亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        植物錳轉(zhuǎn)運蛋白研究進展

        2019-07-23 07:37:55趙秋芳馬海洋賈利強陳曙金輝
        熱帶作物學(xué)報 2019年6期
        關(guān)鍵詞:擬南芥水稻

        趙秋芳 馬海洋 賈利強 陳曙 金輝

        摘 ?要 ?錳是植物必需的微量元素,參與植物的多種生命活動過程,包括光合作用、呼吸作用、蛋白質(zhì)合成和激素活化等。錳缺乏和過量均能影響植物生長和產(chǎn)量。但是目前對錳在植物中吸收、轉(zhuǎn)運過程的分子機制仍了解有限,少數(shù)金屬轉(zhuǎn)運蛋白家族被報道參與錳在植物體中的吸收、轉(zhuǎn)運和分配,如NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like),ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein),CDF/MTP (cation diffusion facilitator/metal toleranceprotein),CAX (cation exchanger),CCX (calcium cation exchangers),P-type ATPases和VIT (vacuolar iron transporter)。本文主要綜述模式植物擬南芥和水稻中錳轉(zhuǎn)運蛋白對錳吸收、分配和維持植物體內(nèi)錳平衡方面的研究進展,并對相關(guān)研究進行展望。

        關(guān)鍵詞 ?錳;轉(zhuǎn)運蛋白;擬南芥;水稻

        中圖分類號 ?Q945 ?????文獻標(biāo)識碼 ?A

        Abstract ?Mn is an essential nutrient which is needed for a variety of life processes in plants, including photosynthesis, respiration, protein synthesis and hormone activation. Mn deficiency or Mn toxicity could affect plant growth and yield. However, relatively little is known about manganese uptake and mobilization in plants. Several transporter protein families have been implicated in Mn uptake and mobilization in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron- regulated transporter [ZRT/IRT1]-related protein), CDF/MTP (cation diffusion facilitator/metal toleranceprotein), CAX (cation exchanger), CCX (calcium cation exchangers), P-type ATPases and VIT (vacuolar iron transporter). This mini review summarized the recent progresses in researchers on these proteins and their roles in the uptake, mobilization, homeostasis of Mn in plants, particularly in the model plants of Arabidopsis thaliana and rice. Prospects on the researches were also discussed.

        Keywords ?manganese; transporters; Arabidopsis thaliana; rice

        DOI ?10.3969/j.issn.1000-2561.2019.06.029

        錳是植物生長發(fā)育所必需的微量元素,是植物葉綠體的組成部分,直接參與植物的光合作用,在光合作用系統(tǒng)II(PSII)中參與催化水分解反應(yīng)產(chǎn)生氧的過程,并為光合電子傳遞鏈提供電子[1-2]。同時錳是植物體內(nèi)重要的氧化還原劑,參與植物體內(nèi)的氧化還原反應(yīng)。另外錳作為多種酶的活化劑參與植物的生命活動,包括DNA合成,糖類代謝和蛋白修飾等[3]。錳作為植物必需的微量元素,錳缺乏會導(dǎo)致植物出現(xiàn)低溫敏感、易于感病、植株偏黃等癥狀,長期缺乏會導(dǎo)致植株長勢變?nèi)跫爱a(chǎn)量降低[4-6]。錳過量產(chǎn)生的毒害同樣會影響植物生長,植物錳中毒通常表現(xiàn)為葉片變黃,成熟葉片出現(xiàn)褐色斑點,嚴重時出現(xiàn)壞死,最終導(dǎo)致植物產(chǎn)量降低[7]。事實上,錳毒僅次于鋁毒,是對酸性土壤生長的植物毒害最大的金屬毒性(pH 5.5或更低)。世界上大約30%的土地是酸性土壤,而近50%潛在的可耕地是酸性土壤[8]。相對于Fe、Zn來說,目前人們對植物應(yīng)對錳缺乏和脅迫的分子機制的了解較少,僅知道少數(shù)金屬轉(zhuǎn)運蛋白家族成員可以調(diào)節(jié)植物對錳吸收、轉(zhuǎn)運和分配,如NRAMP、YSL、ZIP、CAX、CCX、CDF/MTP、P-type ATPases和VIT家族。本文主要綜述擬南芥和水稻兩種模式植物中的錳轉(zhuǎn)運蛋白對錳的吸收、轉(zhuǎn)運以及分配功能的研究進展。

