國(guó)巍 曾晨 潘毅 賴煒煌 胡思遠(yuǎn)
摘 要:高層建筑在遠(yuǎn)場(chǎng)強(qiáng)地震下可能發(fā)生嚴(yán)重震害,通??稍诮ㄖ性O(shè)置阻尼器實(shí)現(xiàn)消能減震,降低建筑物主體結(jié)構(gòu)地震響應(yīng)以減輕震致破壞?,F(xiàn)行建筑抗震設(shè)計(jì)規(guī)范已經(jīng)給出了建筑中阻尼器的通用設(shè)計(jì)方法,然而,建筑–阻尼器系統(tǒng)在強(qiáng)地震下的實(shí)際響應(yīng)是否與設(shè)計(jì)結(jié)果有所偏差、在同一設(shè)防目標(biāo)下不同類型阻尼器的性能是否存在差異尚不清楚。首先基于現(xiàn)行建筑抗震設(shè)計(jì)規(guī)范設(shè)計(jì)了20層鋼框架結(jié)構(gòu)以作為阻尼器性能評(píng)估的Benchmark模型,并以同一減震目標(biāo)設(shè)計(jì)了3類典型阻尼器:摩擦阻尼器、粘滯阻尼器和防屈曲支撐,基于所擬合的阻尼器試驗(yàn)曲線,對(duì)阻尼器進(jìn)行參數(shù)設(shè)計(jì),給出了典型阻尼器的數(shù)值模型?;趫?chǎng)地類型選取了10條地震動(dòng)進(jìn)行增量動(dòng)力分析,對(duì)比評(píng)估了3類典型阻尼器對(duì)結(jié)構(gòu)抗倒塌性能的控制效果。采用基于位移的結(jié)構(gòu)性能水準(zhǔn)評(píng)價(jià)指標(biāo),研究了3類典型阻尼器的減震控制效果,結(jié)果表明,對(duì)于采用基于中國(guó)規(guī)范設(shè)計(jì)的高層建筑–阻尼器系統(tǒng),速度型的粘滯阻尼器控制效果最優(yōu),位移型的摩擦阻尼器和防屈曲支撐次之,且性能相近。
關(guān)鍵詞:框架結(jié)構(gòu);阻尼器;遠(yuǎn)場(chǎng)地震動(dòng);增量動(dòng)力分析;地震易損性
中圖分類號(hào):TU973? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: High-rise building may experience severe damage under far field strong earthquake, dampers have been widely applied in seismic control to reduce the response of structure. Current seismic design code has given a general damper design method, but whether the actual seismic response of the building deviates from the design result, and under the same seismic precaution, whether there exists difference in the performance of different dampers are still unknown. First, a 20-story steel frame structure based on current seismic design code is established as the Benchmark model and parameters of three typical dampers, including friction damper, vicious damper and buckling-restrained brace are designed under the same control target. A numerical model of three typical damper is given after the fitting of damper experiment curve. Based on the site type, ten ground motions have been selected for incremental dynamic analysis, and three typical dampers were compared to evaluate the control effect of the structural collapse resistance. In the meantime, displacement-based structural seismic performance level is taken as evaluation indicator to compare the control effect of three typical dampers, respectively. For the high-rise building-damper system designed by Chinese code, It shows the viscous damper performs best, followed by friction damper and buckling-restrained brace.
