劉路廣,吳 瑕,關(guān)洪林,潘少斌,崔遠來,董 葦,楊小偉,羅 強
蝦稻共作灌溉定額確定方法研究
劉路廣1,2,吳 瑕1,2,關(guān)洪林1,2,潘少斌1,2,崔遠來3,董 葦1,2,楊小偉1,2,羅 強3
(1. 湖北省水利水電科學(xué)研究院,武漢 430070;2. 湖北省節(jié)水研究中心,武漢 430070;3. 武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,武漢 430072)
近年來,中國長江中下游流域大面積發(fā)展了蝦稻共作適水農(nóng)業(yè),該種養(yǎng)模式改變了田塊結(jié)構(gòu)及用水模式,其灌溉定額計算有別于普通農(nóng)作物且具有一定復(fù)雜性,目前還未見相關(guān)研究報道。該文在實地調(diào)研的基礎(chǔ)上,根據(jù)蝦稻共作田塊結(jié)構(gòu)與用水特點,將1個周年劃分為水稻非生育期階段、水稻生育期蝦稻分養(yǎng)階段、水稻生育期蝦稻共養(yǎng)階段3個階段,基于水量平衡原理,提出蝦稻共作灌溉定額確定方法。以湖北省潛江市為例,通過資料搜集和計算參數(shù)確定,采用該文提出的計算方法對蝦稻共作灌溉定額進行了計算,蝦稻共作灌溉定額多年平均12 945 m3/hm2。該研究成果為蝦稻共作灌溉定額提供了理論依據(jù),對指導(dǎo)蝦稻共作灌溉用水及水資源管理具有重要意義。
灌溉;降雨;蒸發(fā)蒸騰;蝦稻共作;水量平衡原理;確定方法
蝦稻共作是將種植業(yè)與養(yǎng)殖業(yè)有機結(jié)合的一種新型生態(tài)農(nóng)業(yè)模式,是傳統(tǒng)農(nóng)業(yè)與現(xiàn)代科技相結(jié)合的產(chǎn)物,具有潛在生態(tài)、經(jīng)濟和社會效益[1-4]。由于蝦稻共作種養(yǎng)模式穩(wěn)糧增收成效顯著,該種養(yǎng)模式在中國長江中下游流域湖北、湖南、江西、安徽、江蘇等省份得到了推廣應(yīng)用[5-7]。根據(jù)全國水產(chǎn)技術(shù)推廣總站2018年發(fā)布的中國小龍蝦產(chǎn)業(yè)發(fā)展報告,2017年全國蝦稻共作面積達到了567 khm2。目前,國內(nèi)外在蝦稻共作種養(yǎng)技術(shù)方面開展了許多研究工作[8-12],取得了一些研究成果。增產(chǎn)增質(zhì)方面,蝦稻共作可增加農(nóng)民收入,提高水稻品質(zhì)[13],部分研究表明還可促進水稻增產(chǎn)[9-10,14];土壤肥力方面,可改善土壤結(jié)構(gòu),有助于保持土壤肥力[14-17];生物多樣性方面,對雜草具有控制作用[18],顯著影響水體浮游植物和土壤微生物結(jié)構(gòu)[19-21]。在科學(xué)研究及推廣應(yīng)用過程中,在田塊結(jié)構(gòu)設(shè)計、水肥管理等種養(yǎng)技術(shù)方面總結(jié)了大量經(jīng)驗[22-24]。
由于蝦稻共作改變了田塊結(jié)構(gòu)和用水模式[25-26],水平衡要素及計算參數(shù)發(fā)生了變化,進而影響了灌溉定額及其計算方法,與一般農(nóng)作物灌溉定額計算相比[27-29],具有一定復(fù)雜性。灌溉定額是節(jié)約用水和水資源管理的基礎(chǔ)性工作[30],而目前蝦稻共作灌溉定額計算方法未見相關(guān)研究報道,因此如何計算蝦稻共作灌溉定額成為當前亟待解決的問題。根據(jù)研究現(xiàn)狀及存在問題,開展實地調(diào)研,系統(tǒng)科學(xué)提出蝦稻共作灌溉定額計算方法,對指導(dǎo)蝦稻灌溉用水及水資源管理具有重要意義。
