甘炎民,周健,全絨,洪林君,李紫聰,鄭恩琴,劉德武,吳珍芳,2,蔡更元,2,顧婷
?
組蛋白H3K27me3對(duì)骨骼肌發(fā)育調(diào)控研究進(jìn)展
甘炎民1,周健1,全絨1,洪林君1,李紫聰1,鄭恩琴1,劉德武1,吳珍芳1,2,蔡更元1,2,顧婷1
1. 華南農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,國(guó)家生豬種業(yè)工程技術(shù)研究中心,廣州 510642 2. 廣東溫氏食品集團(tuán)股份有限公司,新興 527439
組蛋白甲基化是發(fā)生在核小體核心組蛋白各亞基N-端肽鏈的一種修飾方式。在組成核小體的4種亞基中,H3亞基N-端肽鏈第4、9、27、36和79等位點(diǎn)的賴氨酸為甲基化熱點(diǎn),甲基化類型包括一、二、三甲基化(mono-, di-, tri-methylation)。H3K27me3是發(fā)生在組蛋白H3亞基第27位賴氨酸的三甲基化,主要發(fā)揮轉(zhuǎn)錄抑制的作用,參與骨骼肌的發(fā)育調(diào)控。研究表明,H3K27me3能夠與骨骼肌增殖和分化的關(guān)鍵轉(zhuǎn)錄因子(如MyoD和MyoG等)及細(xì)胞周期蛋白特異性結(jié)合,并與其他表觀遺傳調(diào)控因子lncRNA及miRNA等互作,對(duì)骨骼肌的增殖和分化時(shí)間以及程度進(jìn)行精細(xì)調(diào)控。本文系統(tǒng)介紹了組蛋白甲基化的類型以及H3K27甲基化和去甲基化的生物學(xué)過(guò)程,總結(jié)了目前已報(bào)道的H3K27me3在骨骼肌成肌細(xì)胞增殖和分化過(guò)程中發(fā)揮的作用,以期輔助科研工作者了解H3K27me3在骨骼肌發(fā)育過(guò)程中的作用,以及為進(jìn)一步提高哺乳動(dòng)物肌肉品質(zhì)提供參考。
組蛋白;甲基化;骨骼肌;H3K27me3
在自然界中,哺乳動(dòng)物的個(gè)體生長(zhǎng)、肌肉質(zhì)量與骨骼肌的生長(zhǎng)發(fā)育相關(guān)。骨骼肌由束狀肌纖維組成,是動(dòng)物個(gè)體中體積最大、質(zhì)量占比最高的組織,對(duì)運(yùn)動(dòng)系統(tǒng)、姿勢(shì)行為、支撐作用至關(guān)重要。骨骼肌的生長(zhǎng)發(fā)育受經(jīng)典遺傳和表觀遺傳學(xué)的共同精細(xì)調(diào)控,其中骨骼肌成肌細(xì)胞的增殖、分化及肌管融合和肌纖維體積增大是研究骨骼肌發(fā)育的核心問(wèn)題。近年來(lái)組蛋白甲基化修飾成為表觀遺傳學(xué)領(lǐng)域的研究熱點(diǎn),能通過(guò)改變核小體結(jié)構(gòu)/細(xì)胞周期蛋白基因表達(dá)以及增殖和分化相關(guān)關(guān)鍵蛋白的表達(dá),與其他表觀因子互作等途徑參與骨骼肌發(fā)育。其中,組蛋白H3亞基第27位賴氨酸三甲基化(histone H3 lysine 27 tri-methylation, H3K27me3)是抑制性組蛋白修飾,在骨骼肌發(fā)育過(guò)程中扮演著重要角色。結(jié)合近年來(lái)與骨骼肌發(fā)育相關(guān)的H3K27三甲基化的研究進(jìn)展,本文主要對(duì)組蛋白結(jié)構(gòu)和甲基化修飾類型、H3K27位點(diǎn)的甲基化和去甲基化的調(diào)控機(jī)制及其調(diào)控骨骼肌發(fā)育的過(guò)程進(jìn)行了綜述,以期為科研工作者了解H3K27三甲基化對(duì)骨骼肌發(fā)育過(guò)程的調(diào)控提供幫助及進(jìn)一步解析骨骼肌發(fā)育機(jī)制提供借鑒和參考。
在真核生物細(xì)胞核中,DNA鏈纏繞在核心組蛋白外,形成染色質(zhì)的基本單位—核小體。由于組蛋白富含精氨酸和賴氨酸,帶有正電荷,因此能與帶有負(fù)電荷的DNA密切結(jié)合。組蛋白主要由H1、H2A、H2B、H3和H4 等5種類型蛋白質(zhì)亞基組成,而其中的4種組蛋白亞基—H2A、H2B、H3和H4由一球形結(jié)構(gòu)域及暴露在核小體表面的N端尾區(qū)組成,每個(gè)亞基各兩拷貝組成八聚體(histone octamer),形成核小體基本結(jié)構(gòu)中的核心組蛋白。兩個(gè)核小體由組蛋白H1亞基與連接DNA (linker DNA)串聯(lián)起來(lái),彼此靠攏、緊密相連[1]。
