蒙玉嬌 陳朝霞 王燕 趙京霞 底婷婷 張金超 林燕 李萍
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(81774328)作者簡(jiǎn)介:蒙玉嬌(1989.01—),女,博士研究生在讀,研究方向:中醫(yī)藥治療炎性反應(yīng)性皮膚疾病,E-mail:meng.yu.jiao@163.com通信作者:李萍(1965.04—),女,博士,研究員,博士研究生導(dǎo)師,研究方向:中醫(yī)藥治療炎癥性皮膚疾病,E-mail:liping411@163.com
摘要 慢性皮膚潰瘍是外科常見病及多發(fā)病,治療周期長(zhǎng)且臨床治療效果不理想,尋求有效的治療藥物和方法是研究熱點(diǎn)。間充質(zhì)干細(xì)胞由于低免疫原性、多項(xiàng)分化潛能、來源廣泛等優(yōu)勢(shì),其通過旁分泌/自分泌效應(yīng)和向類皮細(xì)胞分化等功能參與創(chuàng)面修復(fù)的多個(gè)環(huán)節(jié),為促進(jìn)難愈性創(chuàng)面的愈合提供了新的手段,在臨床得到廣泛應(yīng)用和研究。作者對(duì)間充質(zhì)干細(xì)胞在慢性皮膚潰瘍創(chuàng)面愈合中的作用及中醫(yī)藥的調(diào)節(jié)功能進(jìn)行綜述,為臨床和基礎(chǔ)研究提供證據(jù)。
關(guān)鍵詞 慢性皮膚潰瘍;創(chuàng)面愈合;間充質(zhì)干細(xì)胞;旁分泌/自分泌;多項(xiàng)分化;中醫(yī)藥;療效;綜述
Research Progress Study on Mesenchymal Stem Cells Treatment on Chronic Skin Ulcer and Regulation of Traditional Chinese Medicine
Meng Yujiao1,2,Chen Zhaoxia1,Wang Yan1,Zhao Jingxia1,Di Tingting1,Zhang Jinchao1,Lin Yan1,Li Ping1
Abstract Chronic skin ulcer is a common and frequently-occurring disease.The treatment period is long and the clinical treatment effect is not ideal.It is a research hotspot to seek effective therapeutic drugs and methods.Mesenchymal stem cells(MSCs)participate in multiple aspects of wound repair through the functions of low immunogenicity,multiple differentiation potentials,and wide sources,etc.,through the functions of paracrine/autocrine effect and differentiation to epithelial cells,in order to promote refractory wounds.The healing provides a new means of clinical application and research.The authors reviewed the role of MSCs in the healing of chronic skin ulcer wounds and the regulatory functions of Traditional Chinese Medicine,providing evidence for clinical and basic research.
Key Words Chronic skin ulcer; Wound healing; MSCs; Paracrine/autocrine; Differentiation; Traditional Chinese medicine; Efficacy; Review
