□彭 靖 廣東省深圳市寶安區(qū)官田學(xué)校
朱載堉是明仁宗朱高熾的第六代孫,是一位杰出的數(shù)學(xué)家、律學(xué)家,他最大的貢獻(xiàn)是創(chuàng)立了“新法密率”,即十二平均律,是現(xiàn)在全世界音樂(lè)界應(yīng)用最普遍的一種律制,西方把它作為“標(biāo)準(zhǔn)律制”。十二平均律把八度分成十二個(gè)相等的半音,使任意相鄰的二個(gè)音的音程為21/12。19世紀(jì)時(shí),德國(guó)偉大的物理學(xué)家亥姆霍茲(1821-1894)在他的著作《論音感》一書(shū)中多次提及朱載堉的貢獻(xiàn)。他在書(shū)中說(shuō):“在中國(guó)人中,據(jù)說(shuō)有一個(gè)王子叫朱載堉,他在舊派音樂(lè)家的反對(duì)中,倡導(dǎo)七聲音階,把八度分成十二個(gè)半音以及變調(diào)的方法,也是這個(gè)有天才和技巧的國(guó)家發(fā)明的。[1]”可見(jiàn)朱載堉發(fā)明的十二平均律對(duì)全世界都有很大的影響力。本文分析了十二平均律的創(chuàng)建以及其理論對(duì)當(dāng)時(shí)西方音樂(lè)律法的影響。
朱載堉,字伯勤,于嘉靖十五年(公元1536年)出生于河南懷慶府河內(nèi)縣,即現(xiàn)今的河南沁陽(yáng)市。朱載堉是我國(guó)明代杰出的自然科學(xué)家、律學(xué)家、音樂(lè)家,同時(shí)也是一位憤世嫉俗的詩(shī)歌作家??茖W(xué)家的理性思考與藝術(shù)家的感性情懷在這位天才人物的身上構(gòu)成了相依并存、不可思議、和而不同的一體,使他的成就達(dá)到明代自然科學(xué)及藝術(shù)科學(xué)的頂峰。他于四十六歲時(shí)完成了“新法密率”的計(jì)算,比荷蘭的斯特芬早了十多年,比法國(guó)的默森早了五十五年,他譜寫(xiě)的平均律曲譜比巴赫的《平均律鋼琴曲集》還要早三百年[2]。不得不承認(rèn),他創(chuàng)建的十二平均律對(duì)后世的影響極其深遠(yuǎn)。
據(jù)記載,朱載堉利用了八十一位的大算盤(pán)來(lái)計(jì)算頻率。首先把八度開(kāi)平方,算得21/2 等于1.414213,取得十二平均律中的#F,然后再將1.414213開(kāi)平方,得八度的四分之一(21/4 =1.189207,即#D),最后將1.189207開(kāi)立方,得21/12等于1.059463,朱載堉將此值稱(chēng)為“密率”?!堵蓪W(xué)新說(shuō)》卷一《密率律度相求第三》中提到朱載堉算得密率后取得所有十二個(gè)平均頻率的方法:“創(chuàng)立新法,置一尺為實(shí),以密率除之,凡十二遍。蓋十三黃鐘為始,應(yīng)鐘為終,終而復(fù)始,循環(huán)無(wú)端。各律皆以黃鐘正數(shù)十寸乘之為實(shí),皆以應(yīng)鐘倍數(shù)十寸零五分九厘四毫六絲三忽零九纖為法除之,即得次律也?!焙?jiǎn)單來(lái)說(shuō),即將基音的弦長(zhǎng)除以密率,就可以得到按音高順序排列的下一個(gè)半音的弦長(zhǎng),依次順序除十二遍,就得到了八度中的十二個(gè)半音。表1詳細(xì)列明了計(jì)算方法及計(jì)算結(jié)果。
表1
中國(guó)古代一直居統(tǒng)治地位的律制是傳統(tǒng)的三分損益律。然而,這種律制無(wú)法實(shí)現(xiàn)“還相為宮”和象天體運(yùn)行那樣“周而復(fù)始”的轉(zhuǎn)調(diào),其原因在于,用“三分損一”產(chǎn)生的五度音程太寬;用“三分益一”產(chǎn)生的四度音程太窄。三分損益不能旋宮是因?yàn)樗臄?shù)學(xué)不精。要達(dá)到旋宮轉(zhuǎn)調(diào)的要求,非十二平均律不可。