Key words: steel frame structure; damper; far field earthquake; IDA analysis; seismic fragility
大部分震級(jí)較小的遠(yuǎn)場(chǎng)地震動(dòng)對(duì)于結(jié)構(gòu)帶來的工程損害并不嚴(yán)重,但在震級(jí)很大時(shí),遠(yuǎn)場(chǎng)地震動(dòng)中的短周期成分將會(huì)迅速衰減,長(zhǎng)周期成分被場(chǎng)地軟土層放大,使得地震動(dòng)的周期更加接近地表上高層建筑的自振周期,結(jié)構(gòu)產(chǎn)生較大的動(dòng)力響應(yīng)。通??稍诮ㄖY(jié)構(gòu)中設(shè)置阻尼器進(jìn)行消能減震,應(yīng)用在結(jié)構(gòu)中的典型阻尼器包括摩擦阻尼器、粘滯阻尼器和防屈曲支撐。目前,中國(guó)《建筑抗震設(shè)計(jì)規(guī)范》(GB 50011—2010)對(duì)于消能減震設(shè)計(jì)已有相關(guān)規(guī)定,速度相關(guān)型阻尼器以及位移相關(guān)型阻尼器是其中的重點(diǎn)研究技術(shù)。
摩擦阻尼器具有耗能能力強(qiáng)、摩擦機(jī)構(gòu)簡(jiǎn)單、取材容易、造價(jià)低廉、荷載及頻譜特征對(duì)其性能影響較小的特點(diǎn)[1]。粘滯阻尼器利用平板或活塞在具有高度粘性的液體中運(yùn)動(dòng)耗能的原理實(shí)現(xiàn)消能減震[2-3]。防屈曲支撐具有穩(wěn)定的滯回性能和耗能能力,設(shè)置在建筑主體結(jié)構(gòu)中以形成減震體系[4-6]。動(dòng)力分析方法(Incremental Dynamic Analysis, IDA)是結(jié)構(gòu)抗倒塌分析的主要方法,學(xué)者們利用該方法研究發(fā)現(xiàn),與傳統(tǒng)抗彎框架和設(shè)置防屈曲支撐的結(jié)構(gòu)相比,設(shè)置粘滯阻尼器能提供更好的抗倒塌性能[7],并評(píng)估了將金屬摩擦阻尼器應(yīng)用于鋼筋混凝土結(jié)構(gòu)中結(jié)構(gòu)在地震下達(dá)到各個(gè)損傷狀態(tài)的概率[8]。
3 IDA分析基本過程
IDA分析是將地震動(dòng)的強(qiáng)度賦予單調(diào)遞增的比例系數(shù),得到不同強(qiáng)度指標(biāo)度量值IM(Intensity Measure);對(duì)結(jié)構(gòu)進(jìn)行動(dòng)力時(shí)程分析,得到的不同強(qiáng)度下結(jié)構(gòu)損傷指標(biāo)度量值DM(Damage Measure),從而建立反映結(jié)構(gòu)響應(yīng)歷程的以IM為縱坐標(biāo)、DM為橫坐標(biāo)的曲線。在這一過程中,結(jié)構(gòu)歷經(jīng)了線彈性階段、彈塑性階段以及破壞階段的完整響應(yīng)歷程,可以全面體現(xiàn)地震下結(jié)構(gòu)的動(dòng)力響應(yīng)過程。
3.1 地震動(dòng)的選取
文獻(xiàn)[20]定義:小于60 km的斷層距地震動(dòng)定義為近場(chǎng)地震動(dòng),60~200 km范圍的斷層距地震動(dòng)定義為中場(chǎng)地震動(dòng),大于200 km的斷層距地震動(dòng)定義為遠(yuǎn)場(chǎng)地震動(dòng)。
根據(jù)該20層鋼框架結(jié)構(gòu)的基本信息,地震影響系數(shù)最大值取0.12,特征周期取0.4 s,鋼結(jié)構(gòu)的阻尼比取0.02,根據(jù)《建筑抗震設(shè)計(jì)規(guī)范》[14]得到場(chǎng)地的設(shè)計(jì)反應(yīng)譜,見圖4。
根據(jù)設(shè)計(jì)反應(yīng)譜查找擬合度最高的地震動(dòng),相應(yīng)的參數(shù):矩震級(jí)為6.5-7.8級(jí),震中距為200~500 km,符合遠(yuǎn)場(chǎng)地震動(dòng)的定義,30 m深度土層的剪切波波速為150~500 m/s;強(qiáng)震持續(xù)時(shí)間為19~36 s,選擇10條平行于斷裂帶方向的水平地震下地震動(dòng)數(shù)據(jù),其基本信息見表6。
3.2 指標(biāo)分析參數(shù)的選取
