楊志軍 孫洋洋
摘 要:針對(duì)提高輪詢控制模型工作效率和區(qū)分網(wǎng)絡(luò)優(yōu)先級(jí)的問題,提出了區(qū)分站點(diǎn)忙閑狀態(tài)的完全門限兩級(jí)輪詢控制模型(ETTPSS)。模型以兩級(jí)優(yōu)先級(jí)為基礎(chǔ),依據(jù)站點(diǎn)的忙閑狀態(tài)采用并行處理方式只對(duì)忙站點(diǎn)進(jìn)行信息分組發(fā)送服務(wù)。模型既能區(qū)分傳輸服務(wù)優(yōu)先級(jí)又能避開對(duì)無信息分組的空閑站點(diǎn)的查詢,從而提高了模型資源利用率和工作效率。運(yùn)用概率母函數(shù)與馬爾可夫鏈相結(jié)合的方法對(duì)該模型進(jìn)行理論分析研究,精確解析了模型各個(gè)重要性能參數(shù)。仿真實(shí)驗(yàn)結(jié)果表明,仿真值與理論值近似相等,說明理論分析正確合理。與普通輪詢模型相比,該模型性能大幅度提高。
關(guān)鍵詞:優(yōu)先級(jí);忙站點(diǎn);輪詢模型;利用率;工作效率
中圖分類號(hào):TN911
文獻(xiàn)標(biāo)志碼:A
Abstract: To improve the work efficiency of polling control model and distinguish network priorities, an ExhaustiveThreshold Twostage Polling control model based on Site Status (ETTPSS) was proposed. Based on two levels of priority, parallel processing was used to only send information to busy sites according to busy and idle states of sites. The model could not only distinguish the priorities of transmission services but also avoid the queries to the idle sites without information packets, thereby improving model resource utilization and work efficiency. The method of probabilistic generating function and Markov chain was used to analyze the model theoretically, and the important performance parameters of the model were analyzed accurately. The simulation results show that the simulation values and the theoretical values are approximately equal, indicating that the theoretical analysis is correct and reasonable. Compared with normal polling model, the model performance is greatly improved.
英文關(guān)鍵詞Key words: priority; busy site; polling model; utilization; work efficiency
0 引言
輪詢控制模型具有服務(wù)質(zhì)量保障的優(yōu)點(diǎn),一直是通信網(wǎng)絡(luò)中媒體訪問控制(Media Access Control, MAC)一種重要的調(diào)度方式,使其在現(xiàn)代網(wǎng)絡(luò)中應(yīng)用非常普遍[1]。文獻(xiàn)[2]分析研究了輪詢控制模型在大數(shù)據(jù)流式計(jì)算平臺(tái)Apache Storm中的應(yīng)用;文獻(xiàn)[3-5]分析研究了輪詢控制模型在計(jì)算機(jī)網(wǎng)絡(luò)異構(gòu)無線網(wǎng)絡(luò)以及信息采集的應(yīng)用。
輪詢控制模型中,對(duì)無信息分組的空閑站點(diǎn)的查詢會(huì)浪費(fèi)模型資源。文獻(xiàn)[6]通過對(duì)有信息分組發(fā)送需求的忙站點(diǎn)分配信道避免空閑查詢,且服務(wù)器完成對(duì)當(dāng)前站點(diǎn)的信息發(fā)送后需要經(jīng)過一個(gè)轉(zhuǎn)換查詢時(shí)間才能對(duì)下一個(gè)需要信息發(fā)送的站點(diǎn)進(jìn)行服務(wù),而采用并行調(diào)度控制方式[7],就是把查詢和服務(wù)過程進(jìn)行并行處理,不再消耗模型的轉(zhuǎn)換查詢時(shí)間。不過,輪詢表的生成與站點(diǎn)忙閑狀態(tài)相互獨(dú)立,特別是當(dāng)站點(diǎn)空閑時(shí)間較長(zhǎng)時(shí),接收者每次輪詢都要對(duì)空閑站點(diǎn)進(jìn)行查詢監(jiān)聽,造成模型的工作效率和資源利用率大幅度降低,并且也不能區(qū)分網(wǎng)絡(luò)業(yè)務(wù)優(yōu)先級(jí)。文獻(xiàn)[8]構(gòu)建“完全+門限”輪詢服務(wù)兩級(jí)模型以區(qū)分業(yè)務(wù)優(yōu)先級(jí),但是該模型查詢服務(wù)包括空閑站點(diǎn)在內(nèi)的所有站點(diǎn),信道利用率受到限制。文獻(xiàn)[9]提出區(qū)分站點(diǎn)狀態(tài)的限定(K=2)服務(wù)方式,文獻(xiàn)[10] 提出區(qū)分站點(diǎn)狀態(tài)的完全服務(wù)方式。雖然文獻(xiàn)[9-10]基于不同的輪詢服務(wù)方式來區(qū)分站點(diǎn)的忙閑狀態(tài),以降低系統(tǒng)的平均等待時(shí)間和能耗來提高系統(tǒng)網(wǎng)絡(luò)資源利用率,但并未設(shè)置中心站點(diǎn)和普通站點(diǎn)來區(qū)分網(wǎng)絡(luò)業(yè)務(wù)的傳輸優(yōu)先級(jí)。
針對(duì)上述問題,本文依據(jù)輪詢模型的動(dòng)態(tài)性[11],提出了區(qū)分站點(diǎn)忙閑狀態(tài)的完全門限兩級(jí)輪詢控制模型(ExhaustiveThreshold Twolevel Polling control model based on Site Status, ETTPSS)。該模型算法與文獻(xiàn)[9-10]相比,最大的創(chuàng)新是進(jìn)行中心站點(diǎn)與普通站點(diǎn)的兩級(jí)設(shè)置,中心站點(diǎn)傳輸高優(yōu)先級(jí)業(yè)務(wù),普通站點(diǎn)傳輸?shù)蛢?yōu)先級(jí)業(yè)務(wù),解決了網(wǎng)絡(luò)業(yè)務(wù)傳輸優(yōu)先級(jí)的問題。該模型算法與文獻(xiàn)[9-10]模型算法相同之處就是同樣根據(jù)站點(diǎn)的忙閑狀態(tài),對(duì)有發(fā)送需求的忙站點(diǎn)進(jìn)行信息分組的發(fā)送服務(wù),且服務(wù)過程與查詢過程采用并行處理方式,節(jié)省了轉(zhuǎn)換查詢時(shí)間,提高了模型工作效率。運(yùn)用概率母函數(shù)[12]與馬爾可夫鏈[13]相結(jié)合的方法對(duì)該模型進(jìn)行分析研究,仿真實(shí)驗(yàn)表明該模型理論分析的正確合理性。
