雷文娟,周向陽(yáng)
生物炭對(duì)農(nóng)藥降解產(chǎn)物三氯吡啶醇在土壤中遷移的影響研究
雷文娟1,2,3,周向陽(yáng)4※
(1. 貴州大學(xué)經(jīng)濟(jì)學(xué)院,貴陽(yáng) 550025;2. 貴州大學(xué)中國(guó)喀斯特地區(qū)鄉(xiāng)村振興研究院,貴陽(yáng) 550025;3. 四川大學(xué)建筑與環(huán)境學(xué)院,成都 610065;4. 貴州大學(xué)資源與環(huán)境工程學(xué)院,貴陽(yáng) 550025)
研究針對(duì)大孔隙發(fā)育的紫色土坡耕地區(qū)域易于遷移的廣譜殺蟲劑毒死蜱和除草劑綠草定的主要降解產(chǎn)物3,5,6-三氯-2-吡啶醇(3,5,6-trichloro-2-pyridinol,TCP)的快速遷移和對(duì)水體的高污染風(fēng)險(xiǎn)問題,探索向土壤中施加生物炭降低TCP遷移的有效方法并分析其作用機(jī)制。研究基于生物炭施加比例為0、1%和2%的土壤樣品,通過等溫吸附試驗(yàn)分析生物炭施加對(duì)土壤吸附能力的改變,通過CT掃描和三維結(jié)構(gòu)重建探討生物炭施加對(duì)土壤孔隙結(jié)構(gòu)的影響,應(yīng)用示蹤劑Br-和TCP的穿透曲線分析生物炭施加對(duì)TCP遷移的有效防治程度,最后基于對(duì)流-擴(kuò)散機(jī)理的兩區(qū)模型模擬TCP遷移的物理、化學(xué)過程并反演相關(guān)參數(shù),從而揭示生物炭對(duì)TCP遷移的影響機(jī)制。結(jié)果表明生物炭施加后,土壤的大孔隙度降低、土壤可動(dòng)水體積分?jǐn)?shù)和水動(dòng)力擴(kuò)散系數(shù)減小,繼而延遲污染物進(jìn)入水體時(shí)間;同時(shí)土壤對(duì)TCP的吸附能力提高,并降低土壤出流液中的TCP濃度。研究結(jié)果將為農(nóng)業(yè)面源污染的防治提供技術(shù)支持。
土壤;污染控制;生物炭;3,5,6-三氯-2-吡啶醇;污染物遷移;模型模擬
水溶性低吸附污染物遷移的控制是當(dāng)前農(nóng)業(yè)面源污染防治的重要內(nèi)容。3,5,6-三氯-2-吡啶醇(3,5,6-trichloro-2-pyridinol,TCP)是殺蟲劑毒死蜱(chlorpyrifos)和除草劑綠草定(triclopyr)的主要降解產(chǎn)物[1-3]。由于TCP的持久性、高溶解性、低吸附性和易遷移性,導(dǎo)致其在土壤和水環(huán)境中成為一種廣泛存在的污染物[4-8]。同時(shí),TCP與其母體農(nóng)藥毒死蜱的毒性相當(dāng),對(duì)自然生態(tài)系統(tǒng)有危害作用[8-10],并且被認(rèn)為是一種可能存在于飲用水中的污染物[11-12]。因此,探索適當(dāng)?shù)耐緩胶头椒p小甚至消除TCP進(jìn)入水體,對(duì)于水環(huán)境保護(hù)和人口安全具有重要意義。
生物炭作為一種新型的土壤改良和污染修復(fù)劑,為探索解決上述問題提供了新的途徑。生物炭(biochar)是指在缺氧或厭氧條件下,農(nóng)作物秸稈、動(dòng)物糞便、骨骼等生物質(zhì),經(jīng)過高溫?zé)峤猥@得的一種生物質(zhì)。生物炭包含豐富的礦質(zhì)元素和有機(jī)成分,并含有高濃度的芳香族或更有活性的脂肪族化合物[13-14]。同時(shí)生物炭還具有豐富的孔狀結(jié)構(gòu)和較大的比表面積。生物炭防治污染物遷移的基本原理是通過自身的吸附作用增加污染物在土壤剖面的滯留量,從而有效降低污染物的下滲,減少對(duì)水環(huán)境的污染[15-16]。研究表明:添加生物炭后土壤對(duì)一些農(nóng)藥的吸附增加了400~2500倍[17-18],即使在較低的施用量(0.1%)下吸附依然很有效[19-20]。主要原因是生物炭的芳香族化合物結(jié)構(gòu)和特別高的比表面積對(duì)吸附污染物占主導(dǎo)作用[20];另外污染物也能夠被生物炭的微孔和中孔截留從而引起解吸作用的延滯[19,21]。
紫色土是長(zhǎng)江上游最重要的耕地資源之一,其特點(diǎn)是土壤孔隙度高、大孔隙發(fā)育,易發(fā)生壤中流[22],并且以大孔隙流的形式為主[23]。研究表明在紫色土耕地中,盡管大孔隙(孔隙半徑大于125m)僅占總孔隙的0.61%~3.06%,但它對(duì)快速排水的貢獻(xiàn)率可達(dá)87.93%~99.7%[24]。生物炭施加后土壤的理化性質(zhì)和孔隙特征都將發(fā)生顯著改變,繼而影響土壤的水力學(xué)性質(zhì)、水分入滲和污染物遷移[25-27]。但是,對(duì)于水溶性高、快速遷移的TCP,生物炭施加對(duì)其遷移的防治效果、理化作用機(jī)制尚不清楚。
因此,研究選取典型的紫色土坡耕地土壤,基于生物炭施加比例為0、1%和2%的土壤樣品,通過等溫吸附試驗(yàn)分析生物炭施加對(duì)土壤吸附能力的改變,通過CT掃描和三維結(jié)構(gòu)重建探討生物炭施加對(duì)土壤孔隙結(jié)構(gòu)的影響,應(yīng)用示蹤劑Br-和TCP的穿透曲線分析生物炭施加對(duì)TCP遷移的有效防治程度,最后基于對(duì)流-擴(kuò)散機(jī)理的兩區(qū)模型模擬TCP遷移的物理、化學(xué)過程并反演相關(guān)參數(shù)從而揭示生物炭對(duì)TCP遷移的影響機(jī)制。研究結(jié)果將為有效地防治TCP遷移、降低水環(huán)境污染風(fēng)險(xiǎn)提供數(shù)據(jù)支撐。