DM指標(biāo)度量是結(jié)構(gòu)在地震作用下反映結(jié)構(gòu)動(dòng)力響應(yīng)和損傷程度的狀態(tài)參數(shù)。對(duì)于框架結(jié)構(gòu),最常采用結(jié)構(gòu)層間位移角的最大值θmax作為DM的指標(biāo)度量。IM指標(biāo)度量是反映輸入地震動(dòng)本身強(qiáng)度值的參數(shù)指標(biāo),既可以用地震動(dòng)運(yùn)動(dòng)相關(guān)參數(shù)表示,也可以用結(jié)構(gòu)的最大反應(yīng)相關(guān)參數(shù)表示[22]。前者常用地震動(dòng)的峰值加速度PGA,后者常用結(jié)構(gòu)在第一階自振周期下譜加速度Sa值表示。對(duì)具有中長(zhǎng)周期結(jié)構(gòu)的,PGA度量指標(biāo)的離散性干擾嚴(yán)重,而在結(jié)構(gòu)的最大反應(yīng)相關(guān)參數(shù)指標(biāo)中,中長(zhǎng)周期的結(jié)構(gòu)與Sa關(guān)聯(lián)度比較高[23],所以在中長(zhǎng)周期的結(jié)構(gòu)下對(duì)結(jié)果數(shù)據(jù)具有集中性整合的優(yōu)點(diǎn),Sa度量指標(biāo)是最為適合的。由于采用了長(zhǎng)周期的20層鋼框架結(jié)構(gòu),所以,DM度量指標(biāo)采用結(jié)構(gòu)的最大層間位移角θmax,IM指標(biāo)選擇結(jié)構(gòu)在第一階自振周期下譜加速度值Sa。
3.3 極限狀態(tài)點(diǎn)的確定
作出IDA曲線之后,為了進(jìn)行結(jié)構(gòu)抗震性能評(píng)估,根據(jù)相應(yīng)的判別準(zhǔn)則確定曲線上極限狀態(tài)點(diǎn)?;贗M準(zhǔn)則的極限點(diǎn)狀態(tài)判據(jù)為:當(dāng)曲線上某一點(diǎn)的地震強(qiáng)度指標(biāo)IM的數(shù)值達(dá)到所規(guī)定的極限狀態(tài)界限值時(shí),即可視這一點(diǎn)為極限狀態(tài)點(diǎn)?;贒M準(zhǔn)則的極限點(diǎn)狀態(tài)判據(jù)為:當(dāng)曲線上某一點(diǎn)的結(jié)構(gòu)損傷指標(biāo)DM的數(shù)值達(dá)到所規(guī)定的極限狀態(tài)界限值時(shí),即可視這一點(diǎn)為極限狀態(tài)點(diǎn)。由于此極限狀態(tài)點(diǎn)是某一確定結(jié)構(gòu)自身的失穩(wěn)倒塌極限狀態(tài)點(diǎn),不同于基于IM準(zhǔn)則的極限點(diǎn)狀態(tài)判據(jù),對(duì)于多條不同的地震動(dòng)記錄都可以采用同一DM界限值[23]。
3.4 超越概率函數(shù)
文獻(xiàn)[24-25]給出了對(duì)結(jié)構(gòu)進(jìn)行易損性分析時(shí)采用的工程結(jié)構(gòu)需求參數(shù)在確定的地震動(dòng)強(qiáng)度量值IM下,對(duì)結(jié)構(gòu)某一性能水準(zhǔn)能力L的超越概率函數(shù)P,如式(6)所示,得到結(jié)構(gòu)需求參數(shù)m在該確定的地震動(dòng)強(qiáng)度值IM下服從對(duì)數(shù)正態(tài)分布。
4 結(jié)構(gòu)–阻尼器系統(tǒng)的易損性評(píng)估
4.1 基于位移的倒塌易損性評(píng)估
選取基于DM準(zhǔn)則的極限點(diǎn)狀態(tài)判據(jù),中國(guó)規(guī)范[7]就通過此準(zhǔn)則規(guī)定了鋼框架結(jié)構(gòu)倒塌抗震分析時(shí)的最大彈塑性位移角為1/50,即為基于DM準(zhǔn)則的極限點(diǎn)狀態(tài)判據(jù)的倒塌極限狀態(tài)點(diǎn)。
對(duì)無阻尼器結(jié)構(gòu)、設(shè)置粘滯阻尼器、摩擦阻尼器和防屈曲支撐3類典型阻尼器結(jié)構(gòu)分別用IDA方法進(jìn)行分析,得到各情況下的結(jié)構(gòu)IDA曲線,如圖6所示。將各條地震動(dòng)對(duì)應(yīng)的倒塌點(diǎn)極限狀態(tài),根據(jù)譜加速度Sa數(shù)值由小到大的順序進(jìn)行結(jié)構(gòu)在第一自振周期的譜加速度的累計(jì)概率分布的排序,并采用結(jié)合Matlab工具擬合式(6)得出結(jié)構(gòu)的倒塌易損性曲線如圖7所示。
