陳亮亮 祝長生 喬曉利 伍家駒
關(guān)鍵詞:表貼式永磁同步電機;碳纖維護套;解析解;強度分析;應(yīng)力函數(shù)法
DOI:10.15938/j.emc.2019.06.000
中圖分類號文獻標(biāo)志碼:A 文章編號:1007 -449X(2019)06 -0000 -00
Abstract:As for the problem of no analytical solution of rotor strength for high speed segmented surface mounted permanent magnet synchronous machine (SPMSM) with a carbon fiber sleeve, the analytical solution of rotor strength was proposed based on the plane stress model. The displacement method and stress potential method in polar coordinates were employed to deduce the analytical solution, and the influences of different densities and coefficients of thermal expansion of permanent magnets and pole fillers were taken into account. Then the effectiveness of the analytical solution was validated by finite element method. The effects of design parameters on rotor strength, such as rotational speed, thickness of carbon fiber sleeve and interference fit between the carbon fiber sleeve and the permanent magnet, were further investigated based on the analytical solution proposed. It is shown that the results calculated by the analytical solution and finite element method are in good agreement with each other. The analytical solution proposed can predict the stress distribution of the high speed segmented SPMSM′s rotor with a carbon fiber sleeve, considering the effects of difference in density and coefficient of thermal expansion between permanent magnets and pole fillers.
Keywords:surface mounted permanent magnet synchronous machine (SPMSM); carbon fiber sleeve; analytical solution; strength analysis; stress potential method
0 引 言
高速表貼式永磁同步電機(surfacemounted permanent magnet synchronous motor,SPMSM)具有結(jié)構(gòu)簡單、可靠性強、效率高、功率密度高等優(yōu)點,已得到了廣泛的應(yīng)用[1-2]。稀土永磁材料因其高剩磁、高矯頑力及高磁能積等特點而被廣泛應(yīng)用于永磁電機[3]。在高速SPMSM中永磁體既可加工成整體結(jié)構(gòu)也可制作成分塊結(jié)構(gòu)。在整體結(jié)構(gòu)中,永磁體常加工成圓柱型或圓筒型;在分塊結(jié)構(gòu)中永磁體常加工成瓦片型,磁極間采用非磁性材料填充,填充塊能保證轉(zhuǎn)子結(jié)構(gòu)的整體性并起阻尼作用,同時也有助于永磁體的固定。整體永磁結(jié)構(gòu)具有結(jié)構(gòu)簡單,易于加工,機械強度高等優(yōu)點,但永磁材料的利用率較低。分塊永磁體結(jié)構(gòu)提高了永磁材料的利用率,還可以通過選取合適的極弧系數(shù)來優(yōu)化電機氣隙磁場,其缺點是加工工藝較復(fù)雜,機械強度較低。