2018年3月,對蝦稻共作模式發(fā)源地湖北省潛江市熊口鎮(zhèn)華山蝦稻共作基地及農(nóng)戶進行了實地調(diào)研,摸清了蝦稻共作田塊結(jié)構(gòu)(稻田與蝦溝尺寸)、龍蝦養(yǎng)殖要點、水稻生育期、水層控制標準、水肥管理經(jīng)驗等。蝦稻共作一般在稻田四周開挖蝦溝,蝦溝與稻田平面布置示意圖見圖1。
注:L1為蝦稻共作田塊總長度,m;L2為稻田長度,m;B1為蝦稻共作田塊總寬度,m;B2為稻田寬度,m。
根據(jù)蝦稻共作模式種養(yǎng)特點,可將1個周年劃分為3個階段:水稻非生育期階段、水稻生育期蝦稻分養(yǎng)階段、水稻生育期蝦稻共養(yǎng)階段。水稻非生育期階段指水稻種植前和收割后的一段時期,該階段小龍蝦可在蝦溝及稻田內(nèi)活動;水稻生育期蝦稻分養(yǎng)階段主要是指水稻生長前期和后期(如返青期、分蘗期、乳熟期和黃熟期),小龍蝦僅在蝦溝內(nèi)活動;水稻生育期蝦稻共養(yǎng)階段指水稻生長中期(拔節(jié)孕穗期和抽穗開花期),小龍蝦可在蝦溝及稻田內(nèi)活動。
水稻非生育期階段水層控制標準見圖2,該階段蝦溝與稻田水體連成一體,因此,將蝦溝和稻田作為1個計算單元,根據(jù)水量平衡原理,水量平衡方程可概化為
h
蝦,
末
=
h
蝦,
初
+
P
有效
+
m
蝦
?
E
?
S
(1)
式中0為水稻非生育期階段灌溉定額,m3/hm2。
注:蝦,蓄為水稻非生育期階段降雨后最大蓄水水位,mm;蝦,上為水稻非生育期階段適宜水層水位上限,mm;蝦,下為水稻非生育期階段適宜水層水位下限,mm。
Note:蝦,蓄is max water level after rainfall in non-growth stage of rice, mm;蝦,上is upper limit of suitable water level in non-growth stage of rice, mm;蝦,下is lower limit of suitable water level in non-growth stage of rice, mm.
圖2 水稻非生育期階段水層控制標準示意圖
Fig.2 Water layer control standard in non-growth stage of rice
水稻生育期蝦稻分養(yǎng)階段水層控制標準見圖3所示。蝦溝和稻田分別基于水量平衡原理進行計算。
蝦溝水量平衡計算方程可概化為
h
溝,
末
=
h
溝,
初
+
P
有效
+
m
溝
?
E
?
S
(3)
式中溝,末為該階段計算時段末蝦溝水層水位,mm;溝,初為該階段計算時段初蝦溝水層水位,mm;溝為該階段該計算時段蝦溝灌水定額,mm。
注:h稻,蓄為水稻生育期蝦稻分養(yǎng)階段稻田最大蓄雨水位,mm;h稻,上為水稻生育期蝦稻分養(yǎng)階段稻田適宜水層上限水位,mm;h稻,下為水稻生育期蝦稻分養(yǎng)階段稻田適宜水層下限水位,mm;h溝,蓄為水稻生育期蝦稻分養(yǎng)階段蝦溝最大蓄雨水位,mm;h溝,上、B上分別為水稻生育期蝦稻分養(yǎng)階段蝦溝適宜水層上限水位及對應(yīng)寬度,m;h溝,下、B下分別為水稻生育期蝦稻分養(yǎng)階段蝦溝適宜水層下限水位及對應(yīng)寬度,m。
若蝦溝水層水位溝,末降至蝦溝適宜水層下限水位溝,下,且無降雨,則需進行灌水(補水)至蝦溝適宜水層上限水位溝,上。蝦溝第次灌水的補水量記為W,第次灌水的灌水定額記為溝,j,第次灌水前的蝦溝水層水位溝,末記為溝,j(=1,2,…,,表示該階段的蝦溝灌水總次數(shù))。若蝦溝水層水位溝,末大于降雨后蝦溝最大蓄水水位溝,蓄,則需進行排水至溝,蓄。第次蝦溝補水量j計算公式為
Wj
=0.5(
B
上
+
B
下
)(
h
溝,
上
?
h
溝,j
)×2(
L
1
+
B
2
)×10
-3
(4)
式中1為蝦稻共作田塊總長度,對于環(huán)形蝦溝即稻田長度與2倍蝦溝寬度之和,m。
稻田水量平衡計算方程可概化為
h
稻,
末
=
h
稻,
初
+
P
有效
+
m
稻
?ET
C
?