        1 ?植物錳吸收轉(zhuǎn)運蛋白家族研究

        1.1 ?NRAMP家族

        NRAMP(natural resistance-associated macro phage protein)參與多種二價金屬離子的吸收和轉(zhuǎn)運,其家族基因已經(jīng)在多種植物中被鑒定出來,包括番茄[9]、大豆[10]、蘋果[11]、天藍遏藍菜[12]等。擬南芥包含6個NRAMP家族基因,分別命名為Atnramp1~Atnramp 6。AtNRAMP1被認為是錳高親和轉(zhuǎn)運蛋白,可以促進根系對錳的高效吸收。研究表明AtNRAMP1定位于細胞質(zhì)膜上,主要在根系表達,且在錳缺乏時上調(diào)表達。在錳缺乏條件下,擬南芥突變體nramp1-1的地上部生物量和根系生長速率明顯低于野生型,而高錳條件下,二者沒有差異,且錳含量遠低于野生型。超表達nramp1基因可以恢復(fù)突變體表型并增加對錳毒害的耐受性[3]。AtNRAMP6與AtNRAMP1同源性很高,但并沒有轉(zhuǎn)運錳的功能[13]。AtNRAMP3和AtNRAMP4也被證明具有錳和鐵的轉(zhuǎn)運功能。在鐵缺乏條件Atnramp3-1突變體可以增加植物根系對錳的吸收,而過表達Atnramp3時,錳的吸收減少[14]。Lanquar等[15]研究發(fā)現(xiàn),AtNRAMP3和AtNRAMP4負責(zé)將成熟葉片液泡中的錳運輸至葉肉細胞的葉綠體中,且二者功能存在冗余。在缺錳條件下,擬南芥生物量的減少僅發(fā)生在nramp3nramp4雙突變體中,而nramp3或nramp4單突變體均沒有出現(xiàn)生物量減少現(xiàn)象。

        水稻中包含7個NRAMP家族基因,目前僅報道OsNRAMP3和OsNRAMP5具有吸收轉(zhuǎn)運錳的功能。OsNRAMP3定位在木質(zhì)部轉(zhuǎn)移細胞和韌皮部維管束,在水稻節(jié)中表達量最高,具有轉(zhuǎn)運錳的功能,可以調(diào)節(jié)錳在新老組織間的分配。在低錳條件下,OsNRAMP3優(yōu)先轉(zhuǎn)運錳至新葉和花序等新生組織,但在高錳毒害下,錳被轉(zhuǎn)運至成熟組織[16-17]。Ishimaru等研究發(fā)現(xiàn)OsNRAMP5 RNAi株系的根系、地上部以及木質(zhì)部汁液中的錳含量均顯著低于野生型,證實OsNRAMP5是一個等離子體膜蛋白,可以調(diào)控水稻對錳的吸收,同時參與錳在花和籽粒中的運輸[18-19]。楊猛等[20-21]研究發(fā)現(xiàn)OsNRAMP5除在水稻根中表達較高外,還在穎殼、葉片等組織表達,但其表達量隨著葉齡的增加而降低。進一步研究發(fā)現(xiàn)OsNRAMP5在根和地上部維管束系統(tǒng)表達遠高于其他部位,且主要集中在木質(zhì)部附近的薄壁細胞中。Osnramph5突變體在低Mn條件下生長嚴重受阻,體內(nèi)Mn含量遠低于野生型。Osnramph5突變體即便根中Mn濃度遠高于野生型,也不能轉(zhuǎn)移至地上部,說明Osnramph5的突變阻斷了根向地上部的運輸。

        1.2 ?YSL家族

        YSL(Yellow Stripe-Like)蛋白屬于寡聚肽轉(zhuǎn)運蛋白家族,部分成員可以運輸金屬-NA的復(fù)合體,參與Fe、Zn、Mn、Cu等金屬離子在植物組織內(nèi)的運輸。擬南芥中有8個YSL基因[22],其中Atysl1、Atysl2、Atysl3基因均定位于質(zhì)膜,在葉片木質(zhì)部表達量高,具備吸收轉(zhuǎn)運Fe-NA復(fù)合體的功能,且在Fe缺乏時表達量下調(diào)[23-25]。Conte等[26]研究發(fā)現(xiàn)在1 mmol/L Mn2+條件下生長21 d后,無論是單突變體ysl4-2、ysl6-4、ysl6-5還是雙突變體ysl4ysl6的地上部生物量均減少,單突變體和雙突變體對高錳環(huán)境均較為敏感,因AtYSL4和AtYSL6定位于水稻的液泡或內(nèi)膜,可以推測AtYSL4和AtYSL6具有隔離金屬錳在液泡和內(nèi)膜系統(tǒng)中的作用。Divol等[27]研究發(fā)現(xiàn)AtYSL4和AtYSL6作為葉綠體中的鐵轉(zhuǎn)運蛋白,通過清除葉綠體中的鐵來適應(yīng)鐵毒害。