試驗(yàn)土壤選自四川省中江縣東南部(105.0356°E, 30.7427°N)。所購(gòu)買的生物炭原材料為花生殼,燒制溫度為400~600℃。將其按照生物炭和土壤質(zhì)量比為0、1%、2%的比例,于2015年11月均勻施加于玉米-油菜輪作的坡耕地土壤表層并翻耕混合,期間正常耕作,間隔6個(gè)月后(2016年5月)采集樣本。采用有機(jī)玻璃特制環(huán)刀采集原狀土柱樣品(長(zhǎng)10 cm,內(nèi)徑8 cm),并在土柱周邊取標(biāo)準(zhǔn)環(huán)刀樣品(體積為100 cm3,50.46 mm×50 mm)和土壤樣品。其中原狀土柱先進(jìn)行CT(computed tomography)掃描,結(jié)束后土柱送回試驗(yàn)室進(jìn)行TCP的遷移試驗(yàn)。環(huán)刀樣品用于測(cè)定土壤容重,土壤樣品過2mm篩,測(cè)定土壤理化性質(zhì),見表1??梢钥闯觯锾渴┘雍笸寥郎傲:坑兴黾?,而黏粒和粉粒含量降低。其原因是生物炭比較面積較大,在顆粒分級(jí)檢測(cè)時(shí)容易被測(cè)定為砂粒,繼而導(dǎo)致黏粒和粉粒含量隨之降低;此外,研究中的生物炭施加比例為質(zhì)量比,由于其密度較小,以體積比形式所呈現(xiàn)的值將更高。
表1 試驗(yàn)土壤基本理化性質(zhì)
1.2.1 吸附試驗(yàn)
等溫吸附試驗(yàn)方法:土樣風(fēng)干過2 mm篩,取樣品1 g置于30 mL玻璃離心管中,按土水比1:2加入10 mL一定濃度的TCP溶液(質(zhì)量濃度梯度為0、2、4、6、8、10 mg/L,用0.01 mol/L CaCl2配制,質(zhì)量濃度為0.005 g/L的NaN3),密封后在室溫條件下振蕩24 h,樣品于3 400 r/min下離心10 min,取上清液用于檢測(cè)。試驗(yàn)設(shè)計(jì)為3個(gè)平行,重復(fù)性較好,取均值進(jìn)行計(jì)算。
TCP的吸附量按照公式(1)計(jì)算
式中0和C分別表示溶質(zhì)的初始濃度和平衡濃度,mg/L;表示溶液體積,mL;為土壤質(zhì)量,g;q為吸附量,mg/kg。
TCP的等溫吸附參數(shù)采用Freundlich和Linear模型進(jìn)行擬合[28],模型的表達(dá)式如下
式中K和為Freundlich常數(shù),表示吸附容量和強(qiáng)度;K為吸附常數(shù),L/kg。
1.2.2 土柱遷移試驗(yàn)
TCP在原狀土柱中的遷移試驗(yàn)裝置參考前期研究文獻(xiàn)[29]。入滲溶液為KBr(分析純)配制的50 mg/L的Br-(示蹤水流)和30 mg/L的TCP溶液的混合液(含0.01 mol/L CaCl2、0.005 g/L NaN3)。TCP投加濃度(30 mg/L)根據(jù)48%毒死蜱乳油在田間的實(shí)際噴灑濃度確定,流速參考當(dāng)?shù)叵募酒骄涤炅?,約6 mm/h。試驗(yàn)過程中以容量瓶和蠕動(dòng)泵(雷弗100S)作為供水裝置,土柱垂直放置,土柱上下端用25m濾網(wǎng)作為反濾層。試驗(yàn)時(shí)自下而上緩慢逐層飽和土壤,然后從土柱頂端由蠕動(dòng)泵輸入0.01 mol/L CaCl2溶液,在土柱中形成穩(wěn)定流場(chǎng),當(dāng)土壤水流速穩(wěn)定后,輸入Br-和TCP的混合溶液,土柱底端用全自動(dòng)部分收集器(CBS-A,上海瀘西)定時(shí)采集樣品。輸入約1 PV的混合溶液時(shí)停止改換0.01 mol/L CaCl2溶液進(jìn)行土柱淋洗,當(dāng)檢測(cè)不到TCP時(shí)試驗(yàn)停止。出流夜中Br-采用溴離子濃度計(jì)(Bante931)測(cè)定,TCP采用高效液相色譜進(jìn)行測(cè)定,具體檢測(cè)方法參考相關(guān)文獻(xiàn)[30]。
本次試驗(yàn)在成都市第七人民醫(yī)院的64排雙螺旋CT掃描儀完成對(duì)土柱樣品的掃描。掃描電壓為120 kV,200 mA,縱向分辨率為0.625 mm,橫向間隔0.3 mm,像素為1 024×1 024。圖像重建利用顯微CT儀器自帶的CT Program軟件完成。利用數(shù)學(xué)形態(tài)方法獲取三維孔隙結(jié)構(gòu)的骨架,以孔喉為節(jié)點(diǎn),將相連的大孔隙分割開,最后統(tǒng)計(jì)大孔隙的相關(guān)信息,包括大孔隙的數(shù)目、體積、面積和形狀因子等[31-32]。
穩(wěn)定流條件下吸附性溶質(zhì)在均質(zhì)土壤中運(yùn)移的一維對(duì)流-擴(kuò)散方程如下[33]
式中為溶質(zhì)的濃度,mg/L;是時(shí)間,h;為水動(dòng)力彌散系數(shù),cm2/h;表示距溶質(zhì)加入端的距離,cm;表示平均孔隙水流速,cm/h;是阻滯因子;為土壤干容重,g/cm3;v為體積含水率,cm3/cm3。