中圖分類號(hào):R277.5文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2019.11.060
慢性皮膚潰瘍屬于中醫(yī)“瘡瘍”的范疇,是糖尿病、周圍血管病、微生物感染、放療等常見的并發(fā)癥,是外科常見病及多發(fā)病,因其病因復(fù)雜、遷延不愈、易復(fù)發(fā)等特點(diǎn),一直是外科領(lǐng)域頗為棘手的難題。目前臨床上針對(duì)創(chuàng)面主要采用清創(chuàng)、換藥、植皮、激光、高壓氧、干細(xì)胞移植等方法,并配合系統(tǒng)的維持治療,臨床療效不理想。國內(nèi)外眾多學(xué)者都在積極探討影響慢性皮膚潰瘍愈合的因素,尋求有效的治療藥物和方法。隨著細(xì)胞和分子生物學(xué)技術(shù)研究的不斷深入,來源于發(fā)育早期中胚層的間充質(zhì)干細(xì)胞作為創(chuàng)面修復(fù)的種子細(xì)胞,越來越受到廣泛關(guān)注[1]。
1 間充質(zhì)干細(xì)胞在慢性皮膚潰瘍愈合中的作用
創(chuàng)傷修復(fù)是個(gè)復(fù)雜而又有序的病理生理過程,可劃分為3個(gè)階段:炎性反應(yīng)期、增生期和重建期。在每個(gè)時(shí)期都有大量的細(xì)胞、細(xì)胞外基質(zhì)、細(xì)胞因子的參與,任何影響創(chuàng)面修復(fù)過程的因素都可能最終導(dǎo)致創(chuàng)面難以愈合[2]。在參與創(chuàng)傷修復(fù)的眾多細(xì)胞中,間充質(zhì)干細(xì)胞具有調(diào)節(jié)免疫功能、低免疫原性、自我復(fù)制和更新及多向分化潛能等優(yōu)點(diǎn),是國內(nèi)外學(xué)者研究的重點(diǎn)和熱點(diǎn)[3]。
1.1 間充質(zhì)干細(xì)胞是創(chuàng)面愈合過程的“核心” 間充質(zhì)干細(xì)胞(Mesenchymal Stem Cells,MSCs)是一種具有自我更新和多向分化潛力、并且已被證實(shí)能加速皮膚傷口愈合的成體多能干細(xì)胞[4]。在創(chuàng)面愈合過程中,內(nèi)源性MSCs通過募集趨化、旁分泌/自分泌和轉(zhuǎn)分化效應(yīng)調(diào)控創(chuàng)面愈合的整個(gè)過程[4],包括1)促進(jìn)血管生成因子分泌和血管生成;2)促進(jìn)肉芽組織形成;3)誘導(dǎo)M2型巨噬細(xì)胞極化;4)促進(jìn)創(chuàng)面炎性反應(yīng)消退;5)調(diào)節(jié)內(nèi)源性干/祖細(xì)胞募集歸巢、細(xì)胞外基質(zhì)重塑;6)刺激具有正常結(jié)構(gòu)和功能的皮膚再生等,具有治療皮膚潰瘍的潛在價(jià)值[3]?;陂g充質(zhì)干細(xì)胞對(duì)整個(gè)愈合過程不可替代的調(diào)控作用,目前間充質(zhì)干細(xì)胞已被定義為創(chuàng)面愈合過程的“核心”[4-6]。見圖1。
1.2 慢性皮膚潰瘍愈合遲緩與MSCs的募集、增殖及趨化遷移等功能受損密切相關(guān) 大量臨床及基礎(chǔ)實(shí)驗(yàn)表明,慢性創(chuàng)面愈合延遲與內(nèi)源性MSCs的募集、存活、增殖及趨化、遷移等功能受損密切相關(guān)。與普通傷口比較,在患者和動(dòng)物的慢性難愈合傷口中MSCs處于數(shù)量缺乏和功能缺陷的狀態(tài)[7-9]。并且,糖尿病引起的創(chuàng)面延遲愈合與MSCs向受傷部位的遷移和募集減少具有密切關(guān)系[10-12],有文獻(xiàn)報(bào)道,MSCs損傷是糖尿病的主要并發(fā)癥之一[13]。動(dòng)物研究證實(shí),在實(shí)驗(yàn)性糖尿病動(dòng)物模型中MSCs的細(xì)胞活力降低、增殖減少,細(xì)胞骨架組織改變,并且多向分化潛能偏向于脂滴形成,釋放細(xì)胞因子和抗凋亡能力明顯受損,形成細(xì)胞集落的能力差且出現(xiàn)生長(zhǎng)抑制的時(shí)間早[14-16]。