肖 波,贠弘祥,楊德勇,劉清化,劉相東
馬鈴薯薄壁細(xì)胞組織一維等溫干燥模型
肖 波1,3,贠弘祥2,楊德勇3,劉清化1,劉相東3※
(1. 廣東省現(xiàn)代農(nóng)業(yè)裝備研究所,廣州 510630;2. 濟(jì)南外國語學(xué)校三箭分校,濟(jì)南 250108;3. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
為真實(shí)描述植物薄壁細(xì)胞物料干燥過程的水分傳輸機(jī)理,該文基于組織生理結(jié)構(gòu)、微觀參數(shù)測量技術(shù)和細(xì)胞結(jié)構(gòu)變化,提出了適用于整個(gè)低溫對流干燥過程的薄壁細(xì)胞組織模型。模型假設(shè)組織由細(xì)胞聚集而成,細(xì)胞由細(xì)胞壁、細(xì)胞膜和細(xì)胞腔模型溶液組成。細(xì)胞壁中的水分為純水,干燥過程中細(xì)胞壁僅變形,不收縮;細(xì)胞膜為理想半透膜,集總了真實(shí)細(xì)胞內(nèi)所有的跨膜滲透效應(yīng);模型溶液中的水分?jǐn)U散則代表了真實(shí)細(xì)胞內(nèi)部所有的擴(kuò)散效應(yīng);干燥過程中,細(xì)胞膜始終緊貼細(xì)胞壁,細(xì)胞失去膨壓后,塌陷收縮?;诮M合參數(shù)傳輸模型建模方法構(gòu)建了考慮細(xì)胞和收縮的一維傳質(zhì)模型。模型中細(xì)胞尺度的水分傳輸為局部水勢平衡假設(shè)下的細(xì)胞腔到細(xì)胞腔、細(xì)胞壁網(wǎng)絡(luò)和細(xì)胞氣相間隙傳輸,宏觀傳遞系數(shù)直接由細(xì)胞傳輸特性推演獲得。模擬和試驗(yàn)表明:平均干基含水率不低于1.0 kg/kg時(shí),模型可準(zhǔn)確預(yù)測馬鈴薯組織的干燥過程,相對誤差不超過20%。模型分析揭示:馬鈴薯組織干燥過程水分傳輸途徑的優(yōu)先級為細(xì)胞腔到細(xì)胞腔>細(xì)胞壁網(wǎng)絡(luò)>細(xì)胞間隙。
干燥;模型;水分傳遞;植物薄壁細(xì)胞;塌陷收縮;馬鈴薯
干燥是水果、蔬菜和中藥材等植物物料加工中廣泛采用的一種技術(shù)[1-3]。干燥過程的水分傳遞機(jī)理是基本理論問題[2, 4-5],對保證植物物料干燥品質(zhì)和過程節(jié)能都具有重要意義[1-2]。這類新鮮植物組織主要由薄壁細(xì)胞組成。干燥初始,組織濕基含水率遠(yuǎn)高于一般多孔介質(zhì),可達(dá)90%以上,且?guī)缀跞考杏诩?xì)胞中[6],細(xì)胞間隙內(nèi)水分較少,幾乎可以忽略[7]。干燥過程中,細(xì)胞內(nèi)的水分必須通過細(xì)胞膜、細(xì)胞壁等封閉結(jié)構(gòu),才能遷移到組織外部。為真實(shí)描述干燥過程中植物薄壁細(xì)胞物料內(nèi)部水分的傳輸機(jī)理,必須考慮水分的跨細(xì)胞結(jié)構(gòu)傳輸。
不同于常規(guī)植物生理過程,干燥過程中細(xì)胞結(jié)構(gòu)和傳遞規(guī)律都發(fā)生顯著變化。首先,細(xì)胞會(huì)逐漸失去膨壓,由膨脹變?yōu)樗輀8],物料結(jié)構(gòu)干燥前后明顯不同[9]。目前還未見對這種結(jié)構(gòu)變化規(guī)律的精確描述。其次,從整個(gè)干燥過程來看,細(xì)胞水勢和其含水率的關(guān)系不再是近似線性關(guān)系[10-11],細(xì)胞內(nèi)部水分?jǐn)U散阻力相比于細(xì)胞膜阻力也不再能忽略。正確描述植物薄壁組織的低溫對流干燥過程,需提出適用于干燥條件下細(xì)胞狀態(tài)由膨壓為正轉(zhuǎn)變?yōu)槭ヅ驂核莸倪^程的細(xì)胞組織模型,并且考慮干燥水分傳輸規(guī)律的特點(diǎn)。然而已知考慮細(xì)胞結(jié)構(gòu)的蒸發(fā)失水傳遞模型,包括干燥模型,均基于細(xì)胞膨壓為正的新鮮組織及其幾何結(jié)構(gòu)的精確描述建立,不完全適用于物料干燥過程。
Crapiste 等基于新鮮植物組織結(jié)構(gòu),把組織看成是由液泡、細(xì)胞質(zhì)、細(xì)胞壁和氣相細(xì)胞間隙組成的多相系統(tǒng),建立了干燥過程中水分傳輸?shù)捏w積平均模型[12-13]。模型中考慮的液泡膜和液泡等亞細(xì)胞結(jié)構(gòu),傳質(zhì)特性難以測定。采用體積平均方法,要求模型必須用單一的具有精確幾何參數(shù)的規(guī)則模型細(xì)胞來代表組織,且要求細(xì)胞排列具有周期性,因而難以考慮細(xì)胞的非規(guī)則變形和細(xì)胞組織的非均勻收縮。為描述水果儲(chǔ)藏過程中的水分損失規(guī)律,Aregawi 等建立了二維多尺度水分傳輸和細(xì)胞變形動(dòng)力學(xué)模型,在宏觀代表性單元體中考慮微觀細(xì)胞結(jié)構(gòu),利用微觀模型計(jì)算得到代表性單元體的表觀參數(shù),進(jìn)而求解宏觀模型[14]。該模型把薄壁細(xì)胞簡化為由細(xì)胞壁、細(xì)胞膜和細(xì)胞質(zhì)組成的結(jié)構(gòu),細(xì)胞腔被看成是均質(zhì)的,不再區(qū)分細(xì)胞質(zhì)和液泡等結(jié)構(gòu)[15]。然而模型依賴細(xì)胞組織微觀結(jié)構(gòu)的精確描述,僅可考慮細(xì)胞膨壓為正時(shí)的收縮,目前也很難用于植物細(xì)胞物料的干燥過程。Rahman 等基于蘋果組織微觀結(jié)構(gòu)的掃描電鏡圖像獲得結(jié)構(gòu)模型,基于擴(kuò)散和導(dǎo)熱機(jī)理建立了描述細(xì)胞水平上的水分傳輸機(jī)理和各結(jié)構(gòu)中的溫度變化的微觀干燥模型,并通過X-ray micro-CT試驗(yàn)驗(yàn)證了預(yù)測結(jié)果[16]。該模型沒有考慮細(xì)胞收縮塌陷后的情況,只能對代表性單元體區(qū)域進(jìn)行計(jì)算,不能預(yù)測整個(gè)物料的干燥過程。