方程(4)的無(wú)量綱形式為[33]
式中=,=,=/=/。=0,0為土柱實(shí)驗(yàn)投加的溶質(zhì)初始濃度;為土柱長(zhǎng)度;為彌散度;為距溶質(zhì)加入端的距離。
兩區(qū)模型假定土壤介質(zhì)存在可動(dòng)區(qū)和不可動(dòng)區(qū),對(duì)流擴(kuò)散過程在可動(dòng)區(qū),可動(dòng)與不可動(dòng)區(qū)間溶質(zhì)的交換受溶質(zhì)擴(kuò)散到不可動(dòng)區(qū)域交換點(diǎn)的限制??刂品匠虨閇33]
上述方程轉(zhuǎn)化為無(wú)量綱形式[33]
式中是Peclet數(shù);表示土壤水在可動(dòng)和不可動(dòng)區(qū)的分布比例。
其中
式中表示水動(dòng)力駐留時(shí)間與溶質(zhì)在不可動(dòng)區(qū)運(yùn)動(dòng)時(shí)間的比率。
土柱試驗(yàn)中,流速的大小可以通過流體的連續(xù)性方程來(lái)確定。
式中表示通過斷面的流量;1、2分別表示2個(gè)不同的斷面;1、2表示斷面1、2對(duì)應(yīng)的流速,cm/h。
等溫吸附模型通過描述q和C的關(guān)系來(lái)確定污染物的吸附機(jī)理。本文用Freundlich和Linear吸附模型對(duì)TCP在3組土壤中的等溫吸附曲線進(jìn)行擬合,如圖1所示,并獲得相關(guān)的吸附參數(shù)(表2)。通過圖1和表2,可以看出Freundlich和Linear模型能夠很好地?cái)M合TCP的吸附曲線(2≥0.98)。TCP在對(duì)照組土壤中的吸附參數(shù)K為0.80 mg1-n·L/kg,而在1%和2%生物炭施加量的土壤中分別為0.99、1.03 mg1-n·L/kg,相比對(duì)照組其K值增加了約23.75%和28.75%。Linear模型擬合的K值分別為0.02、0.77、0.97 L/kg,吸附量也呈增加趨勢(shì)。
圖1 TCP在不同生物炭含量土壤中的等溫吸附曲線
表2 TCP在土壤中的等溫吸附模型參數(shù)
注:K和為常數(shù)。
Note:Kandare constant.
在本研究中,生物炭施加后,對(duì)比對(duì)照組其K值僅增加了23.75%~28.75%。盡管生物炭施加后增加了TCP在土壤中的吸附量,但遠(yuǎn)低于生物炭對(duì)其他農(nóng)藥污染物的影響。研究表明,生物炭施加后對(duì)某些污染物(敵草隆和嘧霉胺)的吸附量可增加上百倍[18]甚至上千倍[17]。但也有研究表明生物炭的添加對(duì)甲氧咪草煙、異丙甲草胺草酸和異丙甲草胺磺酸的吸附無(wú)明顯作用,這是由于這類污染物屬于極性、易遷移的物質(zhì)[34]。有機(jī)污染物的吸附與其自身性質(zhì)和土壤性質(zhì)相關(guān),通常土壤有機(jī)質(zhì)含量與吸附呈正相關(guān)關(guān)系[35]。但對(duì)極性有機(jī)化合物,土壤表面的其他物質(zhì),如土壤黏粒含量、黏土礦物含量等,則起主要作用,尤其在有機(jī)質(zhì)含量低的情況下[35]。雖然前期研究表明TCP在土壤中吸附的d值與土壤有機(jī)質(zhì)含量相關(guān)性較小[29,36-38],但當(dāng)生物炭施加至土壤中,伴隨著有機(jī)質(zhì)含量的增加(1% 為 5.64%和2% 為 8.56%,如表 1所示),這種相關(guān)性可能增加,并且生物炭自身的微孔結(jié)構(gòu)和親水基團(tuán)也會(huì)提高其吸附能力。
采用CT掃描儀對(duì)土柱樣品進(jìn)行掃描并重建后獲得的土壤三維立體圖像如圖2所示。可以看出,土柱中存在著大小不一、形狀各異、隨機(jī)分布的大孔隙,尤其是在對(duì)照土壤中,可明顯看到連通度較好的大孔隙通道,而在2%生物炭施加量中的土壤孔隙分布相對(duì)不明顯。
由于CT掃描儀分辨率的限制,本次大孔隙直徑只統(tǒng)計(jì)267m以上的孔隙。大孔隙的具體特征參數(shù)如表3所示,隨著生物炭施加量的增加,土壤的總孔隙度增加,而大孔隙度則呈遞減的趨勢(shì),分別為18%、6%、4%,與三維圖像呈現(xiàn)一致的趨勢(shì)。大孔隙平均體積分別為3.57×1010、0.46×1010、0.31×1010m3,也呈現(xiàn)遞減的趨勢(shì)。大孔隙的平均等效球直徑在對(duì)照組土壤中表現(xiàn)為最大,為1 376m,施加生物炭后減小了2.1%和12.93%,分別為1 347和1 198m??紫兜钠骄螤钜蜃釉?.53~0.61之間,孔隙形狀因子越接近1,說明孔隙形狀越趨向球形,更有利于土壤水分和溶質(zhì)的運(yùn)移。由表3可知,對(duì)照組土壤樣品形狀因子略大于施加生物炭后的土壤樣品,說明對(duì)照組孔隙的形狀規(guī)則度高于另外2組,也易導(dǎo)致土壤水分的快速運(yùn)移。此外,樣本采集于2016年5月,前期相對(duì)干旱,干熱的氣候條件導(dǎo)致未施加生物炭的土壤有明顯的龜裂發(fā)生,其大孔隙度也遠(yuǎn)遠(yuǎn)高于另外2個(gè)施加生物炭的樣本。由以上結(jié)果可知,生物炭的施加有效降低了土壤整體的大孔隙度和平均大孔隙直徑,并且降低了土壤孔隙的形狀因子,有助于減弱水分和溶質(zhì)的遷移能力。