在以同一減震目標(biāo)控制在76%時(shí)設(shè)計(jì)出來的阻尼器中,對(duì)于結(jié)構(gòu)在遠(yuǎn)場(chǎng)地震下的抗倒塌性能方面,粘滯阻尼器效果最佳,然后是防屈曲支撐,最后是摩擦阻尼器。但是當(dāng)譜加速度達(dá)到0.3g之后,防屈曲支撐和摩擦阻尼器的控制效果在很高的超越性能概率80%下會(huì)被無阻尼結(jié)構(gòu)超越,這說明在控制結(jié)構(gòu)的倒塌破壞性能時(shí),防屈曲支撐和摩擦阻尼器的并不能很好的起到控制作用,因此在工程上應(yīng)用,對(duì)于遠(yuǎn)場(chǎng)地震作用下的建筑結(jié)構(gòu),推薦在結(jié)構(gòu)中設(shè)置粘滯阻尼器以滿足自身的抗倒塌性能。
4.2 基于位移的損傷性能水準(zhǔn)評(píng)估
對(duì)比分析在出現(xiàn)結(jié)構(gòu)損傷時(shí)設(shè)置典型阻尼器結(jié)構(gòu)維持對(duì)應(yīng)設(shè)計(jì)性能水準(zhǔn)的能力,分別采用累積對(duì)數(shù)正態(tài)概率分布的函數(shù)關(guān)系對(duì)無阻尼器結(jié)構(gòu)以及結(jié)構(gòu)在粘滯阻尼器、摩擦阻尼器和防屈曲阻尼器下的IDA曲線,擬合了出現(xiàn)損傷破壞時(shí)性能量化指標(biāo)下的結(jié)構(gòu)第一周期譜加速度Sa的倒塌易損性的概率曲線,擬合時(shí)采用的結(jié)構(gòu)最大層間位移角對(duì)應(yīng)結(jié)構(gòu)的性能指標(biāo)如表8所示,
在3個(gè)性能指標(biāo)水準(zhǔn)下,粘滯阻尼器的表現(xiàn)最為突出。雖然防屈曲支撐稍比摩擦阻尼器更優(yōu),但防屈曲支撐和摩擦阻尼器兩者表現(xiàn)的控制結(jié)構(gòu)的性能效果差別不大,但需要注意的是,隨著性能水準(zhǔn)程度的提升,防屈曲支撐和摩擦阻尼器的控制效果甚至在很高的超越性能概率(中等破壞時(shí)為95%,嚴(yán)重破壞時(shí)為83%)下會(huì)被無阻尼結(jié)構(gòu)超越,這說明在控制結(jié)構(gòu)的中等損傷和嚴(yán)重破壞的結(jié)構(gòu)性能水準(zhǔn)的控制范圍內(nèi),防屈曲支撐和摩擦的控制效果不是很好,但它們?cè)谳p微的損傷的結(jié)構(gòu)性能水準(zhǔn)下,結(jié)構(gòu)控制性能明顯。
5 結(jié)論
研究了基于中國(guó)現(xiàn)行抗震規(guī)范所設(shè)計(jì)高層建筑–阻尼器系統(tǒng)的地震易損性,評(píng)估了中國(guó)規(guī)范所設(shè)計(jì)3類典型阻尼器的實(shí)際性能。所得結(jié)論如下:
1)采用基于位移的性能水準(zhǔn)評(píng)估指標(biāo),與規(guī)范中阻尼器設(shè)計(jì)所選用的指標(biāo)一致,通過IDA分析指出規(guī)范所設(shè)計(jì)阻尼器的實(shí)際性能在某些強(qiáng)地震下可能劣于無阻尼器建筑,且不同類型阻尼器的減震效果也有所差異,尤其是速度型和位移型阻尼器差異明顯。
2)基于中國(guó)規(guī)范建立的20層鋼結(jié)構(gòu)Benchmark模型和中國(guó)規(guī)范所設(shè)計(jì)阻尼器,在同一減震設(shè)計(jì)目標(biāo)需求下,從抵抗結(jié)構(gòu)的抗倒塌概率來看,粘滯阻尼器表現(xiàn)最優(yōu),防屈曲支撐和摩擦阻尼器次之,且二者性能接近。
3)采用體現(xiàn)性能水準(zhǔn)的結(jié)構(gòu)位移為評(píng)價(jià)指標(biāo)時(shí),粘滯阻尼器表現(xiàn)最優(yōu),防屈曲支撐雖然略高于摩擦阻尼器但兩者差別不大,在較強(qiáng)地震作用下出現(xiàn)了設(shè)置防屈曲支撐和摩擦阻尼器的結(jié)構(gòu)性能控制效果稍遜原始結(jié)構(gòu)的情況。
參考文獻(xiàn):