        水稻中有18個YSL家族基因[28]。研究表明OsYSL2參與錳和鐵在植物體內(nèi)的長距離運輸和分配,可以運輸Mn-NA和Fe-NA復(fù)合體[28-29]。OsYSL2主要在葉片、花和發(fā)育的種子中表達,在水稻根系中不表達,其表達量不受錳濃度調(diào)控,但在缺鐵條件下,表達量增加。超表達OsYSL2增加水稻籽粒中的錳含量[29],因其被定位于韌皮部中,推測OsYSL2主要負責(zé)韌皮部中錳的裝載,但具體作用機制仍需要進一步研究[30]。

        OsYSL6在根系和苗中表達,且其表達受不同錳濃度影響,敲除OsYSL6的突變體僅在高錳條件下抑制根系和苗的生長,且總錳含量與野生型間無差異,但是OsYSL6突變體葉肉細胞非原生質(zhì)體錳含量高于野生型而共質(zhì)體錳含量低于野生型,酵母中異源表達OsYSL6的研究發(fā)現(xiàn)OsYSL6僅轉(zhuǎn)運Mn-NA復(fù)合體而對Mn-MA復(fù)合體沒有運輸活性。這一研究結(jié)果說明OsYSL6負責(zé)Mn-NA復(fù)合體在葉肉細胞非原生質(zhì)體至共質(zhì)體間的運輸[31]。

        1.3 ?ZIP家族

        鋅鐵轉(zhuǎn)運蛋白ZIP (zinc regulated transporter/

        iron-regulated transporter [ZRT/IRT1]-rela ted protein)是Zn轉(zhuǎn)運蛋白(ZRT)和Fe轉(zhuǎn)運蛋白(IRT)的合稱,目前,已有較多研究ZIP家族轉(zhuǎn)運蛋白在Fe、Mn、Cu、Zn金屬轉(zhuǎn)運方面發(fā)揮重要作用[32-40]。擬南芥中有15個ZIP家族成員,包括3個AtIRTs和12個AtZIPs[41]。IRT1是Fe高親和轉(zhuǎn)運蛋白,同時低親和的轉(zhuǎn)運其他金屬[40-41]。AtIRT3是定位于質(zhì)膜的Zn和Fe轉(zhuǎn)運蛋白[36]。Milner等[42]對擬南芥中12個ZIPs家族成員在轉(zhuǎn)運Fe、Mn、Cu、Zn 4種金屬的作用做了初步研究,研究發(fā)現(xiàn)ZIP1、ZIP2、ZIP5、ZIP6、ZIP7、ZIP9共6個基因可以全部或者部分補充突變體smf1對錳的吸收。文中對ZIP1和ZIP2進行深入研究發(fā)現(xiàn),AtZIP1和AtZIP2均發(fā)揮將錳從根系轉(zhuǎn)運至地上部的作用。AtZIP1被定位于液泡,且在根系中柱組織高度表達,負責(zé)將Mn從根細胞液泡中運送到細胞質(zhì),AtZIP2在根系中柱高表達,由于AtZIP2被定位于細胞質(zhì)膜,可能負責(zé)將Mn從根系中柱運送至木質(zhì)部薄壁組織,用于隨后轉(zhuǎn)運錳在木質(zhì)部的裝載和運輸。水稻ZIP家族成員OsZIP1[43]、OsZIP3[44]、OsZIP4[45]、OsZIP5[46]、OsZIP6[47]、OsZIP7[48]、OsZIP8[49]均被報道作為Zn轉(zhuǎn)運蛋白,參與水稻中Zn的吸收和轉(zhuǎn)運。目前,尚未有報道水稻ZIP家族成員具備錳吸收和轉(zhuǎn)運功能。

