亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        埋地式無(wú)線傳感器的磁感應(yīng)通信天線模型

        2019-09-10 03:57:18董玉瑩郝建軍牟永飛
        關(guān)鍵詞:鐵氧體

        董玉瑩 郝建軍 牟永飛

        摘 要:磁感應(yīng)通信方式由于其傳播特性不受介質(zhì)電學(xué)特性影響、無(wú)多徑效應(yīng)、天線尺寸小等優(yōu)點(diǎn),非常適合在地層介質(zhì)中或水下環(huán)境傳輸信號(hào)使用。然而其在近場(chǎng)衰減快的特點(diǎn),也限制了傳輸距離。為增加通信距離,在Zhi Sun超材料天線模型的基礎(chǔ)上,提出了一種改進(jìn)的小型超材料天線模型,即在螺旋線圈內(nèi)部增加鐵氧體棒,隨后又對(duì)球形超材料殼內(nèi)用弱磁材料進(jìn)行了填充。用Comsol對(duì)此模型進(jìn)行了仿真,并比較了大半徑線圈模型、大半徑鐵氧體模型、小半徑超材料模型以及改進(jìn)的小半徑超材料模型在不同的填充物條件下接收端天線感應(yīng)的磁場(chǎng)強(qiáng)度。仿真結(jié)果表明相同傳播距離條件下,改進(jìn)的小半徑超材料天線方案的磁通信系統(tǒng)的接收端天線處的磁場(chǎng)強(qiáng)度最高;如果只對(duì)接收磁天線超材料殼內(nèi)加填充材料而發(fā)送端天線殼內(nèi)不加填充材料的情況下,改進(jìn)的小型超材料天線模型的接收天線處耦合磁場(chǎng)強(qiáng)度相比大半徑的線圈模型時(shí)接收天線的磁耦合強(qiáng)度提高了約20 dB.

        關(guān)鍵詞:磁感應(yīng)通信;超材料;鐵氧體;埋地式無(wú)線傳感器

        中圖分類號(hào):TN 929 文獻(xiàn)標(biāo)志碼:A

        DOI:10.13800/j.cnki.xakjdxxb.2019.0319 文章編號(hào):1672-9315(2019)03-0522-07

        Abstract:Due to its advantages of being immune to propagation medium’s electrical characteristics and multi-path effect with small-sized antenna, magnetic induction communications are suitable for signal transmission in underground or underwater. However, fast propagation attenuation in near field limits its transmission distance. Aimed at increasing its communication range, an improved antenna model based on metamaterials, i.e., a model with a coil wound on ferrite rod in spiral is proposed. And further spherical metamaterial shell is filled with weak-magnetic material. The model is simulated using Comsol. The magnetic fields induced by the large radius coil model, the large radius coil with ferrite rod model, the small radius metamaterial model and the improved small radius metamaterial model with different fillings compared respectively. Simulation results show that the magnetic field intensity induced by the improved small radius metamaterial antenna model is the highest among aforementioned 4 models. And when the receiver antenna are filled with the weak-magnetic materials while the sender antenna filled nothing, the magnetic field intensity in receiver end induced by the improved small-sized metamaterial antenna model is enhanced by about 20dB of compared to that of the large radius coil antenna.Key words:megnetic induction communication;metamaterial;ferrite;buried wireless sensor