4 結(jié)語
本文提出了一種采用CNN算法進(jìn)行UWB信道環(huán)境分類的方法,直接對(duì)信道統(tǒng)計(jì)特性進(jìn)行特征提取,識(shí)別信道環(huán)境。實(shí)驗(yàn)結(jié)果表明, 將CNN用于信道環(huán)境分類具有較高識(shí)別率,并且模型穩(wěn)定性比較高。
參考文獻(xiàn) (References)
[1]CERNOHORSKY J, JANDURA P, RYDLO P. Real time ultrawideband localisation [C]// ICCC 2018: Proceedings of the 2018 19th International Carpathian Control Conference. Piscataway, NJ: IEEE, 2018: 445-450.
[2]LING P, SHEN C, ZHANG K, et al. An improved NLOS error elimination algorithm for indoor ultrawideband localization [C]// Proceedings of the 2017 IEEE SENSORS. Piscataway, NJ: IEEE, 2017: 1-3.
[3]LI X, ZHANG T. Research on improved UWB localization algorithm in NLOS environment [C]// Proceedings of the 2018 International Conference on Intelligent Transportation, Big Data and Smart City. Washington, DC: IEEE Computer Society, 2018:707-711.
[4]孫希延,劉健,紀(jì)元法,等.基于似然比檢驗(yàn)的超寬帶信道檢測(cè)與定位算法[J].電子與信息學(xué)報(bào),2017,39(3):590-597.(SUN X Y, LIU J, JI Y F, et al. UWB channel detection and location algorithm based on likelihood ratio test [J]. Journal of Electronics and Information Technology, 2017,39(3): 590-597.)
[5]ALBAIDHANI A, MORELL A, VICARIO J L. Ranging in UWB using commercial radio modules: experimental validation and NLOS mitigation [C]// Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation. Piscataway, NJ: IEEE, 2016: 1-7.
[6]MUQAIBEL A H, LANDOLSI M A, MAHMOOD M N. Practical evaluation of NLOS/LOS parametric classification in UWB channels [C]// Proceedings of the 2013 1st International Conference on Communications, Signal Processing and their Applications. Piscataway, NJ: IEEE, 2013:1-6.
[7]張浩,梁曉林,呂婷婷,等.一種新穎的基于偏度的非視距區(qū)分算法[J].電訊技術(shù),2015,55(5):484-490.(ZHANG H, LIANG X L, LYU T T, et al. A novel nonlineofsight identification algorithm based on skewness [J]. Telecommunication Engineering, 2015, 55(5): 484-490.)
[8]LIU M, SHI J, LI Z, et al. Towards better analysis of deep convolutional neural networks [J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23(1):91-100.
[9]李彥冬,郝宗波,雷航.卷積神經(jīng)網(wǎng)絡(luò)研究綜述[J].計(jì)算機(jī)應(yīng)用,2016,36(9):2508-2515.(LI Y D, HAO Z B, LEI H. Survey of convolutional neural network [J]. Journal of Computer Applications, 2016, 36(9): 2508-2515.)
[10]王勇,周慧怡,俸皓,等.基于深度卷積神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量分類方法[J].通信學(xué)報(bào),2018,39(1):14-23.(WANG Y, ZHOU H Y, FENG H, et al. Network traffic classification method basing on CNN [J]. Journal on Communications, 2018, 39(1): 14-23.)
[11]YAZDANDOOST K Y. Channel modeling subcommittee report [R/OL].[2018-03-20]. Networks https://doi.org/IEEE P802.1502/490r1SG3a.
[12]WANG X. A UWB positioning scheme based on BP neural network in NLOS environment [C]// Proceedings of the 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing. Piscataway, NJ: IEEE, 2011: 1-3.
[13]XIONG Z, CHEN K, GU C. An algorithm of image classification based on BP neural network [C]// Proceedings of the 2012 IEEE International Conference on Computer Science and Automation Engineering. Piscataway, NJ: IEEE, 2012: 523-526.
[14]LIU H, LIANG Z, LIU D, et al. Improved UWB indoor positioning algorithms based on BP neural network model [C]// Proceedings of the 12th International Conference on Communications and Networking in China. Berlin: Springer, 2017: 114-124.