        1.4 ?CDF/MTP家族

        植物中CDFs(cation diffusion facilitator)家族按照系統(tǒng)進化關(guān)系可以分為Zn-CDFs、Fe/Zn- CDFs、Mn-CDFs共3類[50]。首個被鑒定出的Mn- CDF轉(zhuǎn)運子為ShMTP8(ShMTP1),其在擬南芥和酵母中表達可以增加擬南芥和酵母對錳毒害的耐受性[51]。擬南芥共有12個CDFs家族基因被鑒定出來,其中有4個屬于Mn-CDFs家族基因,包括AtMTP8、AtMTP9、AtMTP10、AtMTP11[52]。AtMTP11是擬南芥中首個被鑒定出具有錳轉(zhuǎn)運作用的蛋白,AtMTP11在酵母中表達增加了酵母對錳毒害的耐受性。mtp11突變體表現(xiàn)出對高錳超敏,而過表達AtMTP11則增加了擬南芥對高錳的耐受能力,相反mtp11突變體對錳缺乏的耐受能力增加,而過表達植株對錳缺乏的敏感性增加[53]。另外Peiter等[54]研究也表明在基礎(chǔ)營養(yǎng)液中atmtp11突變體錳積累高于野生型,表現(xiàn)出對高錳敏感,而對錳缺乏的耐受能力增加的表型。GUS定位顯示AtMTP11主要在根尖,莖緣和葉片排水器表達。AtMTP11被定位在液泡前室和高爾基體隔間,因此推測AtMTP11通過調(diào)節(jié)錳在液泡前室的濃度來適應(yīng)錳毒害和調(diào)節(jié)植物體內(nèi)錳平衡。最新研究表明AtMTP8調(diào)控錳和鐵在種子中的分布,mtp8功能喪失突變體對高錳敏感,而過表達MTP8株系對高錳的耐受能力增加[55]。

        水稻Mn-CDFs家族包括5個基因,其中OsMTP8.1和OsMTP8.2屬于亞家族8,OsMTP9、OsMTP11和OsMTP11.1屬于亞家族9[56]。目前僅報道OsMTP8.1、OsMTP8.2、OsMTP9的錳吸收和轉(zhuǎn)運機制。2013年OsMTP8.1被分離出來,研究發(fā)現(xiàn)OsMTP8.1的表達可以增加酵母中錳的吸收和對錳毒害的耐受能力。在植物中,OsMTP8.1及其他轉(zhuǎn)錄本被定位于液泡膜,主要在水稻苗中表達,高錳和低錳供應(yīng)時會相應(yīng)的增加和減少OsMTP8.1的表達量。在高錳條件下,OsMTP8.1缺失導(dǎo)致葉綠素含量下降,生長受限,根和苗中錳含量均降低,而其他親屬Zn、Cu、Fe、Mg、Ca和K的積累量并沒有變化,證明OsMTP8.1是錳特異性轉(zhuǎn)運蛋白,可以將過量的錳隔離在根系液泡中,以減少高錳對水稻苗的毒害作用[57]。最新發(fā)現(xiàn)一個水稻Mn-CDFs家族蛋白OsMTP8.2,它與OsMTP8.1的氨基酸相似度達68%。OsMTP8.2被定位于液泡膜中,主要在水稻根和苗中表達,但表達水平低于OsMTP8.1。OsMTP8.2在酵母中表達可以增強酵母的耐錳毒害能力,但是對Fe、Zn、Co、Ni和Cd等金屬均沒有作用。進一步研究發(fā)現(xiàn)mtp8.1的突變體中同時敲除OsMTP8.2,其在高錳環(huán)境中的生長進一步受到限制,且該突變體根系錳含量以及根系與總錳吸收量之比均低于野生型和mtp8.1突變體,說明OsMTP8.2可以與OsMTP8.1共同作用將錳隔離在苗和根的液泡中,以減輕高錳對水稻的毒害[58]。Ueno等[59]則證實OsMTP9負責(zé)根系內(nèi)外皮層間的轉(zhuǎn)運和根系對錳的吸收。OsMTP9主要在根系表達,被定位于外皮層和內(nèi)皮層的細胞膜上,同時證實OsMTP9在酵母和蛋白脂質(zhì)體中具有錳轉(zhuǎn)運能力,且OsMTP9敲除后降低了水稻對錳的吸收及其在地上部的運輸。

        1.5 ?CAX家族和CCX家族

        在許多植物組織中,將過量Mn固定在液泡中是提高對Mn耐受性的關(guān)鍵機制之一[60-61]。CAX轉(zhuǎn)運家族成員就發(fā)揮著該作用。CAX(cation exchanger)家族在擬南芥中存在6個家族成員,被分為兩個亞家族,AtCAX1、AtCAX3和AtCAX4屬于ⅠA亞家族,AtCAX2、AtCAX5和AtCAX6屬于ⅠB亞家族。研究發(fā)現(xiàn)CAX2參與Mn在液泡中的固定,GUS研究表明AtCAX2在植物組織中均有表達,且在花,維管,頂端分生組織表達較高,cax2突變體可以減少Mn2+/H+在液泡中的反向運輸能力[62],且在酵母中表達CAX2可以提高對Mn脅迫的耐受性[63]。在煙草中表達擬南芥CAX2和CAX4,可以有效地將Mn2+隔離在液泡中,進而提高煙草對Mn脅迫的耐受能力[64-65]。另外CAX5也被報道具有Mn固定在液泡的功能[66]。與CAX1和CAX5不同,CAX4是通過調(diào)節(jié)植物根系發(fā)育來適應(yīng)金屬脅迫的。Mei等[67]研究表明CAX4主要在根系中表達,在高錳脅迫下,cax4突變株的主根和側(cè)根均減少,因此CAX4可以通過對根系生長調(diào)節(jié)進而適應(yīng)高錳環(huán)境。水稻中有5個CAX家族成員,被命名為OsCAX1a、OsCAX1b、OsCAX1c、OsCAX2和OsCAX3,其中OsCAX1a、OsCAX1b、OsCAX1c屬于ⅠA亞家族,OsCAX2、OsCAX3屬于ⅠB亞家族。其中OsCAX1a和OsCAX3可以增加酵母的錳耐受能力,因此被認為是植物中的錳的轉(zhuǎn)運蛋白[68-69]。