        0 引 言

        在煤礦的地下開采過(guò)程中,時(shí)常會(huì)面臨著冒頂、透水、火災(zāi)、瓦斯突出等災(zāi)害[1-2],為預(yù)防可能發(fā)生的危險(xiǎn),必須加強(qiáng)對(duì)頂板壓力、煤層內(nèi)部溫度、瓦斯?jié)舛鹊惹闆r的監(jiān)測(cè),這需要預(yù)先埋設(shè)傳感器到頂板、側(cè)壁和煤層當(dāng)中,由于有線通信方式的局限,這些傳感器和數(shù)據(jù)采集裝置最好以無(wú)線通信的方式構(gòu)成網(wǎng)絡(luò)并與巷道的通信設(shè)備通信[3-4]。然而以電磁波為載波的無(wú)線地下傳感器網(wǎng)絡(luò)由于其信號(hào)在含水分的地層介質(zhì)中存在著傳播損耗巨大、信道不穩(wěn)定以及天線尺寸大等缺點(diǎn)[5-6],不適合用于無(wú)線傳感器網(wǎng)絡(luò)的節(jié)點(diǎn)間通信。相比電磁波,使用磁信號(hào)為載體的通信其信道環(huán)境相對(duì)穩(wěn)定,不受地層介質(zhì)含水率的影響,也沒(méi)有多徑效應(yīng)導(dǎo)致的信號(hào)衰落,非常適合用于無(wú)線地下傳感器網(wǎng)絡(luò)節(jié)點(diǎn)間的通信[7-9]。但作為信號(hào)載體的磁場(chǎng)強(qiáng)度在近場(chǎng)傳播衰減快,這極大地限制了磁感應(yīng)方式的通信距離。磁感應(yīng)通信方面的研究最早始于上世紀(jì)末的低頻透地通信,由于要穿透幾百米的地層,這種透地通信方式的使用頻率很低,這就需要使用尺寸巨大的環(huán)形天線[10-11]。2010年,Zhi Sun等人建立了無(wú)線地下磁感應(yīng)信道模型[12-13],并從路徑損耗和帶寬等方面與電磁波通信進(jìn)行對(duì)比,驗(yàn)證了其可行性。為了擴(kuò)大通信距離,他又提出了磁感應(yīng)波導(dǎo)技術(shù)[14-17],即在收發(fā)端之間部署多個(gè)相互耦合的中繼線圈。2013年,Seok Baede等人提出了一個(gè)小型的脈沖鐵氧體磁場(chǎng)發(fā)生器來(lái)擴(kuò)大通信距離[18]。鐵氧體磁芯圓柱采用具有高磁導(dǎo)率和低磁損耗的錳鋅材料,可通過(guò)聚合線圈天線周圍的磁場(chǎng)擴(kuò)大通信距離。2016年,Zhi Sun等人提出了一個(gè)超材料增強(qiáng)型的磁感應(yīng)機(jī)制[19]。磁感應(yīng)收發(fā)端的天線線圈被一層超材料的球形外殼包圍,這一層超材料外殼的磁導(dǎo)率為負(fù)數(shù),可以有效地增加線圈周圍的磁場(chǎng)。為進(jìn)一步延長(zhǎng)磁感應(yīng)通信的距離,主要從增強(qiáng)磁場(chǎng)強(qiáng)度的角度出發(fā),提出了改進(jìn)的小型超材料天線模型。

        1 改進(jìn)的超材料天線模型超材料[20-21]是一種人工復(fù)合媒質(zhì),具有天然常規(guī)介質(zhì)不具備的超常的物理特性,主要有左手材(雙負(fù)介質(zhì))和單負(fù)介質(zhì)[22-25](負(fù)介電或負(fù)磁導(dǎo)),具有放大消逝波、電磁隱身等優(yōu)點(diǎn)。文中所用超材料是一種磁導(dǎo)率為負(fù)數(shù)的單負(fù)介質(zhì)。普通的磁通信模型[26-27]是采用2個(gè)相互耦合的空芯線圈構(gòu)成磁感應(yīng)信號(hào)收發(fā)裝置,發(fā)射線圈和接收線圈處于同心位置,其中心軸線與地面平行。如果在收發(fā)線圈外部都增加一層超材料球殼,會(huì)使磁感應(yīng)信號(hào)穿過(guò)超材料層后能夠增強(qiáng)電磁波近場(chǎng)的磁場(chǎng)分量,也就是說(shuō)提高了接收端的磁場(chǎng)強(qiáng)度。其等效電路如圖1所示。其中Rc為線圈電阻,Ω;Ls為線圈自感的實(shí)部,H;Lx為線圈自感的虛部,H;C為用于調(diào)諧電路諧振的補(bǔ)償電容,F(xiàn);Rl為接收器負(fù)載,Ω;Vg為信號(hào)源的電壓,V;M為2個(gè)相鄰線圈之間的互感,H.補(bǔ)償電容取值為C=1ω20Ls;ω0=2πf,f為線圈的諧振頻率。同時(shí),普通的磁通信由于沒(méi)有超材料的放大作用,其自感虛部Lx≈0.

