余海濤 張濤
關鍵詞:直線壓縮機;振蕩電機;諧振頻率跟蹤;二階廣義積分;坐標變換
DOI:10.15938/j.emc.2019.06.000
中圖分類號文獻標志碼:A 文章編號:1007 -449X(2019)06 -0000 -00
Abstract:Linear compressor driven by linear oscillatory actuator is more efficient and easier to control than traditional rotary motor.In order to improve the efficiency of linear compressor,a new method based on second order general integral resonant frequency tracking control (SOGIRFTC) is proposed. The steadystate displacement signal x and current signal i are sensed under the control of stroke stability. Based on theory that phase shift between actuator displacement and current is 90°when drive frequency equals to mechanical resonant frequency, the AC signal is transformed into DC signal by frequency locked loop and coordinate transformation. Then PI controller is used to achieve zero steadystate error. Besides, the second order general integral controller is adopted to filter out the sampling noise and high frequency interference of the input signal, which improves the stability of the controller. The simulation and experimental results show that the proposed resonant frequency tracking control can quickly track the inherent mechanical frequency of the Actuator and improve the efficiency of the system.
Keywords:linear compressor; linear oscillatory actuator; resonant frequency tracking; second order general integral;coordinate transformations
0 引 言
冰箱用壓縮機分為旋轉電機驅動的傳統(tǒng)壓縮機和采用直線電機驅動的直線壓縮機。傳統(tǒng)壓縮機采用旋轉電機驅動,利用曲柄聯(lián)桿將旋轉電機的旋轉運動轉換為往復直線運動,由于采用曲柄等機械轉換環(huán)節(jié),增加摩擦損耗,增大噪聲[1]。同時由于機械結構的限制,最大轉速得不到提高,性能提升空間小。采用直線電機直接驅動的直線壓縮機,取消了傳統(tǒng)壓縮機的曲柄連桿機構,通過直線電機,以電磁共振的方式進行驅動,結構簡單,體積減小,沒有機械零件之間相互運動,大大減小摩擦損耗,降低噪聲[2]。由于直線電機只有軸向推力,沒有徑向壓力,在工作時只需少量的潤滑油或者不用潤滑油。壓縮機的活塞與直線振蕩電機的動子直接相連,從而可以根據(jù)需要調節(jié)活塞行程和余隙,控制方式靈活[3]。
壓縮機用直線電機主要的控制目標是在安全可靠性的前提下使壓縮機高效運行。通過控制直線振蕩電機的行程,保證其可靠運行。直線壓縮機是直線電機與機械彈簧組成共振系統(tǒng),其負載為氣體工質。當電機驅動頻率等于壓縮機的機械諧振頻率時,系統(tǒng)效率達到最大[4]。隨著氣體工質、排氣量的變化,等效機械頻率發(fā)生變化,通過不斷改變電機的驅動頻率,使其追隨機械頻率,實現(xiàn)壓縮機系統(tǒng)高效運行。
在最初電機設計時,將振蕩系統(tǒng)的固有機械諧振頻率設計為50 Hz或60 Hz,采用固有頻率控制,該方法控制簡單,成本低,但當負載變化時,不能有效跟蹤諧振頻率,降低效率[5]。2004年,韓國學者Chun通過分析振蕩電機特性,得出當振蕩諧振系統(tǒng)效率最優(yōu)時,電流波形滯后位移90°,并采用相角控制方式實現(xiàn)諧振頻率跟蹤控制[6]。Yoshida等采用判斷反電勢的相位或位移與電流的相位的方法,實現(xiàn)頻率跟蹤[7]。上述控制方法在相角檢測時存在過零檢測帶來的誤差問題。Chun等采用控制位移與電流乘積的平均值的方法進行壓縮機效率的最大化控制,解決了電流的過零點檢測帶來誤差的問題[8]。在控制過程中,頻率不斷改變,從而給平均值的計算帶來困難。上述的控制方法建立在振蕩電機工作時特有的工作特性上,是一種間接控制的控制策略。Lin等采用擾動和觀測的搜索方法,直接以輸出功率為目標量,通過改變頻率擾動量,直接對最大輸出功率點進行跟蹤[9]。于明湖等人采用模糊算法搜索一定行程下電流(功率)最小時的共振頻率[10]。采用擾動觀測法,控制簡單,但跟蹤響應受擾動步長的影響,同時在最大功率點附近出現(xiàn)頻率振蕩現(xiàn)象[13-14]。
5? 結 論
本文針對壓縮機用直線振蕩電機的控制進行了深入的研究。
首先,對直線電機的運性特性進行分析,基于振蕩電機的數(shù)學模型,分別繪制運行特性曲線、幅頻特性曲線和相頻特性曲線。得出當電機工作在欠阻尼下,電機驅動頻率等于系統(tǒng)的固有機械頻率時,效率最大。
進一步根據(jù)系統(tǒng)諧振下電機位移和電流相移為90°的特點,提出一種基于二階廣義積分的諧振頻率跟蹤控制方法,采樣電流和位移經過改進二階廣義積分控制器輸出被測信號與其正交信號,因二階廣義積分控制器特點,輸出信號有效濾除采樣信號的采樣噪聲。再經過坐標變換,將正弦交流信號轉換為直流信號,通過控制坐標變換后電流交軸信號與位移直軸信號差值,實現(xiàn)直線振蕩電機諧振頻率跟蹤控制。該控制方法避免計算位移與電流的相角差,從而避免過零檢測帶來的頻率波動;同時采用坐標變換將交流信號轉換為直流信號采用傳統(tǒng)PI控制器即可實現(xiàn)無靜差控制。
最后進行仿真和實驗驗證。實驗結果表明所提出的諧振頻率跟蹤控制技術,在行程環(huán)穩(wěn)定下,驅動頻率快速跟隨電機固有機械頻率,空載下電機諧振頻率f=68 Hz,電機效率提高約為65%。
參 考 文 獻:
[1] HOWE D,WANG J.A novel linear drive for nextgeneration reciprocating vapor compressors[J]. IEEE Transactions on Electrical and Electronic Engineering, 2008, 3(5):455.