        擬南芥的CCX(cation calcium exchanger)家族由5個成員組成(CCX1-5),曾被命名為CAX7-11。野生酵母表達AtCCX3后,Mn含量是野生型的兩倍,而在煙草中表達后,成熟葉片的錳含量顯著增加,導(dǎo)致葉片壞死,證明AtCCX3具有錳轉(zhuǎn)運功能[70],而其他AtCCXs成員尚未有報道具有錳轉(zhuǎn)運功能。

        1.6 ?P-type ATPases家族

        ECAs屬于P-type ATPases中的Ca2+-ATPase亞家族,被報道具有錳轉(zhuǎn)運功能。植物中的Ca2+- ATPase被分為P2A-type ATPases和P2B-type ATPases,均被認為是Ca離子泵。擬南芥中包含4個P2A-type ATPases(AtECA1-4),水稻中包含3個(OsECA1-3)。研究表明AtECA1和AtECA3可以作為Mn2+泵,將Mn2+從細胞質(zhì)中移除并將其輸送到各自的內(nèi)膜室的功能。AtECA1定位于內(nèi)質(zhì)網(wǎng),且在花和根系的表達量較高,Wu等[71]研究發(fā)現(xiàn)在50 μmol/L Mn2+的標(biāo)準營養(yǎng)介質(zhì)中,Ateca1突變體與野生型的生長表現(xiàn)差異不大,而在高Mn2+(0.5 mmol/L)環(huán)境下,生物量嚴重減少,植株發(fā)黃萎蔫,突變體的根毛伸長和根尖組織生長嚴重受阻,在野生型中表達(CAMV35S:: ECA1) 基因恢復(fù)了野生型的表型,因此AtECA1在植物細胞適應(yīng)錳脅迫中發(fā)揮重要作用。AtECA3定位于高爾基體,在根尖,排水器,保衛(wèi)細胞,維管組織中有很高表達[72]。2個Ateca3突變體表現(xiàn)出相反的表型。Ateca3-2對錳缺乏較為敏感[73],無錳條件下,Ateca3-2突變體生長受阻,葉片發(fā)黃,而在添加微量Mn后,植物恢復(fù)正常。Ateca3-4等位突變體對Mn毒害更敏感[73],因此AtECA3等位基因間的變異造成的AtECA3的Mn2+轉(zhuǎn)運功能的差異的原因仍需進一步研究。AtECA2和AtECA4并未發(fā)現(xiàn)具有錳運輸功能。

        1.7 ?VIT家族

        目前,AtVIT1是功能較為清楚的轉(zhuǎn)運蛋白,負責(zé)錳在液泡中的吸收。研究發(fā)現(xiàn)AtVIT1在發(fā)育中的種子中高量表達,可將Fe2+和Mn2+隔離在液泡中[74]。OsVIT1和OsVIT2是AtVIT1的同源基因,研究表明OsVIT1和OsVIT2在水稻旗葉和葉鞘中高量表達。在酵母中,OsVIT1和OsVIT2可以轉(zhuǎn)運Fe2+、Zn2+和Mn2+至液泡中,而在水稻中,OsVIT1和OsVIT2僅被證實具有轉(zhuǎn)運Fe和Zn的功能,負責(zé)Fe和Zn在旗葉和種子之間的運輸[74]。

        2 ?問題與展望

        本文綜述了近年來在模式植物擬南芥和水稻中有關(guān)錳轉(zhuǎn)運蛋白及其吸收、轉(zhuǎn)運錳,調(diào)節(jié)植物體內(nèi)錳平衡方面的研究,這些研究加深了我們對錳轉(zhuǎn)運體以及植物響應(yīng)環(huán)境中錳濃度變化機制的認識。但仍有大量問題有待解決:比如大多數(shù)錳轉(zhuǎn)運蛋白IRT、CAX等并非錳特異性轉(zhuǎn)運蛋白,可以同時轉(zhuǎn)運鐵或鈣等金屬,運轉(zhuǎn)何種金屬離子