十二平均律,朱載堉稱(chēng)為“新法密率”;十二平均律的生律數(shù)值,朱載堉稱(chēng)為“密率律度”。與之相對(duì)的,他把三分損益律及其生律數(shù)值稱(chēng)為“密率”和“密率律度”。朱氏在創(chuàng)建新法密率時(shí)提出了音與數(shù)的辯證關(guān)系:音與數(shù)要相吻合,但又不可執(zhí)一,之間可以變通。這就為他“不用三分損益之法”提出了理論依據(jù)。因此,黃翔鵬先生稱(chēng)贊“朱載堉是深通音、數(shù)之理的辯證大師”[3]。
朱載堉在這一辯證原則的指導(dǎo)下說(shuō):“夫音生于數(shù)者也,數(shù)真則音無(wú)不合矣。若音或有不合,是數(shù)之未真也。達(dá)音數(shù)之理者變而通之,不可執(zhí)于一也。是故不用三分損益之法。創(chuàng)立新法:置一尺為實(shí),以密率除之,凡十二遍,所求律呂真數(shù)比古四種術(shù)尤簡(jiǎn)捷而精密。數(shù)與琴音互相校正、最為吻合。惟博學(xué)明理之儒、知音善算之士,詳味此術(shù),必有取焉者矣,豈庸俗所能識(shí)哉?”
在這段綱領(lǐng)性宣言后,朱載堉詳細(xì)羅列了十二律的“橫黍度長(zhǎng)”和“縱黍律長(zhǎng)”。這些數(shù)據(jù)即準(zhǔn)確的十二平均律的各律數(shù):在“橫黍度長(zhǎng)”中,黃鐘長(zhǎng)為10寸,大呂為9.43874寸,太簇為8.90898寸,夾鐘為8.40896寸……應(yīng)鐘為5.29731寸。我們不難繼續(xù)算出第十三律的清黃鐘(準(zhǔn)確地為5寸)及其以后的各律。
(1)律數(shù)較少,相鄰兩律的音程值較大,這種音程能給人的聽(tīng)覺(jué)造成明顯的音高差別感。這樣的音程便于聽(tīng)辨、掌握和記憶,與四十一平均率、五十三平均率相比,具有得天獨(dú)厚的實(shí)用性。
(2)它是一種等比律,去而能返,無(wú)往不復(fù)。以任意一音為起點(diǎn),構(gòu)成任意的平均律音階均自然無(wú)礙,給轉(zhuǎn)調(diào)帶來(lái)了極大的自由。與五度相生律、純律相比,十二平均律使轉(zhuǎn)調(diào)范圍擴(kuò)大到了極其自由的程度。而這種轉(zhuǎn)調(diào)的方便,為作曲技術(shù)的發(fā)展開(kāi)辟了極為廣闊的道路。自巴赫將十二平均律應(yīng)用于作曲實(shí)踐以來(lái),十二平均律技法風(fēng)靡世界,迅速發(fā)展,涌現(xiàn)了不少名篇佳作。幾百年來(lái),音樂(lè)藝術(shù)的繁榮與十二平均律的問(wèn)世有著不可分割的關(guān)系。
(3)十二平均律的實(shí)行,為樂(lè)器制作提供了極大的方便。制造鍵盤(pán)樂(lè)器,無(wú)須像純律樂(lè)器那樣制出若干排鍵盤(pán)。與此相應(yīng)的,對(duì)于樂(lè)器的演奏、作品的演唱也起到了一定程度上的簡(jiǎn)化作用。相對(duì)于其他的多律律制而言,它減少了許多技術(shù)上的困難,大大縮短了學(xué)習(xí)演奏、演唱技術(shù)磨煉的過(guò)程,加速了技術(shù)之外的其他各種表現(xiàn)能力的提高。