表3 基于CT掃描和三維重建結(jié)果的土壤大孔隙參數(shù)統(tǒng)計(jì)特征
2.3.1 Br-穿透曲線試驗(yàn)結(jié)果分析
根據(jù)土柱試驗(yàn)出流液檢測(cè)的數(shù)據(jù)繪制Br-的穿透曲線,結(jié)果如圖3所示。從穿透曲線的形狀可以看出,3組試驗(yàn)曲線均呈不對(duì)稱并拖尾的特征,并且拖尾現(xiàn)象在生物炭施加后的土壤中更明顯。從出峰時(shí)間可以看出,示蹤劑Br-均在1個(gè)PV之前達(dá)到初始濃度(出流液中Br-相對(duì)濃度為 1);但對(duì)照組、1%和2%生物炭施加后的土柱中Br-濃度達(dá)到峰值的時(shí)間分別為0.61PV、0.71PV和0.88 PV,出峰時(shí)間依次增加,也反映出優(yōu)先流的作用削弱。這與CT掃描的結(jié)果揭示出生物炭施加后大孔隙比例降低,二者具有一致性。另外,拖尾性增強(qiáng)的原因是由于生物炭的施加導(dǎo)致土壤孔隙直徑越小、聯(lián)通程度越低、彎曲度越大、分子運(yùn)動(dòng)通過孔隙的概率越低、滯留時(shí)間越長(zhǎng)。盡管有所降低,但對(duì)于原狀土壤,在試驗(yàn)所考慮的2種情形下,大孔隙仍然存在(如表3),故優(yōu)先流并沒有完全消除。
2.3.2 Br-穿透曲線模擬與土壤水力學(xué)參數(shù)反演
按照公式(8)運(yùn)用STANMOD軟件中CXTFIT模塊的兩區(qū)模型對(duì)Br-的穿透曲線進(jìn)行模擬[33]。模擬Br-遷移的模型輸入?yún)?shù)包括:平均孔隙水流速和阻滯因子。其中孔隙水流速根據(jù)試驗(yàn)設(shè)定的穩(wěn)定流量和土柱的孔隙度求得,Br-作為非吸附性離子,阻滯因子=1。模擬結(jié)果如圖3所示,可以看出,兩區(qū)模型能夠很好的描述Br-的遷移過程。在對(duì)照組、1%和2%生物炭施加量條件下,模擬結(jié)果和試驗(yàn)結(jié)果的相關(guān)系數(shù)2,分別為0.99、0.97和0.96;所對(duì)應(yīng)的均方根誤差,分別為0.03、0.05和0.06。
注:C/C0 為濃質(zhì)濃度與初始濃度的比值。
基于兩區(qū)模型進(jìn)行反向模擬,獲得Br-遷移的水動(dòng)力學(xué)參數(shù):可動(dòng)水比例、水動(dòng)力彌散系數(shù)和Damkohler數(shù),結(jié)果如表4所示。可以看出,在不同生物炭施加比例下,可動(dòng)水比例和水動(dòng)力彌散系數(shù)都呈現(xiàn)出隨生物炭含量增加而減小的特征,而則呈現(xiàn)相反的特征。這些參數(shù)的變化將揭示生物炭施加對(duì)土壤水力學(xué)屬性的影響機(jī)制,分述如下。
1)不同生物炭含量對(duì)可動(dòng)水比例的影響因素分析。模型所估算的可動(dòng)水體積分?jǐn)?shù)分別為31%、27%、25%,不可動(dòng)水的體積分?jǐn)?shù)為69%、73%和75%。說明水分和溶質(zhì)運(yùn)移過程中受到物理非平衡過程的影響,并且生物炭施加后,可動(dòng)水的比例有所降低,攜帶的污染物也會(huì)降低。此外,可動(dòng)與不可動(dòng)區(qū)間的水分質(zhì)量交換系數(shù)也處于較小的水平,分別為0.05、0.06和0.10。隨著可動(dòng)水比例的降低,則呈現(xiàn)增加的趨勢(shì),說明生物炭的施加促使兩區(qū)間水分質(zhì)量間交換有所增加。其原因可以通過CT掃描所揭示的土壤孔隙特征變化來(lái)解釋:土壤大孔隙度的減小將降低土壤水分運(yùn)輸通道的聯(lián)通性,導(dǎo)致可動(dòng)水比例減?。煌瑫r(shí)土壤水表面張力與孔隙接觸半徑成反比,大孔隙含量減小也將增大表面張力,減小水分和污染物的遷移速度[33]。
表4 基于Br-穿透曲線反演的不同生物炭施加量下土壤水力學(xué)參數(shù)
2)水動(dòng)力彌散系數(shù)減小成因分析。模擬所得的水動(dòng)力彌散系數(shù)分別為2.15、1.83和1.45 cm2/h。按照流體連續(xù)性方程計(jì)算獲得本次試驗(yàn)中3個(gè)土柱的平均孔隙水流速分別為1.20、1.15和1.09 cm/h。因此,水動(dòng)力彌散系數(shù)的減小原因主要是生物炭的施加改變了土壤的孔隙結(jié)構(gòu)。一方面流速的降低導(dǎo)致水動(dòng)力彌散系數(shù)減?。涣硪环矫娲罅啃】紫兜某霈F(xiàn)導(dǎo)致分子擴(kuò)散過程中更容易和土壤結(jié)構(gòu)發(fā)生碰撞,改變其運(yùn)動(dòng)的軌跡并增加其運(yùn)動(dòng)的距離,這也將體現(xiàn)為擴(kuò)散系數(shù)減小。
可見,生物炭施加后將改變土壤的孔隙結(jié)構(gòu),一定程度上削弱了優(yōu)先流的作用,降低土壤水的運(yùn)動(dòng)速率和擴(kuò)散系數(shù),并減小可動(dòng)水的比例,有助于延遲溶質(zhì)由土壤進(jìn)入水體的時(shí)間。
2.4.1 TCP穿透曲線試驗(yàn)結(jié)果分析