由于稀土永磁材料的抗壓強度較大而抗拉強度很小,容易被電機高速運行時產(chǎn)生的巨大離心力所破壞,因此需要采用非導(dǎo)磁保護套對永磁體進行保護。目前,非導(dǎo)磁保護套主要有高強度復(fù)合材料護套及非導(dǎo)磁金屬護套2類。常用的高強度復(fù)合材料有碳纖維和玻璃纖維,常用的非導(dǎo)磁金屬材料則有鈦合金及高強度合金鋼。與非導(dǎo)磁金屬護套相比,高強度復(fù)合材料護套具有強度高、質(zhì)量輕、無高頻渦流損耗等優(yōu)點,但復(fù)合材料是熱的不良導(dǎo)體,不利于永磁體的散熱[4-6]。在工程實際應(yīng)用中,永磁體與保護套之間采用過盈配合,借助過盈配合產(chǎn)生的預(yù)壓力來抵消轉(zhuǎn)子高速運行時永磁體離心力產(chǎn)生的巨大拉應(yīng)力,進而保護永磁體。為了選取合適的護套厚度及護套與永磁體間的過盈量,需要對轉(zhuǎn)子強度進行深入分析。
目前,針對高速SPMSM轉(zhuǎn)子的強度分析方法主要有有限元法和解析法兩類。與有限元法[7-10]相比,解析法的計算量小、效率高、且轉(zhuǎn)子強度與過盈量、護套厚度等參數(shù)之間的物理關(guān)系明確,有利于電機轉(zhuǎn)子強度的優(yōu)化設(shè)計,缺點是復(fù)雜轉(zhuǎn)子結(jié)構(gòu)的強度解析解難以得到。
國內(nèi)外學(xué)者對高速SPMSM的轉(zhuǎn)子強度解析解已經(jīng)開展了一些研究。文獻[11-16] 對非導(dǎo)磁金屬護套保護下的永磁轉(zhuǎn)子的強度解析解進行了研究。Borisavljevic等[11]和Chen等[12] 研究了非導(dǎo)磁金屬護套保護下圓柱型永磁體轉(zhuǎn)子的強度解析解。王繼強等[13]和張超等[14]分別從平面應(yīng)力和平面應(yīng)變的角度研究了非導(dǎo)磁金屬護套保護下圓筒型永磁體轉(zhuǎn)子的強度解析解。程文杰等[15]對圓柱型永磁體轉(zhuǎn)子和圓筒型永磁體轉(zhuǎn)子的強度解析解進行了比較分析。陳亮亮等[16]研究了未考慮轉(zhuǎn)子發(fā)熱時非導(dǎo)磁金屬護套分塊永磁體轉(zhuǎn)子的強度解析解。文獻[17-19]研究了碳纖維護套保護下的永磁轉(zhuǎn)子的強度解析解。Binder等人[17]提出了未考慮材料各向異性及轉(zhuǎn)子發(fā)熱影響的碳纖維護套圓柱型永磁體轉(zhuǎn)子的環(huán)向應(yīng)力及接觸壓強的解析解。陳亮亮等[18]研究了考慮碳纖維材料各向異性及轉(zhuǎn)子發(fā)熱影響的碳纖維護套圓筒型永磁體轉(zhuǎn)子的強度解析解。Borisavljevic 等[19]分別研究了未考慮和考慮碳纖維護套各向異性特性時圓筒型永磁體轉(zhuǎn)子的強度解析解。張鳳閣等[20]比較分析了非導(dǎo)磁金屬護套和碳纖維護套保護下圓柱型永磁體轉(zhuǎn)子的強度解析解。目前所建立的碳纖維護套分塊永磁體轉(zhuǎn)子的強度解析解均沒有考慮永磁體和極間填充塊的密度及熱膨脹系數(shù)不同對轉(zhuǎn)子應(yīng)力分布的影響。
目前,高速SPMSM轉(zhuǎn)子的強度解析解主要針對整體永磁體轉(zhuǎn)子,而對于碳纖維護套固定的分塊永磁體轉(zhuǎn)子的強度解析解的研究還較少。在碳纖維護套分塊永磁體轉(zhuǎn)子中,由于永磁體和填充塊的密度及熱膨脹系數(shù)不同,護套/轉(zhuǎn)子鐵心與永磁體和填充塊間的接觸壓力出現(xiàn)明顯的差異;同時碳纖維材料的各向異性特性也進一步增加了求解轉(zhuǎn)子強度解析解的難度。
針對高速SPMSM中碳纖維護套保護的分塊永磁體轉(zhuǎn)子結(jié)構(gòu),本文基于平面應(yīng)力模型,綜合運用極坐標(biāo)下的位移求解法及應(yīng)力函數(shù)求解法,推導(dǎo)了考慮永磁體和極間填充塊密度及熱膨脹系數(shù)不同對轉(zhuǎn)子應(yīng)力影響的碳纖維護套分塊永磁體轉(zhuǎn)子的強度解析解,并利用有限元方法對解析解進行了驗證。在轉(zhuǎn)子強度解析解的基礎(chǔ)上,研究了轉(zhuǎn)速、碳纖維護套厚度及過盈量等參數(shù)對轉(zhuǎn)子強度的影響,分析了碳纖維固定的高速分塊SPMSM轉(zhuǎn)子的強度變化規(guī)律。
1 轉(zhuǎn)子結(jié)構(gòu)
本文研究的高速SPMSM的轉(zhuǎn)子主要由碳纖維護套、永磁體、非磁性填充塊和轉(zhuǎn)子鐵心4部分組成。其中,永磁體為分塊結(jié)構(gòu),呈瓦片狀并粘貼于轉(zhuǎn)子鐵心外表面,極間填充塊為非磁性材料。圖1為4極結(jié)構(gòu)的碳纖維護套分塊永磁轉(zhuǎn)子,碳纖維護套的內(nèi)外半徑分別為Ris及Ros;永磁體的內(nèi)外半徑分別為Rim和Rom;極間填充塊的內(nèi)外半徑分別為Ria和Roa,一般情況下填充塊的內(nèi)外半徑與永磁體相同;轉(zhuǎn)子鐵心的半徑為Ror。