骨髓是MSCs的重要來源,骨髓中的MSCs含量最為豐富且增殖能力強(qiáng)[17]。db/db糖尿病小鼠骨髓MSCs增殖活力較正常小鼠顯著降低[12]。慢性難愈性創(chuàng)面患者的干細(xì)胞募集反應(yīng)檢測(cè)結(jié)果顯示,內(nèi)源性骨髓MSCs數(shù)量較少并且存在募集、遷移等功能失調(diào)[18]。同時(shí),在難愈合創(chuàng)面中超極化的巨噬細(xì)胞無法向親愈合的M2表型轉(zhuǎn)換,與MSCs功能障礙也有關(guān)[19]。因此,改善創(chuàng)面微環(huán)境、提高M(jìn)SCs活性,促進(jìn)其增殖和遷移等能力,可以加速創(chuàng)面愈合。
1.3 慢性難愈合性潰瘍創(chuàng)面局部MSCs的存活能力及旁分泌/自分泌功能降低 基于MSCs促進(jìn)血管內(nèi)皮細(xì)胞增殖和血管新生的功能,目前外源性MSCs在慢性難愈合傷口的植入成為慢性皮膚潰瘍治療的方法之一。然而多項(xiàng)研究表明,在慢性創(chuàng)面中,尤其是糖尿病創(chuàng)面處植入的MSCs增殖和存活率很低[20],并且在愈合過程中持續(xù)減少,需要多次重復(fù)注射或者加入MSCs外泌體或誘導(dǎo)劑才能保持其存活率,但仍達(dá)不到理想的臨床療效[21]。究其原因,在難愈合性皮膚潰瘍中,尤其中醫(yī)屬“陰瘡”的潰瘍,開放性的創(chuàng)面呈現(xiàn)一種持續(xù)的低反應(yīng)的炎性反應(yīng)狀態(tài),各種炎性因子、活性氧、基質(zhì)金屬蛋白酶及各種代謝產(chǎn)物導(dǎo)致創(chuàng)面微環(huán)境復(fù)雜,均可導(dǎo)致外源性MSCs的存活率較低及MSCs分泌功能降低[22]。
一方面,在難愈合創(chuàng)面中,創(chuàng)面M1型巨噬細(xì)胞及其分泌的高濃度的TNF-α、活性氧可顯著減少M(fèi)SCs數(shù)量,增加MSCs的凋亡[23];而MSCs數(shù)量的減少及旁分泌/自分泌功能的降低,又使M1型巨噬細(xì)胞無法向M2型轉(zhuǎn)換,并且影響血管內(nèi)皮細(xì)胞和成纖維細(xì)胞的募集[24],如此形成惡性循環(huán);并且,MSCs向內(nèi)皮細(xì)胞的成功分化也依賴于M2型巨噬細(xì)胞來源的VEGF[25]。因此,除了調(diào)節(jié)創(chuàng)面微環(huán)境之外,動(dòng)員自身的MSCs向傷口遷移,提高傷口局部MSCs的分泌功能,保留內(nèi)源性MSCs并最大化提高其功能和再生能力,可成為中醫(yī)藥治療“陰瘡”的作用靶點(diǎn)之一。
1.4 SDF-1/CXCR4信號(hào)軸貫穿MSCs遷移、擴(kuò)增及分泌的過程,介導(dǎo)組織修復(fù) 基質(zhì)細(xì)胞衍生因子1(Stromal Derived Factor-1,SDF-1)是一種炎性趨化因子,系統(tǒng)命名為CXCL12(CXC Chemokine Ligand 12,CXCL12)。SDF-1是唯一能與CXC趨化因子受體(CXC Chemokine Receptor,CXCR)4結(jié)合并激活的天然趨化因子,SDF-1與CXCR4特異性結(jié)合稱之為SDF-1/CXCR4軸。SDF-1/CXCR4軸在間充質(zhì)干細(xì)胞的動(dòng)員、遷移、增殖和存活中起著至關(guān)重要的作用[26-29]。在創(chuàng)傷愈合過程中,研究表明,SDF-1/CXCR4軸在MSCs向損傷部位遷移中具有重要作用,因?yàn)楫?dāng)SDF-1信號(hào)受損時(shí),遷移活動(dòng)將無法進(jìn)行[30]。在SDF-1的作用下,MSCs表達(dá)30多種差異基因,其中11種都參與了細(xì)胞運(yùn)動(dòng)[31]。同時(shí),SDF-1/CXCR4信號(hào)軸誘導(dǎo)MSCs遷移到創(chuàng)傷部位,并誘導(dǎo)其分泌多種生長(zhǎng)因子如血管內(nèi)皮生長(zhǎng)因子、促纖維生長(zhǎng)因子和轉(zhuǎn)化生長(zhǎng)因子β等,形成許多血管網(wǎng),參與傷口的修復(fù),而阻斷CXCR4后這種作用減弱[26]。