傳統(tǒng)多孔介質(zhì)干燥理論將植物細(xì)胞組織視為吸濕性多孔介質(zhì),細(xì)胞為骨架,細(xì)胞間隙為孔隙[17],主要關(guān)注的是孔隙中的水分遷移,認(rèn)為連通的孔隙是水分傳遞的優(yōu)勢通道[18-19],沒有考慮細(xì)胞上的水分遷移。只考慮2種容水空間,即吸濕性骨架和介質(zhì)孔道,不能完整表示植物細(xì)胞組織具有的3種以上的容水空間,如細(xì)胞質(zhì)、液泡、細(xì)胞壁和細(xì)胞間隙等,因此難以描述相互接觸細(xì)胞間的跨膜和細(xì)胞壁中的傳輸[13]。這類模型目前也難以考慮干燥過程中發(fā)生的細(xì)胞組織收縮現(xiàn)象。因此按照多孔介質(zhì)概念建立的干燥模型與植物細(xì)胞物料干燥過程的真實(shí)機(jī)理差別很大。
King等對植物細(xì)胞組織解吸過程——緩慢干燥進(jìn)行了系列研究,假設(shè)孔隙中蒸氣擴(kuò)散控制著水分傳輸,忽略了細(xì)胞膜、細(xì)胞壁等的作用[20-23]。Xiao 等把吸濕性植物細(xì)胞物料等效為普通毛細(xì)多孔介質(zhì),認(rèn)為水分全部存在于孔隙之中,構(gòu)建了等效分形孔道網(wǎng)絡(luò)干燥模型[24]。李會(huì)林等同樣將馬鈴薯和胡蘿卜等物料等效為普通毛細(xì)多孔介質(zhì),建立了描述生物多孔介質(zhì)熱質(zhì)傳遞的熱-濕-力雙向耦合數(shù)學(xué)模型[25]。這類模型不能反映細(xì)胞結(jié)構(gòu)對干燥過程的影響。Xiao 等構(gòu)建了二維“細(xì)胞+孔道網(wǎng)絡(luò)”干燥模型,認(rèn)為水分主要存在于細(xì)胞骨架中,水分穿過細(xì)胞膜到細(xì)胞間隙的阻力不能忽略,水分傳遞的優(yōu)先通道是孔隙,水分跨膜之后不會(huì)再進(jìn)入細(xì)胞之中[26]。該模型沒有考慮接觸細(xì)胞間的水分傳輸,高估了組織的傳質(zhì)阻力。
Philip等建立了描述根和葉組織水分傳輸規(guī)律的擴(kuò)散型組合參數(shù)傳輸模型[11, 27-28]。模型用規(guī)則排列的立方體細(xì)胞代替植物組織——細(xì)胞膨壓為正,假設(shè)細(xì)胞水勢與其含水率之間為近似線性關(guān)系,傳遞系數(shù)直接由細(xì)胞傳輸特性推演獲得。組合參數(shù)模型不依賴于細(xì)胞組織幾何結(jié)構(gòu)的精確描述,只需其代表性參數(shù),有望用于植物細(xì)胞組織的干燥過程,但干燥過程中細(xì)胞結(jié)構(gòu)和傳遞規(guī)律變化的問題待解決。事實(shí)上,Philip 在關(guān)于這類模型的文章里已經(jīng)提及細(xì)胞失去膨壓的情形,但并未深究[27]。
本文首先基于組織生理結(jié)構(gòu)、微觀參數(shù)測量技術(shù)和細(xì)胞結(jié)構(gòu)變化,提出適用于整個(gè)低溫對流干燥過程的植物薄壁細(xì)胞組織模型,然后采用組合參數(shù)模型建模方法,建立植物薄壁細(xì)胞組織低溫對流干燥的一維傳質(zhì)模型,最后模擬研究馬鈴薯組織低溫對流干燥過程。因高溫會(huì)破壞細(xì)胞膜特性,限定干燥溫度低于50 ℃[6]。
植物薄壁細(xì)胞是由細(xì)胞壁、細(xì)胞膜、細(xì)胞質(zhì)和液泡等構(gòu)成的復(fù)雜結(jié)構(gòu),如圖1a所示。新鮮的植物細(xì)胞處于膨壓狀態(tài),細(xì)胞質(zhì)中有各種細(xì)胞器,細(xì)胞間還有胞間連絲,胞間連絲周圍的細(xì)胞壁中有紋孔。顯然,必須對植物細(xì)胞簡化,才能研究其干燥過程。因此本文提出如圖1b所示的適用于低溫對流干燥過程的植物薄壁細(xì)胞模型,假設(shè)如下。
圖1 細(xì)胞結(jié)構(gòu)的簡化
1)假設(shè)細(xì)胞由細(xì)胞壁、細(xì)胞膜和細(xì)胞腔構(gòu)成,細(xì)胞膜內(nèi)所有物質(zhì)為均質(zhì)物質(zhì),忽略其他亞細(xì)胞結(jié)構(gòu);細(xì)胞膜和細(xì)胞腔內(nèi)部水分傳輸方式為跨膜滲透和擴(kuò)散;細(xì)胞膜為理想半透膜,集總了真實(shí)細(xì)胞內(nèi)所有的跨膜滲透效應(yīng);細(xì)胞腔內(nèi)為模型溶液——本文為葡萄糖溶液,其中的水分?jǐn)U散則代表了真實(shí)細(xì)胞內(nèi)部所有的擴(kuò)散效應(yīng)。
干燥過程進(jìn)行迅速,假設(shè)細(xì)胞膜以內(nèi)的水分傳輸為被動(dòng)傳輸,包括細(xì)胞內(nèi)容物中的擴(kuò)散和跨膜傳輸[21]。植物生理學(xué)領(lǐng)域中,水分跨細(xì)胞膜的傳輸系數(shù)稱為跨膜水導(dǎo),很多是通過壓力探針技術(shù)測量的。除了那些具有較小液泡的細(xì)胞,探針的針尖是在中央大液泡中的,測得的水導(dǎo)實(shí)際上是一個(gè)集總參數(shù),已經(jīng)包括了主要的跨膜效應(yīng),如液泡膜和細(xì)胞壁、水通道蛋白[29]、胞間連絲[11, 29]和細(xì)胞間接觸等作用[11]。