不同生物炭施加比例下TCP的穿透曲線如圖4所示??梢钥闯?,TCP較Br-的穿透時(shí)間慢。當(dāng)持續(xù)輸入TCP的時(shí)間為1 PV時(shí),所對(duì)應(yīng)的TCP濃度峰值在對(duì)照組、1%和2%生物炭施加量的土柱中分別為0.82、0.55和0.39。對(duì)照組試驗(yàn)結(jié)果與前期研究接近,在原狀土壤(水田和菜地)中的穿透峰值濃度大于0.7[29,38]。施加生物炭后,峰值濃度降低了約31.40%和52.44%,生物炭的施加有效降低了TCP遷移的峰值濃度。
TCP在3組土柱中的穿透曲線形狀均表現(xiàn)為不對(duì)稱和拖尾性,并且比Br-更加明顯,說明TCP在土柱中的遷移過程同時(shí)受物理-化學(xué)非平衡作用影響[29]。從圖4中可以看出,生物炭含量越高、拖尾性越明顯,其原因包含物理和化學(xué)2個(gè)方面。物理因素方面和Br-拖尾的成因相同,主要由于土壤孔隙結(jié)構(gòu)變化所致;而化學(xué)方面則是因?yàn)樯锾渴┘雍髮?duì)TCP的吸附能力增強(qiáng)導(dǎo)致,其拖尾特征將進(jìn)一步增加,這也與試驗(yàn)觀測(cè)到的結(jié)果一致。
2.4.2 TCP遷移的模型模擬與參數(shù)反演
按照公式(5)-(10)運(yùn)用兩區(qū)模型對(duì)TCP穿透曲線進(jìn)行模擬[33]。模型中參數(shù)的確定如下:
1)土壤水動(dòng)力學(xué)參數(shù)根據(jù)實(shí)測(cè)Br-的穿透曲線用兩區(qū)模型反演求得,如表4所示。
2)TCP遷移的阻滯因子由TCP的批量平衡試驗(yàn)獲得的參數(shù)K求得,由此固定參數(shù)、和,對(duì)實(shí)測(cè)TCP穿透曲線數(shù)據(jù)應(yīng)用兩區(qū)模型進(jìn)行模擬,獲得無(wú)量綱參數(shù)和質(zhì)量傳遞系數(shù)繼而計(jì)算參數(shù)和。
圖4 不同生物炭施加比例下TCP的穿透曲線及其模擬結(jié)果
基于上述參數(shù)對(duì)TCP的遷移進(jìn)行模擬,結(jié)果如圖4所示??梢钥闯?,所選取的兩區(qū)模型能夠很好的模擬TCP的遷移,對(duì)照組、1%和2%生物炭施加比例下的土壤中,模擬值和實(shí)測(cè)值的2分別為0.97、0.98和0.92,RMSE分別為0.05、0.02和0.03。通過模型反演獲得TCP在土柱中遷移的相關(guān)參數(shù),如表5所示。
表5 基于兩區(qū)模型模擬TCP在土柱中的遷移參數(shù)
模型反演所得的參數(shù)包括阻滯因子、吸附點(diǎn)分?jǐn)?shù)?和一階質(zhì)量傳遞常數(shù)。阻滯因子分別為2.11、4.92、5.67,吸附點(diǎn)分?jǐn)?shù)?的范圍為0.02~0.06??蓜?dòng)與不可動(dòng)區(qū)間溶質(zhì)交換速率的一階質(zhì)量傳遞函數(shù)分別為0.016 8、0.044 4、0.067 8 h-1。這3個(gè)參數(shù)均可描述土壤對(duì)TCP的吸附特征,說明隨著生物炭施加比例的增加,TCP在土壤介質(zhì)的遷移過程中,在可動(dòng)區(qū)達(dá)到平衡狀態(tài)下的吸附位點(diǎn)比例增強(qiáng),并且可動(dòng)與不可動(dòng)區(qū)之間的質(zhì)量交換也逐漸增加。其原因是生物炭的施用,一方面提高了對(duì)TCP的吸附能力;另一方面土壤大孔隙的減少和孔隙水流速的降低為土壤顆粒對(duì)TCP的吸附作用延長(zhǎng)了時(shí)間。
不同生物炭添加量土壤對(duì)TCP的等溫吸附變化、土壤孔隙結(jié)構(gòu)改變、穿透曲線試驗(yàn)結(jié)果和水動(dòng)力學(xué)參數(shù)及吸附參數(shù)的反演結(jié)果,結(jié)論如下:
1)生物炭的施加將顯著改變土壤的孔隙結(jié)構(gòu)特征,繼而改變土壤的水力學(xué)屬性并影響TCP的遷移?;贑T掃描影像的土壤孔隙結(jié)構(gòu)重建結(jié)果表明,生物炭的施加將增加土壤的總孔隙度,但降低了土壤的大孔隙度和平均大孔隙直徑,同時(shí)孔隙的形狀因子也減小。這些變化將降低土壤水的運(yùn)動(dòng)速率和擴(kuò)散系數(shù),并減小可動(dòng)水的比例:當(dāng)生物炭的施加比例為0、1%和2%時(shí),土壤可動(dòng)水體積分?jǐn)?shù)分別為31%、27%、25%,水動(dòng)力彌散系數(shù)分別為2.15、1.83和1.45 cm2/h。這些作用將明顯的延遲污染物從土壤進(jìn)入水體的時(shí)間。
2)除時(shí)間上的延遲外,生物炭施加對(duì)TCP遷移的影響主要體現(xiàn)在土壤吸附能力的提高。在等溫吸附試驗(yàn)中,K值在生物炭施加比例為0、1%和2%時(shí)分別為0.80、0.99和1.03 mg1-n·L/kg;在土柱試驗(yàn)中持續(xù)輸入1個(gè)PV的TCP溶液時(shí),出流液的峰值濃度分別為0.82、0.55和0.39,后兩者分別降低了31.40%和52.44%。模型反演參數(shù)表明,土壤對(duì)TCP吸附的特征參數(shù),如阻滯因子、吸附點(diǎn)分?jǐn)?shù)?和一階質(zhì)量傳遞常數(shù)均不同程度增加。