在組織修復(fù)過程中,SDF-1主要由MSCs和損傷組織分泌,其受體廣泛表達(dá)于內(nèi)皮細(xì)胞、巨噬細(xì)胞、干細(xì)胞及損傷組織等[32,33]。MSCs來源的SDF-1具有抗細(xì)胞凋亡、促進(jìn)干細(xì)胞轉(zhuǎn)分化、誘導(dǎo)遷移、募集內(nèi)皮細(xì)胞和巨噬細(xì)胞的作用,并且MSCs來源的SDF-1通過自分泌的方式可顯著提高創(chuàng)面局部MSCs的存活和分泌功能。而損傷部位來源的SDF-1可募集和加速M(fèi)SCs向損傷部位的遷移,進(jìn)一步放大MSCs的旁分泌效應(yīng)[34]。因此,調(diào)節(jié)SDF-1、CXCR4蛋白表達(dá),調(diào)控SDF-1/CXCR4信號(hào)軸是促進(jìn)MSCs遷移、擴(kuò)增及分泌,介導(dǎo)組織修復(fù)的途徑之一。
2 中醫(yī)藥調(diào)控MSCs功能,促進(jìn)創(chuàng)面修復(fù)
中醫(yī)藥治療慢性皮膚潰瘍歷史悠久,療效頗佳。研究發(fā)現(xiàn),中藥對(duì)MSCs的遷移、增殖等功能均具有調(diào)節(jié)作用。麝香的有效成分麝香酮、淫羊藿的有效成分淫羊藿苷,可調(diào)節(jié)SDF-1/CXCR4信號(hào)通路,促進(jìn)骨髓MSCs的存活、增殖和遷移[35]。吳剛[36]等對(duì)補(bǔ)腎活血湯聯(lián)合骨髓MSCs治療大鼠膝關(guān)節(jié)炎的研究中發(fā)現(xiàn),補(bǔ)腎活血湯促進(jìn)骨髓MSCs體外遷移與定向分化。朱磊[37]在健脾補(bǔ)腎、清腸化濕治療潰瘍性結(jié)腸炎的研究中發(fā)現(xiàn),健脾補(bǔ)腎清腸化濕方可以促進(jìn)骨髓MSCs歸巢方,減輕炎性反應(yīng)、修復(fù)受損黏膜。補(bǔ)腎類中藥巴戟天、杜仲、鹿茸等含有的活性物質(zhì),可以促進(jìn)骨髓MSCs增殖和定向分化[38]?;仃柹》绞桥R床治療難愈性創(chuàng)面的臨床有效方,目前復(fù)方對(duì)MSCs作用的研究尚無報(bào)道,然而方中組成藥物對(duì)MSCs的調(diào)節(jié)作用,也已有大量文獻(xiàn)證實(shí)。李高申等對(duì)活血生肌湯聯(lián)合干細(xì)胞移植干預(yù)糖尿病足的研究中發(fā)現(xiàn),活血生肌湯可以促進(jìn)干細(xì)胞移植后的增值和分化,達(dá)到促加速血管新生、建立側(cè)支循環(huán)的作用。補(bǔ)益類中藥黃芪、丹參等可促進(jìn)MSCs的增殖。牛膝提取物能夠促進(jìn)骨髓MSCs增殖并抑制其凋亡[39]。
3 結(jié)語
在創(chuàng)面修復(fù)進(jìn)程中,MSCs的活性、增值、遷移和分化,均是創(chuàng)面修復(fù)的關(guān)鍵,中藥可通過調(diào)節(jié)MSCs功能,減輕局部炎性反應(yīng),為創(chuàng)面修復(fù)提供良好的生物環(huán)境。因此,調(diào)節(jié)MSCs的功能也可作為難愈合性創(chuàng)面治療及中醫(yī)藥干預(yù)的作用環(huán)節(jié)??梢娛褂脗鹘y(tǒng)中醫(yī)藥,刺激間充質(zhì)干細(xì)胞的動(dòng)員、遷移、分泌、分化等功能在臨床具有廣闊的應(yīng)用前景。
參考文獻(xiàn)
[1]Kanji S,Das H.Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration[J].Mediators Inflamm,2017,2017:5217967.