        4 結(jié) 論

        1)在發(fā)射端的線圈內(nèi)增加鐵氧體磁芯棒能夠增強(qiáng)其接收端的磁場(chǎng)強(qiáng)度。2)收發(fā)端球形外殼內(nèi)填充物的不同也會(huì)影響接受端的磁場(chǎng)強(qiáng)度。選擇只對(duì)接收端的球形外殼內(nèi)添加相對(duì)磁導(dǎo)率為5的弱磁材料,該改進(jìn)的小型超材料天線模型接收端的磁場(chǎng)強(qiáng)度比大半徑的線圈模型增加約20 dB,比大半徑的鐵氧體模型增加約18 dB,比超材料模型增加約8 dB.因此在相同磁場(chǎng)強(qiáng)度下,改進(jìn)的小型超材料天線模型的通信距離更遠(yuǎn)。

        參考文獻(xiàn)(References):

        [1] 牛 超,施龍青,肖樂(lè)樂(lè),等.2001—2013年煤礦生產(chǎn)事故分類研究[J].煤礦安全,2015,46(3):208-211.NIU Chao,SHI Long-qing,XIAO Le-le,et al.Study on accidents classification of coal mine from 2001 to 2013[J].Safety in Coal Mines,2015,46(3):208-211.

        [2]孫繼平.煤礦安全生產(chǎn)監(jiān)控與通信技術(shù)[J].煤炭學(xué)報(bào),2010,35(11):1925-1929.SUN Ji-ping.Technologies of monitoring and communication in the coal mine[J].Journal of China Coal Society,2010,35(11):1925-1929.

        [3]鄭學(xué)召.礦井救援無(wú)線多媒體通信關(guān)鍵技術(shù)研究[D].西安:西安科技大學(xué),2013.ZHENG Xue-zhao.Research on key technology of wireless multimedia communication for mine rescue[D].Xi’an:Xi’an University of Science and Technology,2013.

        [4]王偉峰,侯媛彬,李珍寶,等.煤巖介質(zhì)中無(wú)線通信頻率及衰減機(jī)制研究[J].西安科技大學(xué)學(xué)報(bào),2016,36(4):577-582.WANG Wei-feng,HOU Yuan-bin,LI Zhen-bao,et al.Radio frequency and attenuation mechanism in coal and rock medium[J].Journal of Xi’an University of Science and Technology,2016,36(4):577-582.

        [5]Yan L,Waynert J A,Sunderman C.Measurements and modeling of through-the-earth communications for coal mines[C]//IEEE Industry Applications Society Annual Meeting,2012,12:1-6.

        [6]Akyildiz I F,Stuntebeck E P.Wireless underground sensor networks:research challenges[J].Ad Hoc Networks Journal(Elsevier),2006(7):669-686.

        [7]孫彥景,徐 勝,施文娟,等.無(wú)線地下磁感應(yīng)通信系統(tǒng)研究與實(shí)現(xiàn)[J].傳感技術(shù)學(xué)報(bào),2017,30(6):904-908.SUN Yan-jing,XU Sheng,SHI Wen-juan,et al.Analysis and implementation of magnetic induction wireless underground communication system[J].Chinese Journal of Sensors and Actuators,2017,30(6):904-908.[8]Guo H,Sun Z.Channel and energy modeling for self-contained wireless sensor networks in oil reservoirs[J].IEEE Transactions on Wireless Communications,2014,13(4):2258-2269.