因此,研究揭示出生物炭施加將有效降低TCP在大孔隙發(fā)育的紫色土中的遷移性,并初步闡明了其通過改變土壤孔隙結(jié)構(gòu)、水力學(xué)參數(shù)和吸附能力的作用機(jī)制,可為農(nóng)業(yè)面源污染的防治提供技術(shù)參考。但是研究受限于CT掃描的分辨率,只揭示出大孔隙的變化特征;同時(shí)所設(shè)置的生物炭施加含量梯度較少,間隔較大,有必要在今后的研究中進(jìn)一步細(xì)化。
[1] Chapman R A, Harris C R. Persistence of chlorpyrifos in a mineral and a organic soil[J]. Environment Science Health, Part B, 1980, 15: 39-46.
[2] Racke K D, Coats J R, Titus K R. Degradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol, in soil[J]. Environment Science Health, Part B, 1988, 23: 527-539.
[3] Yang H, Wu X, Zhou L X. Effect of dissolved organic matter on chlorotoluron sorption and desorption in soils[J]. Pedosphere, 2005, 15: 432-439.
[4] Báez M E, Espinoza J, Silva R, et al. Sorption-desorption behavior of pesticides and their degradation products in volcanic and nonvolcanic soils: Interpretation of interactions through two way principal component analysis[J]. Environmental Science and Pollution Research, 2015, 22: 8576-8585.
[5] Olsson O, Khodorkovsky M, Gassmann M, et al. Fate of pesticides and their transformation products: First flush effects in a semi-arid catchment[J]. Clean-Soil, Air, Water, 2013, 41: 134-142.
[6] Reemtsma T, Alder L, Banasiak U. Emerging pesticide metabolites in groundwater and surface water as determined by the application of a multimethod for 150 pesticide metabolites[J]. Water Research, 2013, 47: 5535-5545.
[7] Sidhu G K, Singh S, Kumar V, et al. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(13): 1135-1187.
[8] Zhao Y, Wendling L A, Wang C, et al. Behavior of chlorpyrifos and its major metabolite TCP (3,5,6-trichloro-2-pyridinol) in agricultural soils amended with drinking water treatment residuals[J]. Journal of Soils and Sediments, 2017, 17(4): 889-900.
[9] Cáceres T, He W, Naidu R, et al. Toxicity of chlorpyrifos and TCP alone and in combination to Daphnia carinata: the influence of microbial degradation in natural water[J]. Water Research, 2007, 41: 4497-4503.
[10] Wang J, Wang J H, Zhu L S, et al. The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio[J]. Ecotoxicology, 2014, 10: 1858-1869.
[11] Sinclair C J, Boxall A B A, Parsons S A, et al. Prioritization of pesticide environmental transformation products in drinking water supplies[J]. Environment Science Technology, 2006, 40: 7283-7289.