[2]Ko SH,Nauta A,Wong V,et al.The role of stem cells in cutaneous wound healing:what do we really know?[J].Plast Reconstr Surg,2011,127(1):10S-20S.
[3]Lee DE,Ayoub N and Agrawal DK.Mesenchymal stem cells and cutaneous wound healing:novel methods to increase cell delivery and therapeutic efficacy[J].Stem Cell Research & Therapy,2016,37(7):193-201.
[4]Julianto I,Rindastuti Y.Topical Delivery of Mesenchymal Stem Cells "Secretomes" in Wound Repair[J].Acta Med Indones,2016,48(3):217-220.
[5]Motegi SI,Ishikawa O.Mesenchymal stem cells:The roles and functions in cutaneous wound healing and tumor growth[J].J Dermatol Sci,2017,86(2):83-89.
[6]Jackson WM,Nesti LJ,Tuan RS.Concise review:clinical translation of wound healing therapies based on mesenchymal stem cells[J].Stem Cells Transl Med,2012,1(1):44-50.
[7]Ennis WJ,Sui A,Bartholomew A.Stem Cells and Healing:Impact on Inflammation[J].Adv Wound Care(New Rochelle),2013,2(7):369-378.
[8]Cianfarani F,Toietta G,Di RG,et al.Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing[J].Wound Repair Regen,2013,21(4):545-553.
[9]Rodriguez-Menocal L,Salgado M,F(xiàn)ord D,et al.Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients[J].Stem Cells Transl Med,2012,1(3):221-229.
[10]Frykberg RG,Banks J.Challenges in the Treatment of Chronic Wounds[J].Adv Wound Care(New Rochelle),2015,4(9):560-582.
[11]van de Vyver M,Niesler C,Myburgh KH,et al.Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice[J].Mol Cell Endocrinol,2016,426:1-10.
[12]Shin L,Peterson DA.Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes[J].Stem Cells Transl Med,2012,1(2):125-135.
[13]Silva JC,Sampaio P,F(xiàn)ernandes MH,et al.The Osteogenic Priming of Mesenchymal Stem Cells is Impaired in Experimental Diabetes[J].J Cell Biochem,2015,116(8):1658-1667.
[14]Jin P,Zhang X,Wu Y,et al.Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation,paracrine,antiapoptosis,and myogenic differentiation[J].Transplant Proc,2010,42(7):2745-2752.
[15]Liu H,Tang W,Li C,et al.CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats[J].Nanoscale Res Lett,2015,10(1):959.
[16]高冬蘊(yùn),谷城威,張振中,等.正常和糖尿病來源間充質(zhì)干細(xì)胞生物學(xué)特性及創(chuàng)面修復(fù)效果差異的比較研究[J].感染、炎癥、修復(fù),2014,15(1):13-17.
[17]Tongers J,Roncalli JG,Losordo DW.Role of endothelial progeniror cells during is chemia-induced vasculogenesis and collateralformation[J].Micovasc Res,2010,79(3):200-206.
[18]Wicks K,Torbica T,Mace KA.Myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound[J].Semin Immunol,2014,26(4):341-353.
[19]Cerqueira MT,Pirraco RP,Marques AP.Stem Cells in Skin Wound Healing:Are We There Yet?[J].Adv Wound Care(New Rochelle),2016,5(4):164-175.
[20]Gnecchi M,Danieli P,Malpasso G,et al.Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair[J].Methods Mol Biol,2016,1416:123-146.
[21]Ko KI,Coimbra LS,Tian C,et al.Diabetes reduces mesenchymal stem cells in fracture healing through a TNFα-mediated mechanism[J].Diabetologia,2015,58(3):633-642.