水分?jǐn)U散在壓力探針測量試驗(yàn)中通常是可以忽略的。然而,根據(jù)耐干植物生理研究的結(jié)果,隨著含水率的減少,細(xì)胞內(nèi)容物按照其黏度劃分可經(jīng)歷稀溶液態(tài)、糖漿態(tài)、橡膠態(tài)、皮革態(tài)、玻璃態(tài)和多孔玻璃態(tài)[30]。溶液中擴(kuò)散系數(shù)和黏性系數(shù)成反比[31],隨著細(xì)胞水分的減少,細(xì)胞內(nèi)水分的擴(kuò)散不應(yīng)忽略。由于跨膜效應(yīng)已經(jīng)集總于測定的跨膜系數(shù)中,因此將細(xì)胞腔內(nèi)物質(zhì)簡化為水分?jǐn)U散等效的均勻物質(zhì),忽略復(fù)雜的亞細(xì)胞結(jié)構(gòu)。參考其他研究者的結(jié)果,本文采用葡萄糖溶液代替細(xì)胞腔內(nèi)部的物質(zhì)[13]。
2)假設(shè)干燥過程中細(xì)胞膜和細(xì)胞壁保持完整的封閉結(jié)構(gòu),整個(gè)干燥過程中都可以把植物組織看成是由細(xì)胞組成的。
干燥的高水分段,細(xì)胞膜的流動(dòng)性使之能夠適應(yīng)細(xì)胞的收縮。隨著細(xì)胞含水率的降低,細(xì)胞膜將從液晶態(tài)轉(zhuǎn)變?yōu)槟z體態(tài),該現(xiàn)象一般發(fā)生在組織水勢大概為-12 MPa時(shí),即發(fā)生在細(xì)胞內(nèi)容物從橡膠態(tài)到皮革態(tài)的轉(zhuǎn)變過程中[30],此時(shí)細(xì)胞內(nèi)溶物的水分?jǐn)U散效應(yīng)可能大幅超過跨膜效應(yīng),即使細(xì)胞膜失效,仍然可以假設(shè)其封閉結(jié)構(gòu)完整,且半透性不變。有關(guān)干燥對植物細(xì)胞結(jié)構(gòu)影響的研究以及植物細(xì)胞脫水損傷的研究表明絕大多數(shù)細(xì)胞膜在低溫(≤50 ℃)蒸發(fā)脫水干燥過程中保持其封閉結(jié)構(gòu)的完整性[6, 30]。
薄細(xì)胞壁具有變形能力,能適應(yīng)組織的收縮[32]。未經(jīng)預(yù)處理的薄壁組織在溫度不高于50 ℃的干燥過程中,大部分細(xì)胞壁沒有破裂,但隨著含水率的減少或干燥溫度的升高,細(xì)胞壁破裂現(xiàn)象增多[33-36]。然而相互連接的細(xì)胞壁構(gòu)成網(wǎng)絡(luò),少數(shù)細(xì)胞壁破裂對整個(gè)網(wǎng)絡(luò)的連續(xù)性影響不大,且主要出現(xiàn)在干燥后期。
3)假設(shè)干燥過程中,細(xì)胞壁中的水分為純水,細(xì)胞壁自身不收縮。
薄壁細(xì)胞壁中的孔隙上限估計(jì)為10 nm[37],使細(xì)胞壁孔隙開始干燥的環(huán)境最高水勢大約是-28.79 MPa(25 ℃),此時(shí)對應(yīng)很低的物料含水率。冰晶首先從細(xì)胞壁生長的現(xiàn)象以及蒸騰作用機(jī)理表明,細(xì)胞壁中的水分純度較高[38-39],因此可假設(shè)為純水。整個(gè)干燥過程中細(xì)胞壁在厚度以外的其他方向上沒有發(fā)生大的收縮[34]。為簡化問題,假設(shè)細(xì)胞壁厚度也不會(huì)發(fā)生變化。
4)假設(shè)干燥過程中,細(xì)胞不會(huì)發(fā)生質(zhì)壁分離;失去膨壓后,細(xì)胞塌陷收縮,細(xì)胞壁和細(xì)胞膜彎折[33, 40],直至細(xì)胞內(nèi)容物不再變形,如圖2所示。
蒸發(fā)干燥過程中,因毛細(xì)力作用,細(xì)胞壁孔隙中的液態(tài)水會(huì)阻止空氣滲透進(jìn)入細(xì)胞壁和細(xì)胞膜之間,因此當(dāng)細(xì)胞失去膨壓后,不會(huì)發(fā)生質(zhì)壁分離,細(xì)胞會(huì)一直收縮,發(fā)生塌陷[8, 30, 40]。
基于細(xì)胞模型,提出如圖2所示的低溫對流干燥過程的細(xì)胞組織結(jié)構(gòu)模型。
1)組織由模型細(xì)胞聚合而成,細(xì)胞與細(xì)胞相互接觸。
2)相連的細(xì)胞壁構(gòu)成網(wǎng)絡(luò),水分可以在細(xì)胞壁網(wǎng)絡(luò)中傳輸。
3)細(xì)胞聚合結(jié)構(gòu)之間形成連通的充滿濕空氣的細(xì)胞間隙,并且和組織外部的空氣相通[7]。干燥過程中細(xì)胞間隙保持連通。
4)干燥過程中細(xì)胞內(nèi)水分傳輸存在3種可能的途徑:細(xì)胞腔到細(xì)胞腔(圖2a中實(shí)線)、細(xì)胞壁網(wǎng)絡(luò)(圖2a中虛線)和細(xì)胞間隙(圖2a中沒有畫出)[13, 28]。
5)干燥過程中,細(xì)胞間仍然保持接觸,細(xì)胞的收縮塌陷引起組織的收縮,如圖2b所示。
6)假設(shè)細(xì)胞間的作用力只改變細(xì)胞形狀而不改變細(xì)胞體積,細(xì)胞的收縮變形不影響細(xì)胞腔水分的跨膜傳輸。
注:細(xì)胞膜沒有畫出,粗實(shí)線和粗虛線分別表示細(xì)胞壁和細(xì)胞腔到細(xì)胞腔的水分傳輸途徑,表示組織中水分傳遞的主要方向。
Note: Cell membranes are not shown. Heavy line and heavy dash line show the cell wall and the cavity to cavity pathways, respectively.is the total direction of moisture transfer in tissue.