[12] Báez M E, Espinoza J, Silva R, et al. Influence of selected cyclodextrins in sorption-desorption of chlorpyrifos, chlorothalonil, diazinon, and their main degradation products on different soils[J]. Environmental Science and Pollution Research, 2017, 24(26): 20908-20921.
[13] Joseph S D, Camps-Arbestain M, Lin Y, et al. An investigation into the reactions of biochar in soil[J]. Soil Research, 2010, 48(7): 501-515.
[14] Trigo C, Spokas K A, Cox L, et al. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine[J]. Journal of Agricultural and Food Chemistry, 2014, 62(45): 10855-10860.
[15] Tatarková V, Hiller E, Vaculík M. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (.)[J]. Ecotoxicology and Environmental Safety, 2013, 92: 215-221.
[16] Spokas K, Koskinen W C, Baker J M, et al. Impacts of wood biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J]. Chemosphere, 2009, 77: 574-581.
[17] Yang Y, Sheng G. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environment Science & Technology, 2003, 37: 3635-3639.
[18] Yu X, Pan L, Ying G, et al. Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars[J]. Journal of Environmental Sciences, 2010, 22(4): 615-620.
[19] Loganathan V A, Feng Y, Sheng G D, et al. Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils[J]. Soil Science Society of America Journal, 2009, 73(3): 967-974.
[20] Kookana R S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review[J]. Soil Research, 2010, 48(7): 627-637.
[21] Braida W J, Pignatello J J, Lu Y, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environment Science Technology, 2003, 37: 409-417.
[22] 羅專溪,朱波,汪濤,等. 紫色土坡耕地水量季節(jié)差異特征與平衡初步研究[J]. 水土保持學(xué)報(bào),2007,21(2):124-128. Luo Zhuanxi, Zhu Bo, Wang Tao, et al. Preliminary study on seasonal variation and water budget in slope farmland of purple soil[J]. Journal of Soil and Water Conservation, 2007, 21(2): 124-128. (in Chinese with English abstract)
[23] 周明華,朱波,汪濤,等. 紫色土坡耕地磷素流失特征及施肥方式的影響[J]. 水利學(xué)報(bào),2010,41(11):1374-1381.Zhou Minghua, Zhu Bo, Wang Tao, et al. Phosphorus losses and effects of fertilization on sloping cropland of purple soil[J]. Journal of Hydraulic Engineering, 2010, 41(11): 1374-1381. (in Chinese with English abstract)
[24] Wang H L, Tang X Y, Zhang W, et al. Within-year changes in hydraulic properties of a shallow entisol in farmland and forestland[J]. Vadose Zone Journal, 2015, 14(7). doi:10.2136/vzj2014.11.0163.
[25] 王紅蘭,唐翔宇,張維,等. 施用生物炭對(duì)紫色土坡耕地耕層土壤水力學(xué)性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):107-112. Wang Honglan, Tang Xiangyu, Zhang Wei, et al. Effects of biochar application on tilth soil hydraulic properties of slope cropland of purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 107-112. (in Chinese with English abstract)
[26] 王艷陽(yáng),魏永霞,孫繼鵬,等. 不同生物炭施加量的土壤水分入滲及其分布特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):113-119. Wang Yanyang, Wei Yongxia, Sun Jipeng, et al. Soil water infiltration and distribution characteristics under different biochar addition amount[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 113-119. (in Chinese with English abstract)
[27] 李帥霖,王霞,王朔,等. 生物炭施用方式及用量對(duì)土壤水分入滲與蒸發(fā)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):135-144.Li Shuailin, Wang Xia, Wang Shuo, et al. Effects of application patterns and amount of biochar on water infiltration and evaporation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 135-144. (in Chinese with English abstract)
[28] Freundlich H M F. Over the adsorption in solution[J]. Journal of Physical Chemistry, 1906, 57: 384-470.
[29] 雷文娟,唐翔宇,關(guān)卓,等. 不同類型耕地紫色土中3,5,6-三氯-2-吡啶醇遷移試驗(yàn)與模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):132-138. Lei Wenjuan, Tang Xiangyu, Guan Zhuo, et al. Experiment and model simulation of 3,5,6-TCP transport in different farmland purple soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 132-138. (in Chinese with English abstract).
[30] 熊建飛. 高效液相色譜法、離子色譜法在環(huán)境分析和食品分析中的應(yīng)用研究[D]. 重慶:西南大學(xué),2013. Xiong Jianfei. Study on High Performance Liquid Chromatography and Ion Chromatography to Environmental Analysis and Food Analysis[D]. Chongqing: Southwest University, 2013. (in Chinese with English abstract)
[31] 周虎,彭新華,張中彬,等. 基于同步輻射微CT研究不同利用年限水稻土團(tuán)聚體微結(jié)構(gòu)特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):343-347. Zhou Hu, Peng Xiuhua, Zhang Zhongbin, et al. Characterization of aggregate microstructure of paddy soils cultivated for different years with synchrotron micro-CT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 343-347. (in Chinese with English abstract)
[32] 劉勇,胡霞,李宗超,等. 基于醫(yī)學(xué)CT和工業(yè)CT掃描研究土壤大孔隙結(jié)構(gòu)特征的區(qū)別[J]. 中國(guó)農(nóng)學(xué)通報(bào),2016,32(14):106-111. Liu Yong, Hu Xia, Li Zongchao, et al. Difference of soil macropore structure scanned by medical CT and industrial CT[J]. Chinese Agricultural Science Bulletin, 2016, 32(14): 106-111. (in Chinese with English abstract)
[33] Toride N, Leij F J, van Genuchten. The cxtfit code for estimating transport parameters from laboratory field tracer experiment[R]. Version 2.0, Research Report, 1995.