5 結(jié) 論
根據(jù)碳纖維護套分塊永磁轉(zhuǎn)子的強度解析解的理論推導(dǎo)、有限元驗證以及基于解析解的轉(zhuǎn)子強度分析討論,可以得出以下結(jié)論:
1)本文提出的針對碳纖維護套分塊永磁轉(zhuǎn)子的強度解析解能計算考慮轉(zhuǎn)速和轉(zhuǎn)子發(fā)熱影響時轉(zhuǎn)子各部件的應(yīng)力分布,為此類電機轉(zhuǎn)子的優(yōu)化設(shè)計提供了理論支持。
2)永磁體和填充塊的密度及熱膨脹系數(shù)不同對轉(zhuǎn)子的應(yīng)力分布有較大的影響,在其影響下護套/轉(zhuǎn)子鐵心與永磁體和填充塊間的接觸壓力出現(xiàn)明顯的差異。為了減小護套/轉(zhuǎn)子鐵心與永磁體和填充塊的接觸壓力差異對轉(zhuǎn)子強度的影響,可考慮選擇密度及熱膨脹系數(shù)與永磁體較為接近的非磁性材料作為填充塊,比如鈦合金材料。
3)轉(zhuǎn)速和轉(zhuǎn)子溫度對碳纖維固定的高速分塊SPMSM轉(zhuǎn)子的應(yīng)力分布有較大影響,因此,在設(shè)計過程中,需要分別校驗電機在靜態(tài)、冷態(tài)及熱態(tài)運行時的轉(zhuǎn)子應(yīng)力分布。
參 考 文 獻:
[1] ALBERTO T, SILVIO V, ALESSANDRO V. Electrical machines for highspeed applications: design considerations and tradeoffs [J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3022.
[2] 趙祥,范瑜,夏靜,等. 一種減小永磁電機轉(zhuǎn)子損耗的轉(zhuǎn)子結(jié)構(gòu)[J]. 電機與控制學(xué)報,2019, 23(2):62.
ZHAO Xiang, FAN Yu, XIA Jing, et al. Rotor structure to reduce rotor losses of permanent magnet electric machines[J].Electric Machines and Control, 2019, 23(2): 62.
[3] 鄭大偉,朱明剛,鄭立允,等. 稀土永磁材料在永磁電機中的應(yīng)用[J]. 微特電機,2015,43(4):81.
ZHENG Dawei, ZHU Minggang, ZHENG Liyun, et al.Application of rare earth permanent magnetic materials for permanent magnet machines[J]. Small and Special Electrical Machines, 2015, 43(4):81.
[4] KOLONDZOVSKI Z, ARKKIO A, LARJOLA J, et al. Power limits of highspeed permanentmagnet electrical machines for compressor applications [J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 73.
[5] KOLONDZOVSKI Z, BELAHCEN A, ARKKIO A. Comparative thermal analysis of different rotor types for a highspeed permanentmagnet electrical machine [J]. IET Electric Power Applications, 2009, 3(4): 279.
[6] 張超,朱建國,佟文明,等.高速內(nèi)置式永磁轉(zhuǎn)子強度分析與設(shè)計[J]. 電機與控制學(xué)報,2017,21(12):43.
ZHANG Chao, ZHU Jianguo, TONG Wenming, et al. Strength analysis and design of high speed interior permanent magnet rotor[J]. Electric Machines and Control, 2017,21(12): 43.
[7] HONG D, WOO B, KOO D. Rotor dynamics of 120000 r/min 15 kW ultra high speed motor [J]. IEEE Transactions on Magnetics, 2009, 45(6): 2831.