圖2干燥過程中形態(tài)變化的細(xì)胞組織結(jié)構(gòu)模型
Fig. 2 Model of cell tissue structure with configuration change during drying
當(dāng)細(xì)胞膨壓不為零時(shí)(細(xì)胞壁仍然具有彈性),該假設(shè)導(dǎo)致的組織水勢變化預(yù)測誤差小于12%[11]。當(dāng)膨壓消失后,細(xì)胞壁和細(xì)胞膜面積不縮小,若此時(shí)細(xì)胞內(nèi)容物還能流動(dòng),則細(xì)胞更容易改變形狀以適應(yīng)其他細(xì)胞的作用力。
細(xì)胞腔、細(xì)胞壁和細(xì)胞間隙之間的水分交換由水勢之差驅(qū)動(dòng)。對于細(xì)胞密集聚合的植物組織,細(xì)胞相對于組織足夠小,通常可假設(shè)植物生理和干燥過程中組織始終保持局部近似水勢平衡[11-12, 20, 23, 28],即圖3所示的組織中的REV(Representative Element Volume)上有
假設(shè)所有細(xì)胞在平衡狀態(tài)下都具有相同的強(qiáng)度性質(zhì),且組織平衡狀態(tài)下的性質(zhì)適用于處于局部近似平衡的REV。定義REV方向上水分傳輸?shù)谋緲?gòu)方程
式中為組織水分傳輸?shù)馁|(zhì)量通量,kg/(m2?s);為純水的密度,kg/m3;為組織的水導(dǎo)系數(shù),m2/(Pa·s),是組織水分傳輸特性之一;為坐標(biāo),m。
上式定義組織水分傳遞的驅(qū)動(dòng)力是水勢梯度,而非水分濃度的梯度。正確描述水分傳遞機(jī)理,需知道與細(xì)胞腔、細(xì)胞膜、細(xì)胞壁和細(xì)胞間隙等各部分傳輸特性的關(guān)系。
注:ux是由組織收縮引起的。
2.2.1 規(guī)則立方體細(xì)胞串
注:A為細(xì)胞腔到細(xì)胞腔的水分傳輸,B為細(xì)胞壁中的水分傳輸;坐標(biāo)圖為細(xì)胞串軸線上從細(xì)胞腔i到細(xì)胞腔i+1的水勢降,ψ為水勢;1、2、3分別表示x軸線上細(xì)胞i細(xì)胞腔中心、細(xì)胞腔緊鄰細(xì)胞膜表面的點(diǎn)、細(xì)胞壁緊鄰細(xì)胞膜表面的點(diǎn),4、5、6 分別是細(xì)胞i+1中的逆序?qū)?yīng)點(diǎn)。
假設(shè)軸線方向上細(xì)胞腔水分跨膜之后全部進(jìn)入下一個(gè)細(xì)胞腔,組織內(nèi)部同時(shí)存在著細(xì)胞腔到細(xì)胞腔和細(xì)胞壁網(wǎng)絡(luò)中的水分傳輸,如圖4中的A、B所示。組織處于局部近似平衡,意味著REV中細(xì)胞各部分水勢波動(dòng)為小量,可近似為線性,如圖4所示,并且相鄰細(xì)胞之間參數(shù)變化可忽略。
2.2.2 水分跨膜傳輸
水分跨膜傳輸?shù)馁|(zhì)量通量[39]
2.2.3 細(xì)胞腔內(nèi)的水分傳輸
干燥過程中干物質(zhì)是保留物質(zhì),選擇干物質(zhì)的速度為參考速度,則細(xì)胞腔內(nèi)某一點(diǎn)水分?jǐn)U散的質(zhì)量通量
由上式得
2.2.4 細(xì)胞壁中的水分傳輸
由Buckingham-Darcy定律描述細(xì)胞壁中某一點(diǎn)水分流動(dòng)的質(zhì)量通量
2.2.5 細(xì)胞間隙中的水分傳輸
選擇干空氣的速度為參考速度,細(xì)胞間隙中某一點(diǎn)蒸氣擴(kuò)散的質(zhì)量通量
由上式得
2.3.1 細(xì)胞串軸線方向上的各相水分傳輸
式中-為細(xì)胞腔到細(xì)胞腔的水分傳輸通量,kg/(m2·s);-為細(xì)胞腔到細(xì)胞壁的水分傳輸通量,kg/(m2·s);l為細(xì)胞邊長,m;為時(shí)間,s。
對平行于軸線方向的細(xì)胞壁部分有
式中,為細(xì)胞壁干物質(zhì)的質(zhì)量濃度,kg/m3;為細(xì)胞壁的干基含水率,kg/kg;I,為細(xì)胞壁中方向上的水分傳輸通量,kg/(m2·s);為細(xì)胞腔邊長,m;為細(xì)胞壁厚度,m。
定義從細(xì)胞腔到細(xì)胞腔+1的水分質(zhì)量通量
類比于串聯(lián)電阻的電阻計(jì)算方法,有
在垂直于軸線的方向上,定義
2.3.2 組織的水導(dǎo)系數(shù)
細(xì)胞串上細(xì)胞腔和細(xì)胞壁處于局部水勢平衡,由質(zhì)量守恒,可得細(xì)胞串上的水分傳輸方程
實(shí)際上,圖3所示的REV中還有并行的細(xì)胞間隙中的水分傳輸。真實(shí)組織中,細(xì)胞間隙和細(xì)胞腔到細(xì)胞腔的路徑并非直線,細(xì)胞也并非立方體,細(xì)胞間水分傳輸還有分叉現(xiàn)象,如圖2所示,因此引入迂曲度系數(shù)來反映這些特點(diǎn)對水分傳輸?shù)挠绊慬11, 41],則組織水導(dǎo)由下式表示
2.3.3 組織的一維收縮
干燥過程中,細(xì)胞和組織都發(fā)生收縮,對水分傳輸產(chǎn)生影響。僅考慮REV在方向上的收縮,如圖3所示。REV的收縮由2部分引起:細(xì)胞大小變化和細(xì)胞變形造成的排列方式(水分傳輸路徑)變化。
立方體細(xì)胞邊長收縮如下
某途徑在方向的迂曲度定義為[41]
2.4.1 歐拉坐標(biāo)描述的傳遞模型
對于圖3的REV有關(guān)于干物質(zhì)的連續(xù)性方程
水分傳輸方程
2.4.2 參考坐標(biāo)描述的傳遞模型
由于計(jì)算和試驗(yàn)的原因,多數(shù)植物細(xì)胞物料干燥的擴(kuò)散模型不考慮收縮,這些模型實(shí)際上是由參考坐標(biāo)描述的。
利用方程(18),可得方程(21)和(22)的參考坐標(biāo)形式
這些影響是干燥過程不同于植物水分生理過程的地方。常規(guī)擴(kuò)散模型里等效水分?jǐn)U散系數(shù)實(shí)際上包括了細(xì)胞微觀參數(shù)及組織收縮在內(nèi)的多種效應(yīng)。
為驗(yàn)證模型的準(zhǔn)確性,求解上述參考坐標(biāo)描述的傳遞模型,預(yù)測40 ℃下馬鈴薯組織的熱風(fēng)干燥干燥過程,并試驗(yàn)驗(yàn)證。
模擬對象為圖5所示的平板狀物料。考慮到對稱性,只畫出了物料截面的一半。該物料左右面有熱風(fēng)吹過。假設(shè)干燥開始時(shí),物料在宏觀上對水分傳輸是各相同性的,水分傳輸和物料收縮只發(fā)生在方向上,不考慮物料溫度的變化。
參考坐標(biāo)形式的邊界條件如下
熱風(fēng)為層流,則有[42]:
注:d(t)是隨時(shí)間變化的界面位置,坐標(biāo)原點(diǎn)0在對稱面上。
Note: d(t) moving position of interface , zero point 0 on symmetric plane.