S
(5)
式中稻,末為該階段計算時段末稻田水層水位,mm;稻,初為該階段計算時段初稻田水層水位,mm;稻為該階段該計算時段稻田灌水定額,mm;ETC為水稻蒸發(fā)蒸騰量,mm。
若稻田水層水位稻,末降至稻田適宜水層下限稻,下,且無降雨,則需進行補水至稻田適宜水層上限稻,上。稻田第次灌水的灌水量記為,第次灌水的灌水定額稻記為稻,k,第次灌水前的稻田水層水位稻,末記為稻,k,其中=1,2,…,(表示該階段的稻田灌水總次數(shù))。若稻田水層水位稻,末大于降雨后稻田最大蓄水水位稻,蓄,則需進行排水至稻,蓄。第次稻田灌水量W為
Wk
=10
-3
m
稻,k
A
稻
=10
-3
A
稻
(
h
稻,
上
?
h
稻,k
)
=10
-3
B
2
·
L
2
(
h
稻,
上
?
h
稻,k
) (6)
式中W為稻田灌水量,m3;稻為稻田面積,m2。
水稻生育期蝦稻分養(yǎng)階段灌溉定額
水稻生育期蝦稻共養(yǎng)階段水層控制標準見圖4所示。該階段蝦溝和稻田水體連為一體,將蝦溝和稻田作為1個計算單元,其水量平衡方程為
式中2為水稻生育期蝦稻共養(yǎng)階段灌溉定額,m3/hm2。
注:蝦稻,蓄為水稻生育期蝦稻共養(yǎng)階段稻田最大蓄雨水位,mm;蝦稻,上為水稻生育期蝦稻共養(yǎng)階段適宜水層上限水位,mm;蝦稻,下為水稻生育期蝦稻共養(yǎng)階段適宜水層下限水位,mm。
Note:蝦稻,蓄is max water level after rainfall at crayfish-rice culture stage at growth stage of rice, mm;蝦稻,上is upper limit of suitable water level at crayfish-rice culture stage at growth stage of rice, mm;蝦稻,下is lower limit of suitable water level at crayfish-rice culture stage at growth stage of rice, mm.
圖4 水稻生育期蝦稻共養(yǎng)階段水層控制標準示意圖
Fig.4 Water layer control standard of crayfish-rice culture stage at growth stage of rice
因水質(zhì)問題,部分區(qū)域在蝦稻共作生長期間還需要進行換水,換水定額3可根據(jù)水質(zhì)情況、試驗觀測及經(jīng)驗值進行取值。
將水稻非生育期階段、水稻生育期蝦稻分養(yǎng)階段、水稻生育期蝦稻共養(yǎng)階段的灌溉定額與水質(zhì)換水定額相加,得到了蝦稻共作灌溉定額(m3/hm2),具體見式(10)。蝦稻共作灌溉定額計算方法中均采用水位值,水位為相對于蝦溝底部的水位值,控制水層標準也是相對于蝦溝底部的水位值。
=0+1+2+3(10)
據(jù)統(tǒng)計,2017年湖北省漁稻綜合種養(yǎng)(主要為蝦稻共作)面積達到330 khm2,位居全國首位。潛江市為蝦稻共作發(fā)源地,其蝦稻共作面積達到了46.7 khm2以上。本研究以湖北省潛江市為例,根據(jù)實地調(diào)研與相關(guān)技術(shù)規(guī)程[5],確定了相關(guān)計算參數(shù),并對蝦稻共作灌溉定額進行了計算。
1)計算單元結(jié)構(gòu)尺寸
稻田四周開挖蝦溝,蝦稻共作計算單元長度1=260 m,蝦稻共作計算單元寬度1=100 m,蝦溝寬度4 m,深1.5 m,邊坡1:1,蝦溝埂高0.5 m。
2)氣象資料
本研究收集了潛江氣象站1973-2013年共計41 a逐日氣象資料,包括水面蒸發(fā)量、降雨量、日最高氣溫、日最低氣溫、日平均氣溫、平均相對濕度、日平均風速、日照時數(shù)等。
3)水稻蒸發(fā)蒸騰量