1996年,在《朱載堉異徑管律的物理證明》一文中,作者徐飛基于現(xiàn)代物理學(xué)的認(rèn)識(shí)成果,對(duì)朱載堉異徑管律的數(shù)據(jù)進(jìn)行物理學(xué)原理的分析和核算,從理論上對(duì)朱載堉異徑管律作出明確的判斷[4]。運(yùn)用現(xiàn)代物理學(xué)理論分析計(jì)算后發(fā)現(xiàn),朱載堉異徑管律在理論上完全符合十二平均律對(duì)“旋宮轉(zhuǎn)調(diào)”的要求,其特設(shè)吹口之舉,顯示了朱載堉不僅有著高深的算律理論修養(yǎng),同時(shí)在制律實(shí)踐中也獨(dú)具匠心,他在對(duì)律管的系統(tǒng)管口校正方面對(duì)人類(lèi)文明做出了偉大貢獻(xiàn)。
十二平均律是一種律制,即把一個(gè)八度分成相對(duì)均等的12個(gè)音程,每一個(gè)音程規(guī)定為半音,兩個(gè)半音為一個(gè)全音。巴赫的平均律共寫(xiě)了24個(gè)大小調(diào)(C大調(diào)、c小調(diào)、升C大調(diào)、升c小調(diào)、D大調(diào)、d小調(diào)、降E大調(diào)、升d小調(diào)、E大調(diào)、e小調(diào)、F大調(diào)、f小調(diào)、升F大調(diào)、升f小調(diào)、G大調(diào)、g小調(diào)、降A(chǔ)大調(diào)、升g小調(diào)、A大調(diào)、a小調(diào)、降B大調(diào)、降b小調(diào)、B大調(diào)、b小調(diào)),每一個(gè)調(diào)都包括一首前奏曲與一首賦格,一共是48首前奏曲與賦格。
17世紀(jì)30年代,意大利管風(fēng)琴家弗雷斯克巴爾迪(1583—1643年)將十二平均律用于鍵盤(pán)樂(lè)器,這可能是十二平均律最早在鍵盤(pán)樂(lè)器上的實(shí)踐[5]。但他所研究的(包括在鍵盤(pán)樂(lè)器上運(yùn)用的)是不是真正意義的十二平均律,目前未見(jiàn)確鑿記載。與他同時(shí)代的法國(guó)數(shù)學(xué)家、神學(xué)家、音樂(lè)理論家馬蘭默森(1588—1648年)對(duì)十二平均律于1636年也作出了和朱載堉完全相同的數(shù)學(xué)表示。一般認(rèn)為,由于明末清初大批西方傳教士來(lái)華,使東學(xué)西傳,曾經(jīng)在巴黎地方修道院擔(dān)任副主祭、神父的默森,有可能受到朱載堉著作的影響。17世紀(jì)的晚期,德國(guó)的管風(fēng)琴師韋克麥斯特約在1687年完成了十二平均律的著作,并提出了十二平均律的正確理論數(shù)據(jù),由于他不斷鉆研和完善在理論及律制上的制作工藝,對(duì)十二平均律的應(yīng)用起到了一定的推動(dòng)作用。有資料表明,韋克麥斯特及當(dāng)時(shí)不少的管風(fēng)琴制造家在鍵盤(pán)樂(lè)器上采用了十二平均律調(diào)律[6]。
從管風(fēng)琴、古鋼琴的出現(xiàn),到18世紀(jì)現(xiàn)代鋼琴的產(chǎn)生,隨著音樂(lè)發(fā)展的需要,人們逐步認(rèn)識(shí)到了十二平均律的作用,逐漸熟悉和認(rèn)可了十二平均律音樂(lè),當(dāng)19世紀(jì)來(lái)臨,十二平均律已成為鍵盤(pán)樂(lè)器的主流律制。六、朱氏十二平均律的音樂(lè)價(jià)值
李署明的《朱載堉律學(xué)思維的“自然之理”之管窺一一且說(shuō)十二平均律是自然律》一文從音律哲學(xué)的角度,指出朱氏律學(xué)思維的精髓在于尋求數(shù)理與審美之統(tǒng)一。純律是自然律,平均律也是自然律。純律、三分損益率、十二平均律各自律之美在實(shí)踐中集匯、融通。因此,“十二平均律是自然律”這一屬于音律美哲學(xué)論域的新命題是成立的。無(wú)論從哪方面來(lái)說(shuō),都應(yīng)還十二平均律以其應(yīng)有的“自然律”名分[7]。