圖5 被干燥平板狀物料的橫截面
Fig.5 Cross-section of tablet material for drying
模型所需參數(shù)取值見表1和表2。因模型所需微觀參數(shù)多是恒定溫度下測得的,取干燥過程中平均含干基水率比為0.5 kg/kg時(shí)的物料溫度為模型參數(shù)取值溫度,本文為35 ℃。
3.2 干燥試驗(yàn)
馬鈴薯存放于冰箱冷藏室,溫度為4 ℃,試驗(yàn)前拿出置于室溫下,切成平均大小為厚19.2 mm、長45.4 mm、寬32.2 mm的板狀。3塊物料初始干基含水率分別為:6.53 kg/kg、5.39 kg/kg和6.21 kg/kg。物料4條窄邊用硅脂密封(耐高溫),以限定水分在x方向上傳輸。
干燥試驗(yàn)條件和樣品參數(shù)如表3。風(fēng)溫控制誤差在±0.5℃以內(nèi)。溫濕度儀測得試驗(yàn)過程中熱風(fēng)相對濕度在20%左右。3塊物料同時(shí)并排放入洞道干燥儀干燥室,物料傳質(zhì)界面間距約為5 cm。試驗(yàn)過程中,每隔一段時(shí)間,取出樣品,用天平快速稱質(zhì)量,然后放回繼續(xù)干燥。取出物料前,用紅外測溫儀測定其表面溫度。
表1 模型所需的馬鈴薯組織的物性參數(shù)方程及數(shù)值(35 ℃) Table 1 Material property formulas and values of potato tissue required by model (35 ℃) 參數(shù)Parameter 方程或數(shù)值Formula or value 細(xì)胞干基含水率Dry basis moisture content of cell /(kg·kg-1) 表觀密度[43]Apparent density /(kg·m-3) 顆粒密度[43]Particle density /(kg·m-3) 物料干物質(zhì)的質(zhì)量濃度Mass concentration of material dry matter /(kg·m-3) 立方體細(xì)胞的初始邊長[44]Initial edge length of cubic cell /μm250 細(xì)胞壁厚度[44]Thickness of cell wall /μm1 細(xì)胞間隙的孔隙率Porosity of intercellular space 組織中細(xì)胞腔的體積分?jǐn)?shù)Volume fraction of cell cavity in tissue 細(xì)胞壁的體積分?jǐn)?shù)Volume fraction of cell wall in tissue 細(xì)胞腔與細(xì)胞含水率之比[44]Moisture content ratio of cell cavity to cell 1.02 細(xì)胞腔與細(xì)胞干物質(zhì)質(zhì)量之比[44]Dry matter ratio of cell cavity to cell 0.97 細(xì)胞相(顆粒相)的干物質(zhì)質(zhì)量濃度Dry matter concentration of cell (particle) phase /(kg·m-3) 細(xì)胞腔干物質(zhì)質(zhì)量濃度Dry matter concentration of cell cavity /(kg·m-3) 組織的水勢[44]Water potential of tissue /(J·m-3) 細(xì)胞腔的比水容Specific water capacity of cell cavity / (m3·J-1) 水分在葡萄糖溶液中的擴(kuò)散系數(shù)[44]Water diffusivity of glucose solution / (m2·s-1) 細(xì)胞壁的水導(dǎo)系數(shù)[44]Water conductivity of cell wall /(m2·Pa-1·s-1)6.04×10-17 細(xì)胞膜的水導(dǎo)系數(shù)[44]Water conductivity of cell membrane / (m·Pa-1·s-1)5.402×10-13
注:為水的飽和蒸氣壓,Pa;為細(xì)胞的比水容,m3·J-1;為水的摩爾質(zhì)量,kg·mol-1;為葡萄糖的摩爾質(zhì)量,kg·mol-1。
Note: saturated water pressure, Pa; specific water capacity of cell, m3·J-1; molar mass of water, kg·mol-1; molar mass of glucose, kg·mol-1
表2 模型所需的通用參數(shù)方程和數(shù)值(35 ℃) Table 2 General parameter formulas and values required by model (35 ℃) 參數(shù)Parameter方程或值Formula or value 水的密度Water density /(kg·m-3)993.94 理想氣體常數(shù)Ideal gas constant /(J·K?1·mol?1)8.315 水的摩爾質(zhì)量molar mass of water /(kg·mol-1)0.018 葡萄糖的摩爾質(zhì)量molar mass of glucose /(kg·mol-1)0.18 水蒸氣在空氣中擴(kuò)散系數(shù)[45] Vapor diffusivity in air /(m2·s-1) 空氣的動(dòng)力黏度Dynamic viscosity of air /(m2·s-1)1.719 4 平直液面上水的飽和蒸氣壓[46]Saturated water pressure above liquid plane /Pa
注:T 為絕對溫度,K。
Note: T is Kelvin temperature.
表3 干燥試驗(yàn)條件和樣品參數(shù) Table 3 Conditions for drying experiment and parameters of samples 干燥條件Drying conditon值Value 熱風(fēng)溫度Air temperature /°C40 熱風(fēng)相對濕度Relativity humidity of air RH/%20 熱風(fēng)風(fēng)速Velocity of air /(m·s-1)0.4 熱風(fēng)密度Density of air /(kg·m-3)1.114 初始樣品溫度Initial sample temperaute T0/°C≈ 30 初始樣品平均含水率Initial average moisture content of samples /(kg·kg-1)6.04 二分之一樣品厚度Half thickness of sample /mm9.6 樣品沿?zé)犸L(fēng)方向上的特征長度Critical sample length on direction of air flow /mm45.4
4 結(jié)果與分析
4.1 物料表面溫度
測得的物料表面溫度變化如圖6所示。溫度波動(dòng)可能與打開干燥腔門測溫、測溫計(jì)精度(±0.5 ℃)和溫度控制誤差(±0.5 ℃)等因素有關(guān)。干燥初始階段的溫度下降是物料表面水分蒸發(fā)所致。試驗(yàn)結(jié)果表明物料溫度變化在干燥模型中不應(yīng)該忽略,但本文所需微觀參數(shù)多是恒定溫度下測得的,所以暫不考慮溫度變化的影響。平均干基含水率比為0.5時(shí),溫度為35 ℃。
注:3個(gè)樣品的試驗(yàn)值標(biāo)記為1、2、3,下同。 Note: Experimental values of three samples marked as 1, 2 and 3, the same below. 圖6 物料表面溫度變化 Fig.6 Surface temperature change of material
4.2 干燥曲線和干燥速率
試驗(yàn)和模擬干燥曲線對比如圖7,通過引入縱坐標(biāo),消除了物料初始含水率的不均勻性。模型可預(yù)測馬鈴薯干燥過程的大部區(qū)間,平均干基含水率不低于1.0 kg/kg時(shí),相對誤差不超過20%。本模型的預(yù)測水分比與試驗(yàn)水分比的分離值為0.18,低于Crapiste等的模型(約為0.5)[13]。
圖7 干燥曲線 Fig.7 Drying curve
圖8是干燥速率隨含水率比的變化。可以看出初始段的預(yù)測干燥速率比試驗(yàn)值稍高,這可能是模型參數(shù)取值溫度高于此時(shí)物料溫度(約25 ℃)的緣故。從整體看,預(yù)測干燥速率下降要比試驗(yàn)值慢,偏差在含水率比低于0.25時(shí)變大(平均干基含水率約為1.5 kg/kg,時(shí)間約為18 h)。可見隨著干燥進(jìn)行,模型逐漸低估了實(shí)際物料中的水分傳輸阻力,并且越到后期偏離越大。
圖8 干燥速率變化 Fig.8 Drying rate change