[8] BAILEY C, SABAN D M, GUEDESPINTO P. Design of highspeed directconnected permanentmagnet motors and generators forthe petrochemical industry [J]. IEEE Transactions on Industry Applications, 2009, 45(3): 1159.
[9] SOONG W L, KLIMAN G B, JOHNSON R N, et al. Novel highspeed induction motor for a commercial centrifugal compressor [J]. IEEE Transactions on Industry Applications, 2000, 36(3): 706.
[10] ZHANG F, DU G, WANG T. Rotor retaining sleeve design for a 1.12-MW highspeed PM machine [J]. IEEE Transactions on Industry Applications, 2015, 51(5): 3675.
[11] BORISAVLJEVIC A, POLINDER H, FERREIRA J A. On the speed limits of permanentmagnet machines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 220.
[12] CHEN L, ZHU C. Rotor strength analysis for high speed permanent magnet machines [C]// Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), October 22-25, 2014, Hangzhou, China. 2014: 65-69.
[13] 王繼強,王鳳翔,鮑文博, 等. 高速永磁電機轉(zhuǎn)子設(shè)計與強度分析[J]. 中國電機工程學(xué)報, 2005, 25(15): 140.
WANG Jiqiang, WANG Fengxiang, BAO Wenbo, et al. Rotor design and strength analysis of high speed permanent magnet machine [J]. Proceedings of the CSEE, 2005, 25(15): 140.
[14] 張超,朱建國,韓雪巖. 高速表貼式永磁電機轉(zhuǎn)子強度分析[J]. 中國電機工程學(xué)報, 2016, 36(17): 4719.
ZHANG Chao, ZHU Jianguo, HAN Xueyan. Rotor strength analysis of highspeed surface mounted permanent magnet motors [J]. Proceedings of the CSEE, 2016, 36(17): 4719.
[15] 程文杰,耿海鵬,馮圣, 等. 高速永磁同步電機轉(zhuǎn)子強度分析[J]. 中國電機工程學(xué)報, 2012, 32(27): 87.
CHENG Wenjie, GENG Haipeng, FENG Sheng,et al. Rotor strength analysis of highspeed permanent magnet synchronous motors [J]. Proceedings of the CSEE, 2012, 32(27): 87.
[16] 陳亮亮,祝長生,蔣科堅. 含極間填充塊的高速表貼式永磁同步電機轉(zhuǎn)子強度分析[J]. 浙江大學(xué)學(xué)報(工學(xué)版), 2015, 49(09): 1738.
CHEN Liangliang, ZHU Changsheng, JIANG Kejian. Rotor strength analysis for highspeed surfacemounted permanent magnet synchronous motor with filled blocks between magnetic poles [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(09): 1738.
[17] BINDER A, SCHNEIDER T, KLOHR M. Fixation of buried and surfacemounted magnets in highspeed permanentmagnet synchronous machines [J]. IEEE Transactions on Industrial Electronics, 2006, 42(4): 1031.
[18] 陳亮亮,祝長生,王萌. 碳纖維護套高速永磁電機熱態(tài)轉(zhuǎn)子強度[J]. 浙江大學(xué)學(xué)報(工學(xué)版), 2015, 49(01): 162.
CHEN Liangliang, ZHU Changsheng, WANG Meng.Strength analysis for thermal carbonfiber retaining rotor in highspeed permanent magnet machine [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(01): 162.
[19] BORISAVLJEVIC A, POLINDER H, FERREIRA J A. Enclosure design for a highspeed permanent magnet rotor [C]// Proceedings of the 5th IET International Conference on Power Electronics, Machines and Drives, April 19-21, 2010, Brighton, UK. 2010: 1-6.
[20] 張鳳閣,杜光輝,王天煜. 高速永磁電機轉(zhuǎn)子不同保護措施的強度分析[J]. 中國電機工程學(xué)報, 2013, 33(S): 195.
ZHANG Fengge, DU Guanghui, WANG Tianyu. Rotor strength analysis of highspeed permanent magnet under different protection measures [J]. Proceedings of the CSEE, 2013, 33(Supplement): 195.
[21] CALME O, BIGAUD D, JONES S, et al. Analytical evaluation of stress state in braided orthotropic composite cylinders under lateral compression [J]. Composites Science and Technology, 2006, 66(15): 3040.
(編輯:劉琳琳)