[34] Dechene A, Rosendahl I, Laabs V, et al. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil[J]. Chemosphere, 2014, 109: 180-186.
[35] Wauchope R D, Yeh S, Linders J B, et al. Pesticide soil sorption parameters: Theory, measurement, uses, limitations and reliability[J]. Pesticide Management Science, 2002, 58, 419-445.
[36] Baskaran S, Kookana R S, Naidu R. Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro- 2-pyridinol), with depth in soil profiles[J]. Soil Research, 2003, 41, 749-760.
[37] Lei W, Zhou X. Experiment and simulation on adsorption of 3,5,6-Trichloro-2-Pyridinol in typical farmland of purple soil, Southwestern China[J]. Soil and Sediment Contamination: An International Journal, 2017, 26(4): 345-363.
[38] Lei W, Tang X, Zhou X. Transport of 3,5,6-trichloro-2- pyrdionl (a main pesticide degradation product) in purple soil: Experimental and modeling[J]. Applied Geochemistry, 2018, 88: 179-187.
Influence of biochar on migration of pesticide degradation product trichloro pyridinol in soil
Lei Wenjuan1,2,3, Zhou Xiangyang4※
(1.,,550025,;2.,,550025,;3.,,610065,;4.,,550025,)
In this study, the objective aims at exploring the influence of biochar application on the rapid migration of 3,5,6-trichloro-2-pyridinol (TCP), the main degrading product of the wide-spread insecticide chlorpyrifos and the herbicide chlorophyll in purple soil where the large pore and preferential flow exist widely. Considering these objectives, a control group experiment with a series of biochar application ratio of 0, 1% and 2% (mass content) was designed. Above all, the isothermal adsorption experiment was used to analyze the change of adsorption capacity after the application of biochar with different ratios. Then the influence of biochar application on the soil structure and porous distribution were discussed on the basis of the reconstructed soil columns using the computed tomography (CT) scanning images. The breakthrough curve of TCP mixed the tracer of bromide ion was employed to analyze the effective degree of biochar application to reduce the migration of TCP. Finally, model establishment and parameter inversion were used to reveal the physical and chemical mechanisms of the reduction of TCP migration by biochar application. The results reveal that the application of biochar significantly changes the pore structure of the soil, which in turn changes the hydraulic properties of the soil and affects the migration of TCP. The pore structure of reconstructed soil based on CT scan has revealed that the application of biochar increases the total porosity of the soil, but reduces the soil's large porosity and average large pore diameter, while the pore shape factor also decreases. These changes reduce the movement rate, diffusion coefficient and the proportion of mobile water. When the application ratios of biochar are 0, 1% and 2%, the soil mobile water volume fraction are 31%, 27%, 25%, and the hydrodynamic diffusion coefficients are 2.15, 1.83 and 1.45 cm2/h, respectively. The reductions of these parameters significantly delay the time that contaminants enter the water body. The adsorption of soil on TCP increases significantly after the application of biochar. In the isothermal adsorption experiment, theKvalues are 0.80, 0.99 and 1.03 mg1-nL/kg, corresponding to the ratios of biochar application (0, 1% and 2%). In the breakthrough curve experiment, the peak concentrations of the outflows are 0.82, 0.55 and 0.39 after a continually inputting 1 PV TCP, and the reductions of peak concentrations are about 31.40% and 52.44% with application of 1% and 2% of biochar in the soil, respectively. The parameters from the inversion simulation indicate that the soil adsorption characteristics, including the retardation factor, the fraction of adsorption sitesand first-order mass transfer coefficient, are significantly increased. Therefore, this study reveals that the biochar application effectively reduces the migration rate of TCP in purple soil, and initially uncovers the interacting mechanisms by changing soil pore structure, hydraulic parameters and adsorption dynamics, which are useful in agricultural non-point source pollution. However, limited by the resolution of the CT scanning images, the results only reveal the change of large pores (the diameter equaling to or larger than 267 mm). This study provides a reference for the control of agricultural non-point source pollution.
soils; pollution control; biochar; 3,5,6-trichloro-2-pyridinol; contaminant migration; model simulation
10.11975/j.issn.1002-6819.2019.10.022
S151.9+3;S155.2+5
A
1002-6819(2019)-10-0173-08
2018-09-17
2019-04-11
2017年貴州大學(xué)貴州省農(nóng)林經(jīng)濟(jì)管理國(guó)內(nèi)一流學(xué)科建設(shè)資助項(xiàng)目(GNYL[2017]002);國(guó)家自然科學(xué)基金資助項(xiàng)目(41701558);貴州省科技計(jì)劃項(xiàng)目(黔科合LH字[2017]7290);貴州省水利科技經(jīng)費(fèi)項(xiàng)目(KT201707)。
雷文娟,博士,講師,主要從事污染水文學(xué)研究。Email:leixiaojuan333@126.com.
周向陽(yáng),博士,講師,主要從事陸面水文過程及其生態(tài)環(huán)境作用機(jī)制研究。Email:xyzhou6@gzu.edu.cn
雷文娟,周向陽(yáng). 生物炭對(duì)農(nóng)藥降解產(chǎn)物三氯吡啶醇在土壤中遷移的影響研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):173-180. doi:10.11975/j.issn.1002-6819.2019.10.022 http://www.tcsae.org
Lei Wenjuan, Zhou Xiangyang. Influence of biochar on migration of pesticide degradation product trichloro pyridinol in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 173-180. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.022 http://www.tcsae.org