根據(jù)氣象資料利用Penman-Monteith公式計算參考作物騰發(fā)量ET0,通過作物系數(shù)c與參考作物騰發(fā)量乘積得到實際作物騰發(fā)量ETC。通過實地調(diào)研,搜集到了江漢平原區(qū)丫角站(1985-2005年)、東風渠站(1960-1967年、1976-2003年)、三湖連江站(1983年、1985-1991年、1993-2003年)試驗數(shù)據(jù),通過丫角站、東風渠站、三湖連江站試驗數(shù)據(jù)分析得到了江漢平原區(qū)水稻作物系數(shù),本研究直接采用該值,具體見表1。
4)稻田與蝦溝滲漏量
水稻生育期內(nèi)稻田滲漏量采用江漢平原區(qū)丫角站、東風渠站、三湖連江站試驗分析值(試驗?zāi)攴萃希?;水稻非生育期蝦溝與稻田一直保持有水層,參考中稻返青期稻田滲漏成果。具體見表1。
5)水面蒸發(fā)量
由于潛江站僅有小型蒸發(fā)皿水面蒸發(fā)資料,無大型蒸發(fā)皿水面蒸發(fā)觀測資料,因此采用值法進行轉(zhuǎn)換。值采用天門站點(1997-2001年)率定值0.607。
6)水質(zhì)換水定額
根據(jù)實地調(diào)研,水質(zhì)條件較好的地區(qū)不存在水質(zhì)換水定額,本次計算不考慮水質(zhì)換水定額。
7)蝦稻共作水稻生育期及水層控制標準
根據(jù)實地調(diào)研,水稻非生育期、水稻孕穗期、抽穗開花期稻田水層與蝦溝水層持平;其他生育期蝦溝水層低于稻田田埂高度。根據(jù)調(diào)研成果,確定了不同時期稻田與蝦溝水層設(shè)置標準。具體見表1。
根據(jù)多年計算結(jié)果,統(tǒng)計了不同頻率水稻生育蝦稻共作灌溉定額、水稻非生育期蝦稻灌溉定額、蝦稻共作灌溉定額,具體見表2。由表2可知,蝦稻共作灌溉定額多年平均為12 945 m3/hm2,明顯大于中稻灌溉用水定額;蝦稻共作灌溉定額在50%頻率、75%頻率、85%頻率及90%頻率下分別為13 185、14 355、14 925和15 285 m3/hm2,不同頻率灌溉用水定額相差較小,主要原因是不同頻率降雨主要影響水稻灌溉定額。與水稻相比,蝦稻灌溉定額較大主要原因包括:1)計算時段為全年,而水稻灌溉定額僅為水稻生育期;2)水稻非生育期水面蒸發(fā)量大于土壤蒸發(fā);3)水稻生育期蝦稻共養(yǎng)階段水層較深,孕穗期為實現(xiàn)小龍蝦到稻田活動,有一次定額較大的補水;4)水稻收獲后蝦溝和稻田水層持平需要一次定額較大的補水。
表1 不同時期水稻作物系數(shù)、稻田及蝦溝滲漏量及水層控制標準
表2 蝦稻共作灌溉定額計算成果表
根據(jù)湖北省灌溉用水定額標準,江漢平原區(qū)水稻灌溉定額多年平均值為4 050 m3/hm2,本研究水稻生育期蝦稻共作灌溉定額多年平均值為5 370m3/hm2,主要原因是蝦稻共作水稻田水層深度明顯增加,導(dǎo)致灌溉定額增加,符合一般規(guī)律。根據(jù)實地調(diào)研,潛江市蝦稻共作灌溉定額約為水稻灌溉定額的3倍左右,約12 150 m3/hm2,本蝦稻共作灌溉定額為12 945 m3/hm2,計算成果與實地調(diào)研較為接近,能夠反映蝦稻共作用水水平,表明了計算成果的合理性與計算方法的可行性。由于研究區(qū)水質(zhì)條件較好,不存在水質(zhì)換水定額,本研究未考慮水質(zhì)換水定額,當水質(zhì)條件不好,需要進行換水時,還應(yīng)考慮該部分定額。
1)在實地調(diào)研基礎(chǔ)上,將1個周年劃分為水稻非生育期階段、水稻生育期蝦稻分養(yǎng)階段、水稻生育期蝦稻共養(yǎng)階段3個階段;根據(jù)每個階段水分控制標準,基于水平衡原理,系統(tǒng)性提出了蝦稻共作的計算方法。
2)以湖北省潛江市為例,對計算參數(shù)進行了確定,采用本研究提出的方法對潛江市蝦稻共作灌溉定額進行了計算,蝦稻共作灌溉定額多年平均12 945 m3/hm2。
本研究成果為蝦稻共作灌溉定額提供了一種計算方法,對蝦稻共作區(qū)域水資源配置、農(nóng)業(yè)取水許可等用水管理具有重要指導(dǎo)意義。
[1] 李倫,羅強,吳士龍,等. 漁稻養(yǎng)作及其在澇漬地綜合利用中的研究綜述[J]. 節(jié)水灌溉,2016(5):75-80.