        是如何決策的以及有沒有錳專一轉(zhuǎn)運蛋白等?另外,錳轉(zhuǎn)運體如何控制植物體內(nèi)錳穩(wěn)態(tài)的分子機制,例如擬南芥和水稻細胞中的錳運輸途徑(圖1)[77],仍然知之甚少,需要進一步探索。如何利用已知的與錳吸收、轉(zhuǎn)運、分配相關(guān)的基因,培育出適應(yīng)錳缺乏土壤或者高錳土壤生長的作物新品種,對提高作物產(chǎn)量、保證糧食安全有重要意義,更應(yīng)該是未來的研究方向。

        圖片引自文獻[75],并做部分修改。

        參考文獻

        Goussias C, Boussac A, Rutherford A W. Photosystem II and photosynthetic oxidation of water: an overview[J]. Philosophical Transactions of the Royal Society. B: Biological sciences, 2002, 357: 1369–1381, 1419–1420

        Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants[J]. Plant of Review Annual Biology, 2013, 64: 609–635.

        Cailliatte R, Schikora A, Briat J F, et al. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions[J]. The Plant Cell, 2010, 22(3): 904-917.

        Hebbern C A, Pedas P, Schjoerring J K, et al. Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.)[J]. Plant and Soil, 2005, 272(1/2): 233-244.

        Hebbern C A, Laursen K H, Ladegaard A H, et al. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare)[J]. Physiologia Plantarum, 2010, 135(3): 307-316.

        Husted S, Laursen K H, Hebbern C A, et al. Manganese deficiency leads to genotype-specific changes in fluorescence induction kinetics and state transitions[J]. Plant Physiology, 2009, 150(2): 825-833.

        Marschner H. Marschners mineral nutrition of higher plants[M]. Pittsburgh: Academic Press, 2012.

        Kochian L V, Hoekenga O A, Pi?eros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annual Review of Plant Biology, 2004, 55(1): 459-493.

        Bereczky Z, Wang H Y, Schubert V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. Journal of Biological Chemistry, 2003, 278(27): 24697-24704.

        Kaiser B N, Moreau S, Castelli J, et al. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport[J]. Plant Journal, 2010, 35(3): 295-304.

        Xiao H, Yin L, Xu X, et al. The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking[J]. Annals of Botany, 2008, 102(6): 881-889.

        Oomen R J, Wu J, Lelièvre F, et al. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens[J]. New Phytologist, 2010, 181(3): 637-650.

        Cailliatte R, Lapeyre B, Briat J F, et al. The NRAMP6 metal transporter contributes to cadmium toxicity[J]. Biochemical Journal, 2009, 422(2): 217-228.

        Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal, 2003, 34(5): 685-695.

        Lanquar V, Ramos M S, Lelièvre F, et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 Is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant Physiology, 2010, 152(4): 1986-1999.

        Yamaji N, Sasaki A, Xia J X, et al. A node-based switch for preferential distribution of manganese in rice[J]. Nature Communications, 2013, 4(9): 2442.

        Yang M, Zhang W, Dong H, et al. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice[J]. PLoS One, 2013, 8(12): e83990.

        Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286.

        Ishimaru Y, Bashir K, Nakanishi H, et al. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice[J]. Plant Signaling and Behavior, 2012, 7(7): 763-766.

        Yang M, Zhang Y, Zhang L, et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4861.

        楊 ?猛. 水稻NRAMP家族基因在Mn和Cd轉(zhuǎn)運中的功能研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2014.

        Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake[J]. Nature, 2001, 409(6818): 346-349.

        Jr D D R, Roberts L A, Sanderson T, et al. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes[J]. Plant Journal, 2010, 39(3): 403-414.

        Waters B M, Chu H H, Didonato R J, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology, 2006, 141(4): 1446-1458.

        Chu H H, Chiecko J, Punshon T, et al. Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 Metal-Nico tia namine transporters in both vegetative and reproductive structures[J]. Plant Physiology, 2010, 154(1): 197-210.

        Conte S S, Chu H H, Rodriguez D C, et al. Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis[J]. Front Plant Science, 2013, 4(283): 1-16.

        Divol F, Couch D, Conéjéro G, et al. The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast[J]. Plant Cell, 2013, 25(3): 1040-1055.

        Koike S, Inoue H, Mizuno D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. The Plant Journal, 2004, 39(3): 415-424.

