牟園偉,陸 山
(1.中國航空發(fā)動機(jī)研究院,北京101304;2.西北工業(yè)大學(xué)動力與能源學(xué)院,西安710072)
建立合理和良好的定壽方法以確定發(fā)動機(jī)零部件或系統(tǒng)壽命,是航空發(fā)動機(jī)研制的迫切需要。以渦輪盤為例,從20世紀(jì)60年代起,逐漸發(fā)展驗證了由全尺寸盤試驗給出帶可靠度的預(yù)定安全壽命定壽方法[1-4]。不同的零部件或系統(tǒng)由于使用要求和故障模式的差異,其安全壽命定壽方法也有所不同[5-10]。壽命英國國防標(biāo)準(zhǔn)DEFSTAN 00-971[11]在假設(shè)壽命服從對數(shù)正態(tài)分布的前提下,采用散度因子法處理試驗壽命,給出了輪盤基于最差試件壽命、最好試件壽命和中位壽命的安全壽命,但僅限于壽命散度等于6,即對數(shù)壽命方差滓=0.13的特殊情形;文獻(xiàn)[12]給出了壽命服從對數(shù)正態(tài)分布、基于n個子樣中任意第k次序統(tǒng)計量的試驗壽命分散系數(shù)計算公式;對于壽命分布服從威布爾分布的零件,美國空軍《航空渦噴渦扇渦軸渦槳發(fā)動機(jī)通用規(guī)范》[13]中給出了零件可靠壽命零故障試驗設(shè)計示例,其中用到置信度為90%時的2個壽命試驗設(shè)計系數(shù)表。但相關(guān)文獻(xiàn)均未給出試驗設(shè)計方法的理論公式及相應(yīng)系數(shù)表構(gòu)造方法。對此,文獻(xiàn)[14]解析該試驗設(shè)計方法的理論公式和系數(shù)表構(gòu)造方法,并給出置信度95%時的2個壽命試驗設(shè)計系數(shù)表。對于發(fā)動機(jī)系統(tǒng)或其電子器件,壽命近似服從指數(shù)分布,但還沒有文獻(xiàn)給出該類試驗設(shè)計方法。
本文擬解析該試驗設(shè)計方法的理論公式和系數(shù)表構(gòu)造方法,給出置信度為90%、95%時的2個壽命試驗設(shè)計系數(shù)表,并給出采用該方法進(jìn)行壽命可靠性試驗設(shè)計算例。
假設(shè)壽命分布服從指數(shù)分布,試驗壽命t的第k次序統(tǒng)計量 T(k)的分布函數(shù)[15]為
式中:Vn(t)為總體T作n次重復(fù)獨立觀測事件{T臆t}出現(xiàn)的次數(shù)。
次序統(tǒng)計量的密度函數(shù)等于其分布函數(shù)的1階導(dǎo)數(shù)
在k=1和k=n時,分別是最小次序統(tǒng)計量T(1)和最大次序統(tǒng)計量T(n)。
某器件母體的故障時間分布服從指數(shù)分布
式中:姿為失效率。
設(shè)(T1,T2,…Tn)為取自母體的隨機(jī)樣本,n 為子樣數(shù)。將母體故障時間分布函數(shù)與k=1代入式(2)并積分得
將母體故障時間分布函數(shù)與k=2代入式(2)并積分得
采用數(shù)學(xué)歸納法導(dǎo)出第k次序統(tǒng)計量的分布函數(shù)
令t酌為置信度1-酌時的單側(cè)置信限,可建立如下概率條件
由式(6)、(7)可得到基于第k故障試驗壽命的可靠性評估通用公式。
當(dāng)k=1時
在已知置信度1-酌、樣本數(shù)n和失效率姿條件下,可得出第1個失效試件的失效時間下限
在t1時刻,n個樣本零故障;反之,已知試驗時間、置信度和失效率也可求出所需試驗樣本數(shù)
在已知置信度1-酌、樣本數(shù)n條件下,求得方程大于0小于1的根y2,可得出第2個失效器件故障時間下限
在t2時刻,n個樣本只發(fā)生1次故障。
根據(jù)式(9)、(10)計算得出零故障試驗方案中置信度為90%時姿t1及樣本數(shù)n的系數(shù),見表1、2。從表中可見,本文結(jié)果與文獻(xiàn)[14]中給出的相應(yīng)數(shù)據(jù)幾乎一致,說明本文所推導(dǎo)公式正確,可利用其編程計算零故障或小子樣故障可靠壽命試驗設(shè)計用系數(shù)?;诘趉類故障的可靠壽命試驗設(shè)計用系數(shù)見表3、4。
表1 零故障(k=1)可靠壽命試驗設(shè)計用系數(shù)
表2 零故障(k=1)可靠壽命試驗所需樣本數(shù)
表3 基于第k故障的可靠壽命試驗設(shè)計用系數(shù)姿tk(置信度為90%)
表4 基于第k故障的可靠壽命試驗設(shè)計用系數(shù)姿tk(置信度為95%)
算例1:已知某系統(tǒng)壽命分布服從指數(shù)分布,選定子樣數(shù)n=4,置信度1-酌=95%,系統(tǒng)在t=50 h時,可靠度R=99.9%,要求確定最短零故障試驗時間。
壽命指數(shù)分布可靠度為
該系統(tǒng)壽命在50 h時,可靠度目標(biāo)是99.9%,即R(50)=99.9%。由式(14)解出對應(yīng)的失效率為2.001×10-5。由表4查得子樣數(shù)為4時,姿t1=0.749,t1=37431.3,第1個失效系統(tǒng)的失效時間下限為37431.3。因此,為了滿足50 h時可靠度R=99.9%,必須將4套系統(tǒng)試驗到37431.3 h,而沒有1套系統(tǒng)發(fā)生故障,則試驗通過。
算例2:已知某器件壽命分布為指數(shù)分布,子樣數(shù)為20,置信度為90%,失效數(shù)為5,試驗時間為1000 h,求可靠度為99%時的器件壽命。
已知第6個失效器件的失效時間下限為1000 h,則t6=1000,由表3查得子樣數(shù)為20時,姿t6=0.536,姿=0.536×10-3,由式(14)得出可靠度為99%時的器件壽命為18.8 h。
算例3:已知某批器件壽命分布服從指數(shù)分布,子樣數(shù)為10,試驗時間為10000 h,要求可靠度為99%,置信度為0.95的壽命為100 h,估計可以接受此批器件的故障數(shù)最大值。
已知R(100)=99%,由式(14)得出失效率為1.005×10-4,tk=10000,姿tk=1.005。由表 4 查得子樣數(shù)為 10 時,姿t4=0.933,姿t5=1.192,4 (1)推導(dǎo)了壽命服從指數(shù)分布時,基于第k次序統(tǒng)計量的試驗壽命可靠性理論計算公式。通過在給定參數(shù)下計算所得的結(jié)果與文獻(xiàn)[14]中的相應(yīng)值進(jìn)行比較,驗證了計算公式的正確性,并通過算例說明了該公式在可靠壽命試驗設(shè)計中的應(yīng)用。 (2)給出了置信度為90%、95%時基于第k次序統(tǒng)計量的可靠壽命試驗設(shè)計評估表。在給定置信度、破壞數(shù)、可靠度、試驗截止時間、樣本數(shù)的情況下,根據(jù)該評估表可確定試驗對象的可靠壽命,也可以給定可靠壽命反推試驗截止時間或者其故障數(shù)。綜合考慮試驗件數(shù)量及試驗時間,可對壽命可靠性試驗進(jìn)行成本優(yōu)化設(shè)計。4 結(jié)論