鄭榮達(dá)的《朱載堉三分損益順逆相生律——新法密律的雛形》一文論證了明代朱載堉首創(chuàng)的能以十二律循相還宮為目標(biāo)的新律的產(chǎn)生不是偶然的。文中說(shuō)它是在繼承前人探索的成果基礎(chǔ)上進(jìn)一步深化的結(jié)果。朱載堉除了可能通過(guò)擴(kuò)大五度長(zhǎng)度比率的實(shí)驗(yàn)求證外,還有一種較為樸素的、鮮為人知的解決辦法,就是所謂的“右轉(zhuǎn)左旋”的生律法[8]。
朱載堉在《律學(xué)新說(shuō)》卷一中議論“左旋右旋相生之圖”時(shí),導(dǎo)出他產(chǎn)生新法密律的簡(jiǎn)易方法。“古人算律,往而不返,但曉左旋,不知右轉(zhuǎn),此所以未密也”,意思是說(shuō),過(guò)去只知用三分損益法從黃鐘向上屬方向生十二律,豈不知可用同樣方法從黃鐘向下屬方向生十二律,取同名異律的中間量,就可解決往而不返的問(wèn)題。
所謂順逆相生法,就是取十二正律與十二變律的中間平均值。朱載堉的三分損益順逆相生十二律,非常接近平均律,已經(jīng)達(dá)到實(shí)用的程度。十二平均律是各個(gè)半音之間其頻率比都均等的一種律制。在我國(guó)古代,朱載堉的算法是將2開(kāi)十二次方得到的弦長(zhǎng)倍數(shù),即“頻率倍數(shù)”,把這個(gè)數(shù)連續(xù)自乘十二次,就分別產(chǎn)生十二平均律各律的頻率倍數(shù),而乘到第十二次,就達(dá)到2(八度),即黃鐘還原了。朱載堉將十二平均律轉(zhuǎn)化成了一個(gè)等比數(shù)列求公比的數(shù)學(xué)問(wèn)題,徹底解決了我國(guó)律學(xué)史上長(zhǎng)期不能解決的黃鐘還原的難題。十二平均律的發(fā)明和推廣在音樂(lè)史上具有重大意義,有了這一新的音律,從一個(gè)音彈出的旋律可以復(fù)制到任何一個(gè)其他音高上,而對(duì)旋律不產(chǎn)生影響,同時(shí),所有樂(lè)器都可以在一個(gè)音律標(biāo)準(zhǔn)下制造,打破了古樂(lè)器“單打獨(dú)奏”的局面,產(chǎn)生了規(guī)模龐大、分工精細(xì)的交響樂(lè)隊(duì)。十二平均律成為音樂(lè)最基本的標(biāo)準(zhǔn)。
總結(jié)而言,朱載堉結(jié)合了他豐富的數(shù)學(xué)及樂(lè)理知識(shí)創(chuàng)建了十二平均律,對(duì)后世以及整個(gè)音樂(lè)界的發(fā)展都作出了重大的貢獻(xiàn)。愛(ài)因斯坦曾經(jīng)提到“這個(gè)世界可以由音樂(lè)的音符來(lái)組成,也可以用數(shù)學(xué)公式來(lái)組成”,可見(jiàn)數(shù)學(xué)與音樂(lè)跟我們的生活息息相關(guān)。
1636年默森在他的《Harmonic Universelle》一書(shū)中才提出,十二個(gè)半音中每相鄰的兩個(gè)音的頻率為1.05946,這結(jié)果跟朱載堉所計(jì)算的完全相同,可是卻比1584年成書(shū)的《律學(xué)新說(shuō)》晚了52年,說(shuō)明朱載堉的平均律可能對(duì)西方產(chǎn)生過(guò)影響;而亥姆霍茲所說(shuō)的話便證明了朱載堉的理論的確傳到了歐洲。由此可見(jiàn),他的十二平均律為西方平均律的研究帶來(lái)不小的影響。