Li Lun, Luo Qiang, Wu Shilong, et al. Review of integrated rice-fish farming and its comprehensive utilization in waterlogged land[J]. Water Saving Irrigation, 2016(5): 75-80. (in Chinese with English abstract)
[2] 謝瑞,紀鎮(zhèn)劍,向明,等. 黔北稻蝦共生綜合種養(yǎng)示范效果[J]. 耕作與栽培,2018,225(5):42-43.
Xie Rui, Ji Zhenjian, Xiang Ming, et al. Rice-crayfish symbiosis comprehensive cultivation and breeding effect of demonstration in northern of guizhou[J]. Tillage and Cultivation, 2018, 225(5): 42-43. (in Chinese with English abstract)
[3] 陳坤,曾君,黃國海,等. 潛江市發(fā)展小龍蝦產(chǎn)業(yè)的探索與啟示[J]. 湖北農(nóng)業(yè)科學(xué),2016,55(11):2955-2959.
Chen Kun, Zeng Jun, Huang Guohai, et al. The exploration and enlightenment of crayfish industry development in Qianjiang City[J]. Hubei Agricultural Sciences, 2016, 55(11): 2955-2959. (in Chinese with English abstract)
[4] 陶忠虎,周浠,周多勇,等. 蝦稻共生生態(tài)高效模式及技術(shù)[J].中國水產(chǎn),2013(7):68-70.
Tao Zhonghu, Zhou Xi, Zhou Duoyong, et al. Ecological efficient model and technology of rice-crayfish mode[J]. China Fisheries, 2013(7): 68-70. (in Chinese with English abstract)
[5] 周貴忠,郭武強,肖燃. 江漢平原的蝦稻之稻種植技術(shù)[J]. 雜交水稻,2018,33(4):32-35.
Zhou Guizhong, Guo Wuqiang, Xiao Ran. The rice planting techniques of shrimp-rice fields in Jianghan plain[J]. Hybrid Rice, 2018, 33(4): 32-35. (in Chinese with English abstract)
[6] 王海洋,夏思成,潘宗瑾,等. 江蘇沿海地區(qū)蝦稻共作種養(yǎng)模式與關(guān)鍵技術(shù)[J]. 大麥與谷類科學(xué),2018,35(2):54-56.
Wang Haiyang, Xia Sicheng, Pan Zongjin, et al. Breeding mode and key technology of rice-crayfish mode in coastal areas of Jiangsu Province[J]. Barley and cereal sciences, 2018, 35(2): 54-56. (in Chinese with English abstract)
[7] 吳向東,楊曉芬,林水娟,等. 浙西南山區(qū)“稻蝦”共生綜合種養(yǎng)模式初探[J]. 中國稻米,2018,24(3):97-98.
Wu Xiangdong, Yang Xiaofen, Lin Shuijuan, et al. Study on the “rice-small lobsters” symbiosis planting-raising mode in the southwest mountain area of Zhejiang province[J]. China Rice, 2018, 24(3): 97-98. (in Chinese with English abstract)
[8] 肖求清. 稻蝦共作對稻田生物多樣性的影響[D]. 武漢:華中農(nóng)業(yè)大學(xué),2017.