        Ishimaru Y, Masuda H, Bashir K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. The Plant Journal, 2010, 62(3): 379-390.

        Shao J F, Yamaji N, Shen R F, et al. The key to Mn homeostasis in plants: regulation of Mn transporters[J]. Trends in Plant Science, 2017, 22(3): 215-224.

        Sasaki A, Yamaji N, Xia J, et al. OsYSL6 is involved in the detoxification of excess manganese in rice[J]. Plant Physiology, 2011, 157(4): 1832-1840.

        Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences, 1996, 93(11): 5624-5628.

        Grotz N, Fox T, Connolly E, et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency[J]. Proceedings of the National Academy of Sciences, 1998, 95(12): 7220-7224.

        Wintz H, Fox T, Wu Y Y, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. Journal of Biological Chemistry, 2003, 278(48): 47644-47653.

        Pedas P, Ytting C K, Fuglsang A T, et al. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1[J]. Plant Physiology, 2008, 148(1): 455-466.

        Milner M J, Seamon J, Craft E, et al. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis[J]. Journal of Experimental Botany, 2013, 64(1): 369-381.

        Zhang H, Zhao S, Li D, et al. Genome-wide analysis of the ZRT, IRT-Like protein (ZIP) family and their responses to metal stress in Populus trichocarpa[J]. Plant Molecular Biology Reporter, 2017, 35(5): 534-549.

        Fu X Z, Zhou X, Xing F, et al. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.)[J]. Frontiers in Plant Science, 2017, 8: 588.

        Long L, Persson D P, Duan F, et al. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley[J]. New Phytologist, 2018, 217(4): 1640-1653.

        M?ser P, Thomine S, Schroeder J I, et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiology, 2001, 126(4): 1646-1667.

        Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. The Plant Cell, 2002, 14(6): 1223-1233.

        Yang T J, Perry P J, Ciani S, et al. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis[J]. Journal of Experimental Botany, 2008, 59(12): 3453-3464.

        Ramegowda, Yamunarani, Venkategowda, et al. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration;in tobacco and finger millet transgenic plants[J]. Plant Biotechnology Reports, 2013, 7(3): 309-319.

        Sasaki A, Yamaji N, Mitani-Ueno N, et al. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. Plant Journal, 2015, 84(2): 374-384.

        Ishimaru Y, Masuda H, Suzuki M, et al. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants[J]. Journal of Experimental Botany, 2007, 58(11): 2909.

        Lee S, Jeong H J, Sun A K, et al. OsZIP5 is a plasma membrane zinc transporter in rice[J]. Plant Molecular Biology, 2010, 73(4-5): 507-517.

        Kavitha P G, Sam K, Mathew M K. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2015, 97(6): 165-174.

        Ricachenevsky F K, Punshon T, Lee S, et al. Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7[J]. Frontiers in Plant Science, 2018, 9: 865-877.

        Lee S, Sun A K, Lee J, et al. Zinc deficiency-inducible OsZIP8, encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6): 551-558.

        Montanini B, Blaudez D, Jeandroz S, et al. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity[J]. BMC Genomics, 2007, 8(1): 107-123.

        Delhaize E, Kataoka T, Hebb D M, et al. Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance[J]. The Plant Cell, 2003, 15(5): 1131-1142.

        Gustin J L, Zanis M J, Salt D E. Structure and evolution of the plant cation diffusion facilitator family of ion transporters[J]. BMC Evolutionary Biology, 2011, 11(1): 76-88.

        Delhaize E, Gruber B D, Pittman J K, et al. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance[J]. The Plant Journal, 2007, 51(2): 198-210.

        Peiter E, Montanini B, Gobert A, et al. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance[J]. Proceedings of the National Academy of Sciences, 2007, 104(20): 8532-8537.

        Eroglu S, Meier B, Von W N, et al. The vacuolar manganese transporter MTP8 determines tolerance to Fe deficiency-induced chlorosis in Arabidopsis[J]. Plant Physiology, 2016, 170(2): 1030-1045.

        Chen Z, Fujii Y, Yamaji N, et al. Mn tolerance in rice is mediated by MTP8. 1, a member of the cation diffusion facilitator family[J]. Journal of Experimental Botany, 2013, 64(14): 4375-4387.

        Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, et al. The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L[J]. Plant and Cell Physiology, 2017, 58(9): 1573-1582.

        Ueno D, Sasaki A, Yamaji N, et al. A polarly localized transporter for efficient manganese uptake in rice[J]. Nature Plants, 2015, 1(12): 15170.

        Gonzalez A, Lynch JP. Subcellular and tissue Mn compartmentation in bean leaves under Mn toxicity stress[J]. Australian Journal of Plant Physiology, 1999, 26(8): 811-822.

