle parameters are obtained by setting up a laser prototype, and compared with the calculation results of the light field distribution calculation model. It is believed that the variation trend of the spot distribution and divergence angle in the test and simulation are approximately same with the change of the detuned angle of the cavity mirror, which verifies the correctness of the light field distribution calculation model. Therefore, in the design of active resonant cavity, the proposed calculation model can provide intuitive and quantitative reference for the pump design of laser and the parameters selection of cavity mirror.
active resonator; light field distribution; numerical calculation; laser; space remote sensing
TN248.1
A
1009-8518(2019)04-0086-09
10.3969/j.issn.1009-8518.2019.04.010
羅萍萍,女,1987年生,2012年獲北京理工大學(xué)物理電子學(xué)專業(yè)碩士學(xué)位,工程師。研究方向為星載全固態(tài)激光器技術(shù)。E-mail:luopp508@163.com。
2019-04-19
(編輯:王麗霞)