Xiao Qiuqing. Effects of Rice-crayfish Farming on Biodiversity in Paddy[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract)
[9] 佀國涵. 長期稻蝦共作模式下稻田土壤肥力變化特征研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2017.
Si Guohan. Study on Change Characteristics of Soil Fertility in Paddy Fields under Long-term Integrated Rice-crayfish Model[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract)
[10] Ahmed N, Allison E H, Muir J F. Rice fields to prawn farms: A blue revolution in southwest Bangladesh[J]. Aquaculture International, 2010, 18(4): 555-574.
[11] Chien Y H, Avault Jr J W. Production of crayfish in rice fields[J]. Prog Fish-Cult, 1980, 42: 67-71.
[12] 李倫,吳士龍,羅強,等. 澇漬地漁稻養(yǎng)作對區(qū)域排澇模數(shù)的影響研究[J]. 中國農(nóng)村水利水電,2017(5):9-13.
Li Lun, Wu Shilong, Luo Qiang, et al. the impact of rice-fish farming on the drainage modulus of waterlogged area[J]. China Rural Water and Hydropower, 2017(5): 9-13. (in Chinese with English abstract)
[13] 胡小軍. 稻漁共作水稻生態(tài)生理特征及優(yōu)質(zhì)高產(chǎn)無公害生產(chǎn)技術(shù)研究[D]. 揚州:揚州大學(xué),2005.
Hu Xiaojun. Study on Eco-physiological Characteristics and Techniques for High yield, Good Quality and Non-hazard of Rice in Rice-fish Culture[D]. Yangzhou: Yangzhou University, 2005. (in Chinese with English abstract)
[14] 吳本麗,陳貴生,趙慧敏,等. 巢湖地區(qū)稻蝦共作模式對稻田土壤肥力的影響[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報,2018,45(1):96-100.
Wu Benli, Chen Guisheng, Zhao Huimin, et al. Effects of the integrated rice-crayfish mode on soil fertility in chaohu lake region[J]. Journal of Anhui Agricultural University, 2018, 45(1): 96-100. (in Chinese with English abstract)
[15] 蔡晨,李谷,朱建強,等. 稻蝦輪作模式下江漢平原土壤理化性狀特征研究[J]. 土壤學(xué)報,2019,56(1):217-226.
Cai Chen, Li Gu, Zhu Jianqiang, et al. Effects of rice-crawfish rotation on soil physicochemical properties in Jianghan Plain[J]. Acta Pedologica Sinica, 2019, 56(1): 217-226. (in Chinese with English abstract)
[16] 管勤壯,成永旭,李聰,等. 稻蝦共作對土壤有機碳的影響及其與土壤性狀的關(guān)系[J]. 浙江農(nóng)業(yè)學(xué)報,2019,31(1):113-120.
Guan Qinzhuang, Cheng Yongxu, Li Cong, et al. Changes of organic carbon and relationships with soil properties in rice-crayfish coculture system[J]. Acta Agricultruae Zhejiangensis, 2019, 31(1): 113-120. (in Chinese with English abstract)
[17] 侶國涵,彭成林,徐祥玉,等. 稻-蝦共作模式對澇漬稻田土壤微生物群落多樣性及土壤肥力的影響[J]. 土壤,2016,48(3):503-509.
Si Guohan, Peng Chenglin, Xu Xiangyu, et al. Effects of rice-crafish integrated mode on soil microbial functional diversity and fertility in waterlogged paddy field[J]. Soils, 2016, 48(3): 503-509. (in Chinese with English abstract)
[18] 劉全科,周普國,朱文達,等. 稻蝦共作模式對稻田雜草的控制效果及其經(jīng)濟效益[J]. 湖北農(nóng)業(yè)科學(xué),2017,56(10):1859-1862.
Liu Quanke, Zhou Puguo, Zhu Wenda, et al. Weed control efficacy and economic benefits of rice-lobster farming in paddy rice fields[J]. Hubei Agricultural Sciences, 2017, 56(10): 1859-1862. (in Chinese with English abstract)
[19] 宋慶洋,米武娟,王斌梁,等. 稻蝦共作水體浮游植物群落結(jié)構(gòu)特征分析[J]. 水生生物學(xué)報,2019,43(2):415-422.