        Fernando D R, Batianoff G N, Baker A J, et al. In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX.[J]. Plant Cell and Environment, 2010, 29(5): 1012-1020.

        Pittman J K, Shigaki T, Marshall J L, et al. Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter[J]. Plant Molecular Biology, 2004, 56(6): 959-971.

        Shigaki T, Hirschi K D. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants[J]. Plant Biology, 2010, 8(4): 419-429.

        Hirschi KD, Korenkov VD, Wilganowski NL, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiology, 2000, 124: 125–133.

        Korenkov V, Hirschi K, Crutchfield J D, et al. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L[J]. Planta, 2007, 226(6): 1379-1387.

        Edmond C, Shigaki T S, Nelson M D, et al. Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity[J]. Biochemical Journal, 2009, 418(1): 145-154.

        Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4[J]. New Phytologist, 2009, 183(1): 95-105.

        Kamiya T, Akahori T, Maeshima M. Expression profile of the genes for rice cation/H+ exchanger family and functional analysis in yeast[J]. Plant Cell Physiology, 2005, 46: 1735-1740.

        Kamiya T, Maeshima M. Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations[J]. Journal of Biological Chemistry, 2004, 279: 812-819.

        Morris J, Tian H, Park S, et al. AtCCX3 Is an Arabidopsis Endomembrane H+-dependent K+ transporter[J]. Plant Physiology, 2008, 148(3): 1474-1486.

        Wu Z Y, Liang F, Young J C, et al. An Endoplasmic Reticulum-Bound Ca?/Mn? Pump, ECA1, Supports Plant Growth and Confers Tolerance to Mn? Stress[J]. Plant Physiology, 2002, 130(1): 128-137.

        Mills R F, Doherty M L, Lopez-Marques R L, et al. ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis[J]. Plant Physiology, 2008, 146(1): 116-128.

        Li X, Chanroj S, Wu Z, et al. A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process[J]. Plant Physiology, 2008, 147(4): 1675-1689.

        Sun A K, Punshon T, Lanzirotti A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314(5803): 1295-1298.

        Zhang Y, Xu Y, Yi H, et al. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice[J]. Plant Journal, 2012, 72(3): 400-410.

        Socha A L, Guerinot M L. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants[J]. Frontiers in Plant Science, 2014, 5: 106.

        猜你喜歡
        擬南芥水稻
        擬南芥:活得粗糙,才讓我有了上太空的資格
        什么是海水稻
        有了這種合成酶 水稻可以耐鹽了
        水稻種植60天就能收獲啦
        軍事文摘(2021年22期)2021-11-26 00:43:51
        油菜可以像水稻一樣實現(xiàn)機插
        富天冬酰胺蛋白增強擬南芥輻射抗性的研究
        一季水稻
        文苑(2020年6期)2020-06-22 08:41:52
        水稻花
        文苑(2019年22期)2019-12-07 05:29:00
        尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
        兩種LED光源作為擬南芥生長光源的應(yīng)用探究
        午夜a福利| 门卫又粗又大又长好爽| 国产精品_国产精品_k频道w | 日本午夜精品理论片A级APP发布| 蜜桃av观看亚洲一区二区| 手机在线免费观看av不卡网站| 好大好湿好硬顶到了好爽视频| 日本护士吞精囗交gif| 99精品欧美一区二区三区美图| 午夜国产精品一区二区三区| 久久青青草原国产毛片| 国产一卡2卡3卡四卡国色天香| 欧美国产日本精品一区二区三区| 久久天堂精品一区专区av| 中文字幕亚洲乱码熟女1区| 野花社区视频在线观看| 五月天婷婷综合网| av资源吧首页在线观看| 国产在线一区二区三精品乱码| 久久久精品国产sm调教网站| 欧美日韩色| 熟女人妻一区二区中文字幕| 人妻风韵犹存av中文字幕| 高清日韩av在线免费观看| 欧美一区二区三区久久综| 国产精选免在线观看| 亚洲av色香蕉第一区二区三区| 国产精品国产三级第一集| 国产在线视频一区二区三区| 日本一区二区三区激情视频| 久久综合亚洲鲁鲁五月天| 国产乱妇无乱码大黄aa片| 性夜影院爽黄a爽在线看香蕉| 玩弄放荡人妻一区二区三区| 久久综合五月天啪网亚洲精品| 国产又大又硬又粗| 国产喷水福利在线视频| 日本熟妇高潮爽视频在线观看| 中国久久久一级特黄久久久| 一二三四在线观看免费视频| 无码区a∨视频体验区30秒|