[1] 張蓬勃, 潘毅, 趙世春, 等. 雙行程可變阻尼力摩擦阻尼器的特性[J]. 西南交通大學(xué)學(xué)報(bào), 2011, 46(6): 946-952.ZHANG P B, PAN Y, ZHAO S C, et al. Hysteresis characteristics of shear friction damper with two resistances and displacements [J]. Journal of Southwest Jiaotong University, 2011, 46(6): 946-952. (in Chinese)
[2] PARCIANELLO E, CHISARI C, AMADIO C. Optimal design of nonlinear viscous dampers for frame structures [J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 257-260.
[3] 高劍, 王忠凱, 潘毅, 等. 罕遇地震下石化鋼結(jié)構(gòu)減震的關(guān)鍵影響因素[J]. 土木建筑與環(huán)境工程, 2016, 38(1): 92-99.GAO J, WANG Z K, PAN Y, et al. Influence factors of vibration reduction in petrochemical steel structure under rare earthquake [J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(1): 92-99. (in Chinese)
[4] 潘毅, 耿鵬飛, 郭陽照, 等. 兩階段耗能屈曲約束支撐體系減震效果分析[J]. 西南交通大學(xué)學(xué)報(bào), 2015, 50(5): 858-865.PAN Y, GENG P F, GUO Y Z, et al. Analysis of damping effect in two-stage energy dissipation damping system of buckling restrained braces [J]. Journal of Southwest Jiaotong University, 2015, 50(5): 858-865. (in Chinese)
[5] 潘毅,閻勛章,易路行,等. 基于剪力比的防屈曲支撐RC框架抗震設(shè)計(jì)方法研究[J]. 工程力學(xué),2018,35(3): 96-105. PAN Y,YAN X Z,YI L X,et al. Study on the seismic design of buckling-restrained braced-reinforced concrete frame structures based on shear ratio[J]. Engineering Mechanics,2018,35(3): 96-105. (in Chinese)
[6] 潘毅, 高憲, 易路行, 等. 基于剪力比和剛度比的防屈曲支撐-RC框架抗震設(shè)計(jì)方法分析[J]. 世界地震工程, 2017, 33(4): 59-67.PAN Y, GAO X, YI L X, et al. Investigation of the seismic design methods of buckling-restrained braced-reinforced concrete frame structures based on shear ratio and stiffness ratio [J]. World Earthquake Engineering, 2017, 33(4): 59-67. (in Chinese)
[7] SILWAL B, OZBULUT O E, MICHAEL R J. Seismic collapse evaluation of steel moment resisting frames with superelastic viscous damper[J]. Journal of Constructional Steel Research, 2016(7), 126: 26-36.[LinkOut]
[8] LEE J, KANG H, KIM J. Seismic performance of steel plate slit-friction hybrid dampers [J]. Journal of Constructional Steel Research, 2017, 136(5): 128-139.