出現(xiàn)上述結(jié)果的原因是模型中沒有考慮各水分傳輸途徑隨著細(xì)胞含水率降低而終止的情況。
1)模型默認(rèn)干燥過程中始終存在細(xì)胞腔到細(xì)胞腔的傳輸,高估了其存在的時(shí)間。實(shí)際干燥過程中,細(xì)胞腔水分傳輸阻力逐漸增大,如圖9所示,隨著細(xì)胞含干基水率從6.04 kg/kg降低至1.10 kg/kg,細(xì)胞膜水分傳輸阻力從細(xì)胞腔水分傳輸阻力的12.35倍變化至1.02倍。由于細(xì)胞壁阻力相對較小,當(dāng)細(xì)胞腔水分傳輸阻力增大到一定程度時(shí),細(xì)胞腔水分穿過細(xì)胞膜后,將不能再進(jìn)入到下一個(gè)細(xì)胞腔中,而在細(xì)胞壁網(wǎng)絡(luò)中傳輸,細(xì)胞腔到細(xì)胞腔的傳輸停止。
2)模型假設(shè)干燥過程中細(xì)胞壁始終飽和,高估了細(xì)胞壁途徑的貢獻(xiàn)。細(xì)胞壁作為多孔介質(zhì),也具有不同大小的孔隙,當(dāng)細(xì)胞含水率低于一定值時(shí),細(xì)胞壁最大孔隙開始變?yōu)椴伙柡?,液態(tài)水分只能在更小的孔隙中流動(dòng),細(xì)胞壁中水分遷移阻力增大;當(dāng)細(xì)胞壁孔隙中液態(tài)水分(不包括細(xì)胞壁孔隙表面吸附的不能流動(dòng)的單層水分子[47])不再連續(xù)時(shí),細(xì)胞壁中的液態(tài)水分流動(dòng)終止。此時(shí)細(xì)胞壁水分蒸發(fā)至相鄰的細(xì)胞間隙中擴(kuò)散傳輸。King假設(shè)只有細(xì)胞間隙蒸氣擴(kuò)散,解釋了植物物料干基含水率從1 kg/kg到0.1 kg/kg的干燥和吸附速率[20]。
注:細(xì)胞膜與細(xì)胞腔阻力比。 Note: Resistence ratio of cell membrane to cell cavity . 圖9 細(xì)胞膜與細(xì)胞腔傳輸阻力比隨細(xì)胞含水率的變化 Fig.9 Changes of transport resistence ratio of cell membrane to cell cavity with cell moisture
圖10為水導(dǎo)系數(shù)K各組成在干燥過程中的變化,橫縱坐標(biāo)均為對數(shù)坐標(biāo)??梢钥吹剑?xì)胞干基含水率為1.5 kg/kg時(shí),幾乎全部是細(xì)胞腔到細(xì)胞腔水分傳輸,此時(shí)模型預(yù)測偏差也開始變大。當(dāng)細(xì)胞干基含水率低于0.25時(shí),幾乎全部為細(xì)胞壁水分傳輸,這導(dǎo)致模擬干燥過程的快速結(jié)束。模擬過程中細(xì)胞間隙的貢獻(xiàn)都可以忽略,這顯然不同于蘋果組織的干燥過程[13],蘋果組織的細(xì)胞間隙與細(xì)胞體積相當(dāng)[44]。
圖10 組織水導(dǎo)系數(shù)組成隨細(xì)胞含水率的變化 Fig.10 Changes of composites of tissue conductivity with cell moisture content
綜合以上結(jié)果,可以認(rèn)為馬鈴薯實(shí)際干燥過程中,水分傳輸?shù)闹饕緩绞紫仁羌?xì)胞腔到細(xì)胞腔,之后是細(xì)胞壁,最后是細(xì)胞間隙,且細(xì)胞腔到細(xì)胞腔途徑的貢獻(xiàn)最大,細(xì)胞壁次之,細(xì)胞間隙最小。
5 結(jié) 論
本文提出了適用于低溫對流干燥過程的植物薄壁細(xì)胞組織模型,干燥最高溫度不使細(xì)胞膜破壞。基于組合參數(shù)模型建模方法構(gòu)建了考慮細(xì)胞和收縮的一維等溫水分傳遞模型。平均干基含水率不低于1.0 kg/kg時(shí),模型可準(zhǔn)確預(yù)測馬鈴薯組織干燥過程;干燥后期,模型低估了實(shí)際物料中的水分傳輸阻力,并且越到后期偏離越大。
干燥模型分析表明,馬鈴薯薄壁物料干燥過程中,通過細(xì)胞腔到細(xì)胞腔途徑的傳輸對物料失水貢獻(xiàn)最大,細(xì)胞壁次之,細(xì)胞間隙最小。干燥過程中水分傳輸?shù)闹饕緩阶钕仁羌?xì)胞腔到細(xì)胞腔,之后是細(xì)胞壁。但是本文模型沒有考慮干燥后期細(xì)胞腔到細(xì)胞腔和細(xì)胞壁網(wǎng)絡(luò)水分傳輸隨水分減少而終止的情況,為準(zhǔn)確地描述干燥后期過程,未來應(yīng)對他們的終止過程和條件進(jìn)行深入研究。
植物薄壁細(xì)胞組織模型的特點(diǎn)在于考慮了細(xì)胞失去膨壓后的細(xì)胞和組織收縮,收縮規(guī)律與模型參數(shù)密切相關(guān),但本文并沒有對收縮規(guī)律進(jìn)行深入研究。干燥過程中,隨著水分減少和組織收縮,細(xì)胞膜和細(xì)胞壁受損也不可避免。在今后的工作中應(yīng)對這些問題予以考慮,以便得到更符合實(shí)際的結(jié)果。
[參 考 文 獻(xiàn)]
[1] 常劍,楊德勇,路倩倩,等. 熱風(fēng)干燥對果蔬薄壁組織細(xì)胞結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(14):262-268. Chang Jian, Yang Deyong, Lu Qianqian, et al. Effect of hot-air drying on cell structure of fruit and vegetable parenchyma[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 262-268. (in Chinese with English abstract)
[2] 朱文學(xué),尤泰斐,白喜婷,等. 基于低場核磁的馬鈴薯切片干燥過程水分遷移規(guī)律研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):364-370. Zhu Wenxue, You Taifei, Bai Xiting, et al. Analysis of moisture transfer of potato slices during drying using low-field NMR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 364-370. (in Chinese with English abstract)
[3] 張衛(wèi)鵬,高振江,肖紅偉,等. 基于Weibull函數(shù)不同干燥方式下的茯苓干燥特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015, 31(5):317-324.Zhang Weipeng, Gao Zhenjiang, Xiao Hongwei, et al. Drying characteristics of poria cocos with different drying methods based on Weibull distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 317-324. (in Chinese with English abstract)
[4] 張緒坤,祝樹森,黃儉花,等. 用低場核磁分析胡蘿卜切片干燥過程的內(nèi)部水分變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):282-287. Zhang Xukun, Zhu Shusen, Huang Jianhua, et al. Analysis on internal moisture changes of carrot slices during drying process using low-field NMR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 282-287. (in Chinese with English abstract)
[5] 宋朝鵬,魏碩,賀帆,等. 利用低場核磁共振分析烘烤過程煙葉水分遷移干燥特性[J]. 中國煙草學(xué)報(bào),2017, 23(4):50-55. Song Zhaopeng, Wei Shuo, He Fan, et al. Analysis of moisture migration and drying characteristics of tobacco during fluecuring by low field NMR[J]. Acta Tabacaria Sinica, 2017, 23(4): 50-55. (in Chinese with English abstract)
[6] Halder A, Datta A K, Spanswick R M. Water transport in cellular tissues during thermal processing[J]. AIChE Journal, 2011, 57(9): 2574-2588.