        [9]Gulbahar B,Akan O B.A communicatiion theoretical modeling and analysis of underwater magneto-inductive wireless channels[J].IEEE Transactions on Wirelss Communications,2012,11(9):3326-3334.[10]郝建軍,孫曉晨.幾種透地通信技術(shù)的分析與對(duì)比[J].湖南科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,29(1):59-63.HAO Jian-jun,SUN Xiao-chen.Analysis and comparison of several through-the-earth communication technologies for mining[J].Journal of Hunan University of Science & Technology(Natural Science Edition),2014,29(1):59-63.[11]陳二虎.礦井透地?zé)o線通信系統(tǒng)的研究與設(shè)計(jì)[D].西安:西安電子科技大學(xué),2012.CHEN Er-hu.Research and design of mine through the earth wireless communication system[D].Xi’an:Xidian University,2012.

        [12]Li L,Vuran M C,Akyildiz I F.Characteristics of underground channel for wireless underground sensor networks[C]//Proceedings of the Sixth Annual Mediterranean Ad Hoc Networking WorkShop,Corfu,2007:92-99.[13]Tan X,Sun Z,Akyildiz I F.Wireless underground sensor networks:MI-based communication systems for underground applications[J].IEEE Antennas &Propagation Magazine,2015,57(4):74-78.

        [14]Akyildiz I F,Sun Z,Vuran M C.Signal propagation techniques for wireless underground communication networks[J].Physical Communication,2009,2(3):67-183.

        [15]李 波,郝 杰,李開放,等.采用波導(dǎo)技術(shù)的地下傳感網(wǎng)通信信道建模[J].西安科技大學(xué)學(xué)報(bào),2018,38(6):1036-1040.LI Bo,HAO Jie,LI Kai-fang,et al.Communication channel modeling of underground sensing network using waveguide technology[J].Journal of Xi’an University of Science and Technology,2018,38(6):1036-1040.

        [16]Sun Z,Akyildiz I F.Magnetic induction communication for wireless underground sensor networks[J].IEEE Transcations on Antennas and Propagation,2010,58(7):2426-2435.

        [17]Domingo M C.Magnetic induction for underwater wireless communication networks[J].IEEE Transcations on Antennas & Propagation,2012,60(6):2929-2939.

        [18]Bae S,Hong Y K,Lee J.Pulsed ferrite magnetic field generator for through-the-earth communication systems for disaster situation in mines[J].Journal of Magnetics,2013,18(1):43-49.

        [19]Guo H Z,Sun Z,Sun J B,et al.M2I:channel modeling for metamaterial-enhanced magnetic induction communications[J].IEEE Transcations on Antennas & Propagation,2015,63(11):5072-5087.

        [20]Sharma P,Meena R S,Bhatia D.Analytical channel model for double layer metamaterial-improved magnetic induction communication[C]//IEEE International Conference on Advances in Computing,Communications and Informatics,2017:618-622.

        [21]呂建紅.電磁超材料的電磁特性及其基于光學(xué)變換理論的應(yīng)用[D].武漢:華中科技大學(xué),2010.LV Jian-hong.The electromagnetic characteristics of electromagnetic metamaterials and its application based on optical transformation[D].Wuhan:Huazhong University of Science & Technology,2010.

        [22]李 揚(yáng),劉傳寶,周 濟(jì),等.超材料隱身理論應(yīng)用于多物理場(chǎng)的研究進(jìn)展[J].中國(guó)材料進(jìn)展,2019,38(1):30-40.LI Yang,LIU Chuan-bao,ZHOU Ji,et al.Progress of metamaterial cloaking in multiple physical fields[J].Materials China,2019,38(1):30-40.

        [23]Pendry J B,Holden A J,Stewart W j,et al.Extremely low frequency plasmons in metallic mesostructure[J].Physical Review Letters,1996,76(20):4773-4776.

        [24]Pendry J B,Holden A.J,Robbins D J,et al.Low frequency plasmons in thin-wire structures[J].Journal of Physics Condensed Matter,1998(10):4785-4809.

        [25]劉凌云,劉力鑫,張治藍(lán),等.電磁超材料增強(qiáng)無(wú)線電能傳輸效率研究[J].湖北工業(yè)大學(xué)學(xué)報(bào),2018,33(1):1-4.LIU Ling-yun,LIU Li-xin,ZHANG Zhi-lan,et al.Transmission efficiency of electromagnetic metamaterial enhancing wireless power transmission system[J].Journal of Hubei University of Technology,2018,33(1):1-4.