[22]Jianguo W,Tianhang L,Hong Z,et al.Optimization of culture conditions for endothelial progenitor cells from porcine bone marrow in vitro[J].Cell Prolif,2010,43(4):418-426.
[23]Cao J,Wang L,Du ZJ,et al.Recruitment of exogenous mesenchymal stem cells in mandibular distraction osteogenesis by the stromal cell-derived factor-1/chemokine receptor-4 pathway in rats[J].Br J Oral Maxillofac Surg,2013,51(8):937-941.
[24]Hu C,Yong X,Li C,et al.CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair[J].J Surg Res,2013,183(1):427-434.
[25]Dong F,Harvey J,F(xiàn)inan A,et al.Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction[J].Circulation,2012,126(3):314-324.
[26]Lee DE,Ayoub N,Agrawal DK.Mesenchymal stem cells and cutaneous wound healing:novel methods to increase cell delivery and therapeutic efficacy[J].Stem Cell Res Ther,2016,7:37.
[27]Li N,Yang YJ,Qian HY,et al.Intravenous administration of atorvastatin-pretreated mesenchymal stem cells improves cardiac performance after acute myocardial infarction:role of CXCR4[J].Am J Transl Res,2015,7(6):1058-1070.
[28]Togha M,Jahanshahi M,Alizadeh L,et al.Rapamycin Augments Immunomodulatory Properties of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis[J].Mol Neurobiol,2017,54(4):2445-2457.
[29]Yu X,Chen D,Zhang Y,et al.Overexpression of CXCR4 in mesenchymal stem cells promotes migration,neuroprotection and angiogenesis in a rat model of stroke[J].J Neurol Sci,2012,316(1-2):141-149.
[30]Kitaori T,Ito H,Schwarz EM,et al.Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model[J].Arthritis Rheum,2009,60(3):813-823.
[31]Hocher B,Sharkovska Y,Mark M,et al.The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats[J].Int J Cardiol,2013,167(1):87-93.
[32]Xu X,Zhu F,Zhang M,et al.Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization[J].Cells Tissues Organs,2013,197(2):103-113.
[33]Luo Q,Zhang B,Kuang D,et al.Role of Stromal-Derived Factor-1 in Mesenchymal Stem Cell Paracrine-Mediated Tissue Repair[J].Curr Stem Cell Res Ther,2016,11(7):585-592.
[34]Ghadge SK,Mühlstedt S,Ozcelik C,et al.SDF-1α as a therapeutic stem cell homing factor in myocardial infarction[J].Pharmacol Ther,2011,129(1):97-108.
[35]王佃亮.干細(xì)胞治療現(xiàn)狀、策略與前景展望[J].轉(zhuǎn)化醫(yī)學(xué)雜志,2018,7(6):329-333.
[36]吳剛,童培建.補(bǔ)腎活血湯含藥血清干預(yù)體外培養(yǎng)大鼠骨髓間充質(zhì)干細(xì)胞成軟骨分化及補(bǔ)腎活血湯聯(lián)合骨髓間充質(zhì)干細(xì)胞治療大鼠膝骨關(guān)節(jié)炎的實(shí)驗(yàn)研究[J].中醫(yī)正骨,2018,30(1):6-11.
[37]朱磊.健脾補(bǔ)腎、清腸化濕方促進(jìn)骨髓間充質(zhì)干細(xì)胞歸巢重建潰瘍性結(jié)腸炎腸黏膜屏障的研究[D].南京:南京中醫(yī)藥大學(xué),2016.
[38]陳誼敬.補(bǔ)腎中藥有效成分對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化的影響[D].沈陽:遼寧中醫(yī)藥大學(xué),2013.
[39]岳宗進(jìn),于露,劉汝銀,馮仲鍇,王新立,王西彬,魯花.牛膝提取物對(duì)大鼠骨髓間充質(zhì)干細(xì)胞向髓核樣細(xì)胞增殖與分化的影響[J].中成藥,2018,40(12):2635-2639.
(2018-12-27收稿 責(zé)任編輯:王明)