[9] OHTORI Y, CHRISTENSON R E, SPENCER B F Jr, et al. Benchmark control problems for seismically excited nonlinear buildings [J]. Journal of Engineering Mechanics, 2004, 130(4): 366-385.
[10] 徐海波, 王廣建, 易方民, 等. 中美兩國(guó)鋼結(jié)構(gòu)抗震設(shè)計(jì)對(duì)比分析[J]. 工程抗震與加固改造, 2010, 32(2): 81-86.XU H B, WANG G J, YI F M, et al. Comparison and analysis of seismic design of steel structures between Chinese code and American code [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(2): 81-86. (in Chinese)
[11] 宋衛(wèi)平. 中國(guó)和美國(guó)現(xiàn)行建筑結(jié)構(gòu)設(shè)計(jì)規(guī)范的差異比較[J]. 城市建筑, 2013(8): 202.SONG W P. Comparing the current building structure design code of China and United States [J]. Urbanism and Architecture, 2013(8): 202. (in Chinese)
[12] 曹繼濤. 中美歐規(guī)范鋼筋混凝土框架結(jié)構(gòu)抗震設(shè)計(jì)對(duì)比研究[D]. 西安: 西安建筑科技大學(xué), 2013.CAO J T. Comparative study on seismic design of reinforced concrete frames between Chinese, American and European codes [D]. Xi'an: Xi'an University of Architecture and Technology, 2013. (in Chinese)
[13] 朱春明, 錢鵬. 中、美規(guī)范在建筑結(jié)構(gòu)抗震設(shè)計(jì)中的對(duì)比[J]. 鋼結(jié)構(gòu), 2018, 33(4): 86-92.ZHU C M, QIAN P. Comparison of seismic provisions in structural design between Chinese and american structure design code [J]. Steel Construction, 2018, 33(4): 86-92. (in Chinese)
[14] 住房和城鄉(xiāng)建設(shè)部.建筑抗震設(shè)計(jì)規(guī)范:GB 50011—2010 [S]. 北京: 中國(guó)建筑工業(yè)出版社,2010.Ministry of Housing and Urban-Rural Development. Code for seismic design of buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[15] 田晴, 趙崇錦, 王忠凱, 等. 新疆某超高層住宅樓動(dòng)力彈塑性分析[J]. 土木建筑與環(huán)境工程, 2016, 38(Sup2): 30-34.TIAN Q, ZHAO C J, WANG Z K, et al. Elastic and plastic dynamic analysis of a super high-rise residential building in Xinjiang [J]. Journal of Civil,Architectural & Environmental Engineering, 2016, 38(Sup2): 30-34. (in Chinese)
[16] 住房和城鄉(xiāng)建設(shè)部.建筑結(jié)構(gòu)荷載規(guī)范:GB50009—2012 [S]. 北京: 中國(guó)建筑工業(yè)出版社, 2012.Ministry of Housing and Urban-Rural Development. Load code for the design of building structures: GB 50009-2012 [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
[17] 李鴻光, 何旭, 孟光. Bouc-Wen滯回系統(tǒng)動(dòng)力學(xué)特性的仿真研究[J]. 系統(tǒng)仿真學(xué)報(bào), 2004, 16(9): 2009-2011, 2036.LI H G, HE X, MENG G. Numerical simulation for dynamic characteristics of Bouc-Wen hysteretic system [J]. Journal of System Simulation, 2004, 16(9): 2009-2011, 2036. (in Chinese)