Song Qingyang, Mi Wujuan, Wang Binliang, et al. Characteristics of community structure of phytoplankton in the integrated rice-crayfish symbiosis farming system[J]. Acta Hydrobilogica Sinica, 2019, 43(2): 415-422. (in Chinese with English abstract)
[20] 劉赫群,李嘉堯,成永旭,等. 蝦稻共作對稻田土壤線蟲群落結(jié)構(gòu)的影響[J]. 土壤,2017,49(6):1121-1125.
Liu Hequn, Li Jiayao, Cheng Yongxu, et al. Effects of rice-crayfish co-culture on nematode communities in rice paddy soil[J]. Soils, 2017, 49(6): 1121-1125. (in Chinese with English abstract)
[21] 朱杰,劉海,吳邦魁,等. 稻蝦共作對稻田土壤nirK反硝化微生物群落結(jié)構(gòu)和多樣性的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2018,26(9):1324-1332.
Zhu Jie, Liu Hai, Wu Bangkui, et al. Effects of integrated rice-crayfish farming system on community structure and diversity of nirk denitrification microbe in paddy soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1324-1332. (in Chinese with English abstract)
[22] 王曉鵬. 盱眙縣小龍蝦稻田養(yǎng)殖技術(shù)要點[J]. 科學(xué)養(yǎng)魚,2016(9):29-30.
Wang Xiaopeng. Technical points of crayfish in rice paddy in in Xuyi County[J]. Scientific Fish Farming, 2016(9): 29-30. (in Chinese with English abstract)
[23] 周多勇,舒娜娜,王淑娟. 蝦稻共作養(yǎng)殖技術(shù)[J]. 水產(chǎn)養(yǎng)殖,2014(8):20-21.
Zhou Duoyong, Shu Nana, Wang Shujuan. Breeding technology of rice-crayfish mode[J]. Journal of Aquaculture, 2014(8): 20-21. (in Chinese with English abstract)
[24] 徐金根,王建民,曹烈,等. 蝦稻共作健康高效養(yǎng)殖技術(shù)[J]. 水產(chǎn)養(yǎng)殖,2019(3):22-24.
Xu Jingen, Wang Jianmin, Cao Lie, et al. Healthy and efficient farming technology of rice-crayfish mode[J]. Journal of Aquaculture, 2019(3): 22-24. (in Chinese with English abstract)
[25] 劉闖,陳友明. 蝦稻共作稻田設(shè)計規(guī)劃技術(shù)要點[J]. 水產(chǎn)養(yǎng)殖,2018(5):35-36.
Liu Chuang, Chen Youming. Technical points for designing rice paddy field for Crawship-Rice[J]. Journal of Aquaculture, 2018(5): 35-36. (in Chinese with English abstract)
[26] 中國漁業(yè)協(xié)會. 湖北省潛江龍蝦“蝦稻共作”技術(shù)規(guī)程:HYG02/516-2013[S]. 北京:國家標準出版社,2013.
[27] 郭長強,崔遠來,李新建,等. 廣西糖料甘蔗需水量和灌溉定額空間變異[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(8):89-97.
Guo Changqiang, Cui Yuanlai, Li Xinjian, et al. Spatial variation of sugarcane water requirement and irrigation quota in Guangxi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 89-97. (in Chinese with English abstract)
[28] 劉方平,管升明,鄧海龍,等. 鄱陽湖流域典型灌區(qū)不同區(qū)域尺度水稻灌溉定額研究[J]. 節(jié)水灌溉,2019(4):12-15.
Liu Fangping, Guan Shengming, Deng Hailong, et al. Study on rice irrigation quota at different regional scales in typical irrigated areas of Poyang Lake Basin[J]. Water Saving Irrigation, 2019(4): 12-15. (in Chinese with English abstract)
[29] 謝先紅,崔遠來,顧世祥. 云南水稻灌溉定額與農(nóng)業(yè)綜合灌溉定額的空間變異性[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(5):95-99.
Xie Xianhong, Cui Yuanlai, Gu Shixiang. Spatial variability of rice irrigation quota and comprehensive irrigation quota in Yunnan Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(5): 95-99. (in Chinese with English abstract)
[30] 商崇菊,郝志斌,袁俊,等. 貴州農(nóng)業(yè)灌溉用水定額修編實踐[J]. 灌溉排水學(xué)報,2017,36(10):122-128.