[7] Verboven P, Kerckhofs G, Mebatsion H K, et al. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography[J]. Plant Physiology, 2008, 147(2): 518-527.
[8] Taiz L, Zeiger E. Plant Physiology[M]. Sunderland: Sinauer Associates Inc, 2010.
[9] Weerts A H, Lian G, Martin D. Modeling rehydration of porous biomaterials: Anisotropy effects[J]. Journal of Food Science, 2003, 68(3): 937-942.
[10] Ratti C, Crapiste G H, Rotstein E. A new water sorption equilibrium expression for solid foods based on thermodynamic considerations[J]. Journal of Food Science, 1989, 54(3): 738-742, 747.
[11] Rockwell F E, Michele Holbrook N, Stroock A D. Leaf hydraulics I: Scaling transport properties from single cells to tissues[J]. Journal of Theoretical Biology, 2014, 340: 251-266.
[12] Crapiste G H, Whitaker S, Rotstein E. Drying of cellular material—I. A mass transfer theory[J]. Chemical Engineering Science, 1988, 43(11): 2919-2928.
[13] Crapiste G H, Whitaker S, Rotstein E. Drying of cellular material—II. Experimental and numerical results[J]. Chemical Engineering Science, 1988, 43(11): 2929-2936.
[14] Aregawi W A, Abera M K, Fanta S W, et al. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model[J]. Journal of Physics-Condensed Matter, 2014, 26(46): 464111.
[15] Fanta S W, Abera M K, Ho Q T, et al. Microscale modeling of water transport in fruit tissue[J]. Journal of Food Engineering, 2013, 118(2): 229-237.
[16] Rahman M M, Kumar C, Joardder M U H, et al. A micro-level transport model for plant-based food materials during drying[J]. Chemical Engineering Science, 2018, 187: 1-15.
[17] Peishi C, Pei D C T. A mathematical model of drying processes[J]. International Journal of Heat and Mass Transfer, 1989, 32(2): 297-310.
[18] 劉玲霞,劉相東,常劍,等. 果蔬干燥過程的水分跨膜傳輸模型構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):256-264.Liu Lingxia, Liu Xiangdong, Chang Jian, et al. Transmission model of moisture transmembrane during fruit and vegetable drying process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 256-264. (in Chinese with English abstract)
[19] Huang X, Qi T, Wang Z, et al. A moisture transmembrane transfer model for pore network simulation of plant materials drying[J]. Drying Technology, 2012, 30(15): 1742-1749.
[20] King C J. Rates of moisture sorption and desorption in porous, dried foodstuffs[J]. Food Technology, 1968, 22: 509-515.
[21] Rotstein E, Cornish A R H. Influence of cellular membrane permeability on drying behavior[J]. Journal of Food Science, 1978, 43(3): 926-934.
[22] Roman G N, Rotstein E, Urbicain M J. Kinetics of water vapor desorption from apples[J]. Journal of Food Science, 1979, 44(1): 193-197.
[23] Roman G N, Urbicain M J, Rotstein E. Kinetics of the approach to sorptional equilibrium by a foodstuff[J]. AIChE Journal, 1983, 29(5): 800-805.
[24] Xiao Z, Yang D, Yuan Y, et al. Fractal pore network simulation on the drying of porous media[J]. Drying Technology, 2008, 26(6): 651-665.
[25] 王會(huì)林, 盧濤, 姜培學(xué). 生物多孔介質(zhì)熱風(fēng)干燥數(shù)學(xué)模型及數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(20): 325-333. Wang Huilin, Lu Tao, Jiang Peixue. Mathematical model and numerical simulation of biological porous medium during hot air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 325-333. (in Chinese with English abstract)
[26] Xiao B, Chang J, Huang X, et al. A moisture transfer model for isothermal drying of plant cellular materials based on the pore network approach[J]. Drying Technology, 2014, 32(9): 1071-1081.
[27] Philip J R. Propagation of turgor and other properties through cell aggregations[J]. Plant Physiology, 1958, 33(4): 271-274.
[28] Molz F J, Ikenberry E. Water transport through plant cells and cell walls: Theoretical development[J]. Soil Science Society of America Journal, 1974, 38(5): 699-704.
[29] Li G, Santoni V, Maurel C. Plant aquaporins: Roles in plant physiology[J]. Biochim Biophys Acta, 2014, 1840(5): 1574-1582.
[30] Black M, Pritchard H W. Desiccation and Survival in Plants. Drying without Dying[M]. Wallingford, UK: CABI Publishing, 2002.
[31] Elmoazzen H Y, Elliott J A, Mcgann L E. The effect of temperature on membrane hydraulic conductivity[J]. Cryobiology, 2002, 45(1): 68-79.
[32] Lewicki P P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review[J]. International Journal of Food Properties, 1998, 1(1): 1-22.
[33] Wang N, Brennan J G. Changes in structure, density and porosity of potato during dehydration[J]. Journal of Food Engineering, 1995, 24(1): 61-76.
[34] 路倩倩. 對流干燥過程對果蔬微觀結(jié)構(gòu)的影響[D]. 北京:中國農(nóng)業(yè)大學(xué),2009. Lu Qianqian. The Influence of Covection Drying Process on the Microstructure of Fruits and Vegetables[D]. Beijing: China Agricultural University, 2009. (in Chinese with English abstract)
[35] Lewicki P P, Pawlak G. Effect of mode of drying on microstructure of potato[J]. Drying Technology, 2005, 23(4): 847-869.
[36] Lewicki P P, Pawlak G. Effect of drying on microstructure of plant tissue[J]. Drying Technology, 2003, 21(4): 657-683.