[2] SM Jang, JY Choi, HW Cho, et al.Comparison and dynamic behavior of movingcoil linear oscillatory actuator with/without mechanical spring driven by rectangular voltage source[C]//IEEE International Conference on Electrical Machines and Systems (ICEMS),October 8-10,2007,Seoul,Korea.2007,874-877.
[3] Z Peng, L Zhihai, Z Shuiying.Control system of linear compressor based on bidirectional triode thyristor[C]//Third International Conference on Measuring Technology and Mechatronics Automation, January 6-7,2011,Shangshai,China,2011,782-785.
[4] 陳梁遠,李黎川.壓縮機用直線電機及其關鍵技術發(fā)展綜述[J].中國電機工程學報,2013,33(15):52.
CHEN Liangyuan, LI Lichuan. Development of the linear motor and its key technologies for compressors[J]. Proceedings of the CSEE, 2013, 33(15):52.
[5] SUN Daming,DIETRICH M,THUMMES G.Investigation on highpower stirlingtype pulse tube coolers for cooling HTS motors[J]. IEEE Transactions on Applied Superconductors, 2012, 22(3): 4703704.
[6] SANADA M,MORIMOTO S,TAKEDA Y.Analyses for sensorless linear compressor using linear pulse motor[C]//IEEE 34th Industry Applications Conference, October 3-7, 1999, Phoenix, USA. 1999, 4:2298–2304.
[7] YOSHIDA M,HASEGAWA S,UEDA M.Driving apparatus of a linear compressor:USA,US6832898[P].2004-12-21.
[8] TW Chun, JR Ahn, HH Lee, et al.Novel strategy of efficiency control for a linear compressor system driven by a PWM inverter[J].Transactions on Industrial Electronics, 2008,55(1): 296.
[9] LIN Z,WANG J,HOWE D.Resonant frequency tracking technique for linear vapor compressors[C]//2007 IEEE International Electric Machines and Drives Conference, May 3-5, 2007, Antalya, Turkey. 2007, 1: 370–375.
[10] 于明湖,張玉秋,葉云岳等.直線振蕩電機諧振頻率跟蹤策略研究[C] //第29屆中國控制會議,7月29-31日,2010,北京,中國. 2010,7:3348-3351.
[11] 費騰.用于冰箱壓縮機的直線振蕩電機設計與性能分析[D].南京:東南大學,2014.32-35.
[12] 辛振,趙仁德,郭寶玲.基于二階廣義積分器-鎖頻環(huán)的異步電機同步角頻率估計方法[J].電工技術學報,2014,29(1):32.
XING Zhen, ZHAO Rende, GUO Baoling. New induction motor synchronous angular frequency estimation method based on second order generalized integratorfrequency locked loop[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 32.
[13] 于明湖,張玉秋,葉云岳,等. 雙定子直線振蕩電機諧振特性分析[J]. 電機與控制學報,2010,14(8): 1.
YU Minghu, ZHANG Yuqiu, YE Yunyue , et al. Resonant frequency characteristic analysis of linear oscillatory motor with two separated stators[J]. Electric Machines and Control, 2010,14(8):1.
[14] 雷美珍,戴文戰(zhàn),夏永明. 直線壓縮機用無內定子動磁式直線振蕩電機的建模與分析[J]. 電機與控制學報,2014,18(14): 45.
LEI Meizhen,DAI Wenzhan,XIA Yongming. Modeling and analysis of movingmagnet linear motor with no innerteeth for linear compressor[J]. Electric Machines and Control, 2014,18(14):45.
(編輯:劉琳琳)