Shang Chongju, Hao Zhibin, Yuan Jun, et al. Reallocating water resources for irrigation in Guizhou Province: method and experiences[J]. Journal of Irrigation and Drainage, 2017, 36(10): 122-128. (in Chinese with English abstract)
Determination method of irrigation quota of crayfish-rice culture
Liu Luguang1,2, Wu Xia1,2, Guan Honglin1,2, Pan Shaobin1,2, Cui Yuanlai3, Dong Wei1,2, Yang Xiaowei1,2, Luo Qiang3
(1.,430070,; 2.,430070; 3.,,430072,)
In the recent years, areas of crayfish-rice culture are greatly increased in Lower-and-Middle Section of Yangtze River. This farming model has changed the structure of the field and water-use model. The determination model of irrigation quota is different from general crop and more complex. In this study, we established a method to determine irrigation quota of crayfish-rice culture. The study took Qianjiang city of Hubei Province as a case. By investigation in March 2018, we found the crayfish-rice culture in this study area was carried out in fields with crayfish ditch around the paddy field. The culture was divided into 3 stages in a year: crayfish-rice culture at growing stage of rice, crayfish-rice separate culture at growing stage of rice and non-growth stage of rice. During non-growth stage of rice, water body in the paddy field was connected with crayfish ditch. The water layer control model was established based on water balance equation during each stage to calculate irrigation quota. In addition, the quota of water change from poor to good quality was required if the irrigation water quality was poor. Thus, the total irrigation quota of crayfish-rice culture was the sum of irrigation quota at each stage and quota of water change. In 2017, the crayfish-rice culture area reached 46.7 khm2in Qianjiang city. A case study was taken as an example of application of the calculation method in Qianjiang. The field length of crayfish-rice culture was 260 m. The width was 100 m, The width of crayfish ditch was 4 m, its depth was 1.5 m, the slope was 1:1 and the ridge height was 0.5 m. The evaportanspiration of rice was calculated based on Penman-Monteith formula with meteorological data from 3 experimental stations. The other data were from these stations. Due to good water quality, we didn’t consider the water change quota. The crayfish-rice irrigation quota was calculated by the proposed determination method. According to calculation, the annual average irrigation quota of crayfish-rice culture was 12 945 m3/hm2, which was high than irrigation quota of rice. The irrigation quota of crayfish-rice culture at frequency of 50%, 75%, 85% and 90% was 13 185, 14 335, 14 925 and 15 285 m3/hm2, respectively. The irrigation quota was not greatly different among different frequency. According to, the multiyear irrigation quota of rice in this study area was 4 050 m3/hm2. According to this study, the irrigation quota during growing stage of rice was 5 370 m3/hm2, which was higher than the. It was because the irrigation quota in this study included the water for crayfish-rice culture. The investigation on this study showed that the irrigation quota of crayfish-rice culture was about 3 times of that of rice, about 12 150 m3/hm2. It was closer to our study (12 945 m3/hm2). It confirmed the practicability of proposed calculation model. The research provides a calculation method for irrigation quota determination of crayfish-rice culture, and have guiding significance for irrigation and water resources management.
irrigation; precipitation; evapotranspiration; crayfish-rice culture; water balance principle; determination method
10.11975/j.issn.1002-6819.2019.15.010
S275
A
1002-6819(2019)-15-0071-06
2019-01-20
2019-07-10
國家重點研發(fā)計劃課題(2018YFC1508305);2017年度湖北省水利廳重點科研項目(HBSLKY201710)
劉路廣,博士,從事節(jié)水灌溉與水資源優(yōu)化配置研究。Email:wlhllg814704@163.com
劉路廣,吳 瑕,關(guān)洪林,潘少斌,崔遠來,董 葦,楊小偉,羅 強. 蝦稻共作灌溉定額確定方法研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(15):71-76. doi:10.11975/j.issn.1002-6819.2019.15.010 http://www.tcsae.org
Liu Luguang, Wu Xia, Guan Honglin, Pan Shaobin, Cui Yuanlai, Dong Wei, Yang Xiaowei, Luo Qiang. Determination method of irrigation quota of crayfish-rice culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 71-76. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.010 http://www.tcsae.org