        [26]謝 璐,楊玉華,單彥虎,等.應(yīng)用于無(wú)線地下傳感器網(wǎng)絡(luò)的磁通信電路分析[J].儀表技術(shù)與傳感器,2016(8):123-126.XIE Lu,YANG Yu-hua,SHAN Yan-hu,et al.Analysis of magnetic induction communication circuit for wireless underground sensor network[J].Instrument Technology and Sensor,2016(8):123-126.

        [27]馬 靜.地表下近場(chǎng)磁感通信傳播特性研究[D].北京:北京科技大學(xué),2016.MA Jing.Research on underground near-field magneto-inductive propagation characteristics[D].Beijing:University of Science & Technology Beijing,2016.

        [28]王 鵬,陶晉宜,賈雨龍.基于FEKO無(wú)線透地通信天線電磁特性的探究[J].微波學(xué)報(bào),2016,32(1):70-74.WANG Peng,TAO Jin-yi,JIA Yu-long.The exploration of antenna about electromagnetic properties of the wireless through-the-earth communication based on FEKO[J].Journal of Microwave,2016,32(1):70-74.

        [29]馬 寧,王新剛,廖 斌.基于鐵氧體材料的小型螺旋天線的仿真設(shè)計(jì)[J].真空電子技術(shù),2013(5):45-48.MA Ning,WANG Xin-gang,LIAO Bin.Simulation design of small size ferrite spiral antenna[J].Vacuum Electronics,2013(5):45-48.

        猜你喜歡
        鐵氧體
        四川省重大科技專項(xiàng)成果—柔性鐵氧體實(shí)現(xiàn)產(chǎn)業(yè)化
        單個(gè)鐵氧體磨粒尺寸檢測(cè)電磁仿真
        再生膠的制備及性能研究
        硼添加對(duì)BaFe12O19鋇鐵氧體磁性能的影響
        Fenton-鐵氧體法處理含銅模擬廢水的研究
        稀土元素?fù)诫s鋇鐵氧體的性能研究進(jìn)展
        鐵氧體吸波性能的研究與進(jìn)展
        鐵氧體復(fù)合材料研究進(jìn)展
        Sm-Co共摻雜鍶鐵氧體的固相制備與磁防蠟性能
        溫和條件下元素對(duì)M2+/Fe2+/Fe3+-LDHs轉(zhuǎn)化成尖晶石鐵氧體過(guò)程的影響
        丰满爆乳在线播放| 久久午夜av一区二区| 多毛小伙内射老太婆| 亚洲亚洲人成综合网络| 在线视频制服丝袜中文字幕| 国产福利一区二区三区视频在线看| 日本a级黄片免费观看| 少妇愉情理伦片| 精品欧美一区二区在线观看| 色人阁第四色视频合集网| 亚洲精品在线视频一区二区| 成人国产精品一区二区网站公司| 人人妻人人澡人人爽人人精品电影| 免费无码黄网站在线观看| av免费资源在线观看| 山外人精品影院| 男女啪动最猛动态图| 日产精品久久久久久久| 亚洲中文字幕有码av| 久久一道精品一区三区| 精品久久久久成人码免费动漫| 日本a在线看| 久久精品亚洲乱码伦伦中文| 红桃av一区二区三区在线无码av| 老熟妇乱子伦av| 日本高清色惰www在线视频| 日本一区二区三区清视频| 亚洲中文字幕久久精品无码a| 亚洲日本va中文字幕久久| 亚洲精品一区二区三区av| 国产在线观看91一区二区三区| 国产精品一区二区久久不卡| 人妻少妇无码中文幕久久| 亚洲专区路线一路线二网| 亚洲国产成人精品无码区在线秒播 | 国产成+人欧美+综合在线观看 | 天天插视频| 日日噜噜噜夜夜狠狠久久蜜桃| 国产精品无码久久综合| 日本一区不卡在线| 尤物成av人片在线观看|