[37] Read S M, Bacic A. Cell wall porosity and its determination [C]//Linskens H F, Jackson J F. Plant Cell Wall Analysis. Berlin Heidelberg: Springer, 1996: 63-80.
[38] 謝艷琦,諸凱,王雅博,等. 冷凍過程中洋蔥細(xì)胞胞內(nèi)冰晶的生長行為研究[J]. 工程熱物理學(xué)報(bào), 2018, 39(7): 1563-1567. Xie Yanqi, Zhu Kai, Wang Yabo, et al. Study on intracellular ice crystal growth behavior of onion cell at different precooling rates[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1563-1567. (in Chinese with English abstract)
[39] Nobel P S. Physicochemical and Environmental Plant Physiology[M]. Oxford, UK: Elsevier Academic Press, 2009.
[40] Vander Willigen C, Pammenter N W, Mundree S G, et al. Mechanical stabilization of desiccated vegetative tissues of the resurrection grass eragrostis nindensis: Does a tip 3;1 and/or compartmentalization of subcellular components and metabolites play a role?[J]. Journal of Experimental Botany, 2004, 55(397): 651-661.
[41] Guo P. Dependency of tortuosity and permeability of porous media on directional distribution of pore voids[J]. Transport in Porous Media, 2012, 95(2): 285-303.
[42] Bird R B, Lightfoot E N, Stewart W E. Transport Phenomena[M]. New York: John Wiley & Sons, Inc., 2002.
[43] Lozano J E, Rotstein E, Urbicain M J. Shrinkage, porosity and bulk-density of foodstuffs at changing moisture contents[J]. Journal of Food Science, 1983, 48(5): 1497-1503, 1553.
[44] 肖波. 基于細(xì)胞結(jié)構(gòu)的植物物料干燥過程模擬及實(shí)驗(yàn)研究[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2016. Xiao Bo. Simulation and Experiment Study on Plant Materials Drying Based on the Cellular Structure[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)
[45] Cussler E L. Diffusion: Mass Mransfer in Fluid System[M]. Cambridge,UK: Cambridge University Press, 2009.
[46] Murray F W. On the computation of saturation vapor pressure[J]. Journal of Applied Meteorology, 1967, 6(1): 203-204.
[47] Xu S, Simmons G C, Mahadevan T S, et al. Transport of water in small pores[J]. Langmuir, 2009, 25(9): 5084-5090.
One-dimensional isothermal drying model for parenchyma cell tissue of potato tuber
Xiao Bo1,3, Yun Hongxiang2, Yang Deyong3, Liu Qinghua1, Liu Xiangdong3※
(1. Guangdong Institute of Modern Agricultural Equipment, Guangzhou 510630, China; 2. Sanjian Branch, Jinan Foreign Language School, Jinan 250108, China; 3. College of Engineering, China Agricultural University, Beijing 100083, China)
Abstract: Drying is a widely used technique in processing plant materials, such as fruits and vegetables. The material structure significantly change before and after drying, an accurate description of this structural change, however, has not yet been seen. From the perspective of whole drying process, the relationship between cell water potential and its water content is no longer an approximate linear relationship; and the water diffusion resistance inside cells is no longer negligible compared with the cell membrane resistance. The known mass transfer models for evaporative water loss, including drying models, with considering the cellular structure, are based on an accurate description of the geometric structure of fresh tissue with positive cell turgor pressure, and are not fully applicable to entire drying process. In order to describe the moisture transport mechanism of entire drying process, it is necessary to propose a cell tissue model suitable for the structure change from the state of positive turgor pressure to the state of turgor pressure lost during drying, and to consider the characteristics of moisture transport at cell scale. Based on tissue physiological structure, micro-parameter measurement technology and cell structure change, a parenchyma cell tissue model for isothermal convection drying under low temperature is proposed. The drying temperature is lower than 50 °C, because higher temperature will damage cell membranes. The tissue is made up of cells that are composed of cell walls, cell membranes, and model solutions in the cell cavities. The water in the cell walls is pure water, and the cell walls only deform during drying and do not shrink. Smooth the subcellular structures in the cell cavities. A cell membrane is an ideal semi-permeable membrane, which lumps all the transmembrane effects in the real cell. The diffusion of water in a model solution represents all the diffusion effects inside the real cell. During drying process, the cell membranes always cling to the cell walls, and after turgor lost, the cells collapse and shrinkage. Based on the method of building composite parameter transport model, a one-dimensional mass transfer model was constructed, considering cells and shrinkage. The transfer coefficient is directly derived from cell transport properties by replacing plant tissue with regularly arranged cells. The cell-scale water transport is identified as the cell cavity to cell cavity, the cell wall network and the intercellular air space transports under the assumption of local water potential equilibrium. The diffusion effect in cell cavity and the nonlinear relationship between water potential and cell moisture content is included in the transfer coefficient. The composite parameter model does not depend on a precise description of the cellular structure of tissue, but only its representative parameters, it is expected to be useful in describing the drying process of plant cell tissue. Simulation and experiment results show that the model can predict the drying process of potato tuber tissue accurately when the average moisture content is not less than 1.0 (d.b.). Model analysis reveals that the priority of water transport pathways in the drying process of potato tuber tissue is cell cavity to cell cavity > cell wall network > intercellular air space. However, this model cannot explain the vapor diffusion effect in the intercellular air space in the end period of drying. To solve this problem, the stop of transports from cell cavity to cell cavity and in cell wall network should be studied in the future research. To describe the drying process better, the influences of anisotropic shrinkage on the porosity and tortuosity tensor in drying also should be studied in the future.
Keywords: drying; models; moisture transfer; plant parenchyma cell; collapse and shrinkage; potato
收稿日期:2019-05-01
修訂日期:2019-07-24
基金項(xiàng)目:廣東省2019年省級農(nóng)業(yè)科技創(chuàng)新及推廣項(xiàng)目(2019KJ101);2019年自治區(qū)區(qū)域協(xié)同創(chuàng)新專項(xiàng)—科技援疆項(xiàng)目(2019E0270)
作者簡介:肖 波,工程師,博士,主要從事干燥技術(shù)及理論研究。Email:bo.xiao@188.com
※通信作者:劉相東,教授,博士,主要從事干燥技術(shù)及理論研究。Email:xdliu@cau.edu.cn
doi:10.11975/j.issn.1002-6819.2019.16.034
中圖分類號:TS255.1
文獻(xiàn)標(biāo)志碼:A
文章編號:1002-6819(2019)-16-0309-11
肖 波,贠弘祥,楊德勇,劉清化,劉相東.馬鈴薯薄壁細(xì)胞組織一維等溫干燥模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):309-319. doi:10.11975/j.issn.1002-6819.2019.16.034 http://www.tcsae.org
Xiao Bo, Yun Hongxiang, Yang Deyong, Liu Qinghua, Liu Xiangdong. One-dimensional isothermal drying model for parenchyma cell tissue of potatotuber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 309-319. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.16.034 http://www.tcsae.org