[18] 張蓬勃, 趙世春, 孫玉平, 等. 鋁板摩擦材剪切型摩擦阻尼器的研究[J]. 四川大學(xué)學(xué)報(bào)(工程科學(xué)版), 2011, 43(5): 218-223.ZHANG P B, ZHAO S C, SUN Y P, et al. Study on shear type friction damper of aluminum alloy [J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(5): 218-223. (in Chinese)
[19] 馬寧, 吳斌, 趙俊賢, 等. 十字形內(nèi)芯全鋼防屈曲支撐構(gòu)件及子系統(tǒng)足尺試驗(yàn)[J]. 土木工程學(xué)報(bào), 2010, 43(4): 1-7.MA N, WU B, ZHAO J X, et al. Full scale uniaxial and subassemblage tests on the seismic behavior of all-steel buckling-resistant brace [J]. China Civil Engineering Journal, 2010, 43(4): 1-7. (in Chinese)
[20] 住房和城鄉(xiāng)建設(shè)部.建筑消能減震技術(shù)規(guī)程: JGJ297-2013 [S]. 北京: 中國(guó)建筑工業(yè)出版社,2013.Ministry of Housing and Urban-Rural Development. Technical specification for seismic energy dissipation of buildings: JGJ297-2013 [S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)
[21] 張令心, 張繼文. 近遠(yuǎn)場(chǎng)地震動(dòng)及其地震影響分析[J]. 土木建筑與環(huán)境工程, 2010, 32(Sup2): 84-86.ZHANG L X, ZHANG J W. Analysis of near-far site vibration and its earthquake impact [J]. Journal of Civil, Architectural & Environmental Engineering, 2010, 32(Sup2): 84-86. (in Chinese)
[22] VAMVATSIKOS D, CORNELL C A. Applied incremental dynamic analysis [J]. Earthquake Spectra, 2004, 20(2): 523-553.
[23] 葉列平, 馬千里, 繆志偉. 結(jié)構(gòu)抗震分析用地震動(dòng)強(qiáng)度指標(biāo)的研究[J]. 地震工程與工程振動(dòng), 2009, 29(4): 9-22.YE L P, MA Q L, MIAO Z W. Study on earthquake intensities for seismic analysis of structures [J]. Earthquake Engineering and Engineering Vibration, 2009, 29(4): 9-22. (in Chinese)
[24] VAMVATSIKOS D, CORNELL C A. The incremental dynamic analysis and its application to performance-based earthquake engineering [C] // 12th European Conference on Earthquake Engineering, Amsterdam: Elsevier Science Ltd.,2002: 479-490.
[25] SHOME N. Probabilistic seismic demand analysis of nonlinear structures [M]. Stanford, California: Stanford University, 1999.
[26] 陸新征, 葉列平. 基于IDA分析的結(jié)構(gòu)抗地震倒塌能力研究[J]. 工程抗震與加固改造, 2010, 32(1): 13-18.LU X Z, YE L P. Study on the seismic collapse resistance of structural system [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1): 13-18. (in Chinese)
[27] 潘毅, 王初翀, 盧立恒, 等. 建筑結(jié)構(gòu)防連續(xù)倒塌分析與設(shè)計(jì)方法研究進(jìn)展[J]. 工程抗震與加固改造, 2014, 36(1): 52-56, 66.PAN Y, WANG C C, LU L H, et al. Advance research on analysis and design methods to resist progressive collapse for building structures[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(1): 52-56, 66.(in Chinese)
(編輯:胡英奎)