核心組蛋白氨基酸鏈兩端分別為C末端和N末端:N末端富含堿性氨基酸,如精氨酸和賴氨酸;C末端富含疏水氨基酸,如異亮氨酸和纈氨酸。C端氨基酸由于其疏水性質(zhì)聚集在組蛋白中心,N端堿性氨基酸暴露在八聚體外周,形成“組蛋白的尾巴”,這些暴露的堿基容易被不同的基團(tuán)修飾。1964年,Murray[2]在鼠傷寒沙門(mén)菌()鞭毛蛋白中發(fā)現(xiàn)了N-甲基化賴氨酸,這是最早發(fā)現(xiàn)的組蛋白甲基化修飾。組蛋白甲基化是指蛋白側(cè)鏈氨基酸在各甲基化酶的催化下,以S-腺苷甲硫氨酸(S-adenosyl methionine, SAM)作為甲基供體,獲得不同數(shù)目甲基的一種翻譯后修飾(post-translational modification, PTM)[3]。目前為止,已經(jīng)發(fā)現(xiàn)了多種特異性組蛋白甲基化酶,其中不同的賴氨酸甲基轉(zhuǎn)移酶(histone lysine methyltransferases, HKMTs)能將賴氨酸殘基分別進(jìn)行單甲基化(mono-/ -me1)、雙甲基化(di-/ -me2)以及三甲基化(tri-/ -me3)修飾,而精氨酸甲基轉(zhuǎn)移酶(protein arginine methyltransferase, PRMT)催化精氨酸殘基,對(duì)其進(jìn)行單甲基化或者雙甲基化修飾[1,4]。
組蛋白H3是發(fā)生修飾最多的亞基,其第4、9、27、36和79位賴氨酸殘基是甲基化修飾的熱點(diǎn)[5],對(duì)基因表達(dá)起著重要的調(diào)控作用。一般來(lái)說(shuō),組蛋白H3不同位點(diǎn)的賴氨酸甲基化修飾能夠調(diào)節(jié)染色質(zhì)結(jié)構(gòu),使染色質(zhì)處于疏松或緊密狀態(tài),從而對(duì)基因轉(zhuǎn)錄活性進(jìn)行調(diào)控[6];此外,組蛋白H3不同位點(diǎn)賴氨酸的甲基化與其他類型的修飾方式相互作用,如H3K4me1和H3K27ac,分別對(duì)基因啟動(dòng)子和增強(qiáng)子的活性調(diào)節(jié)發(fā)揮關(guān)鍵的調(diào)控作用[7,8]。
H3K27修飾是一個(gè)動(dòng)態(tài)的過(guò)程,包括主動(dòng)甲基化和被動(dòng)去甲基化。在主動(dòng)甲基化過(guò)程中,H3K27由基因增強(qiáng)子同源物2 (Zeste gene enhancer homolog2, EZH2)識(shí)別,并將甲基基團(tuán)(-CH3)轉(zhuǎn)移到組蛋白H3的27位賴氨酸殘基上[9]。因此,EZH2的表達(dá)與H3K27me3水平成正比。此外,EZH2是組成多梳蛋白抑制復(fù)合物2 (polycomb repressive co-mplex2, PRC2)的3個(gè)核心亞基之一,而PRC2是動(dòng)植物機(jī)體中兩大重要的多梳蛋白抑制復(fù)合物之一,其組成成分較PRC1更為保守,由EZH1/EZH2、基因抑制因子(suppressor of zeste12, Suz12)以及胚胎外胚層發(fā)育因子(embryonic ectoderm deve-lopment, EED)組成。而H3K27me3去甲基化由其去甲基化酶—賴氨酸特異性脫甲基酶6B (lysine- specific demethylase 6B, Kdm6B/JMJD3)和賴氨酸特異性脫甲基酶6A (lysine-specificdemethylase 6A, Kdm6A/UTX)催化,兩者皆為含有Jumonji C(JmjC)結(jié)構(gòu)域的雙加氧酶。H3K27me3被去甲基化后能解除轉(zhuǎn)錄抑制活性,啟動(dòng)靶基因表達(dá)[10]。研究表明,UTX作為H3K27特異性去甲基轉(zhuǎn)移酶,不僅能夠使H3K27me2去除二甲基化,還能使H3K27me3去除三甲基化[11]。Karl等[12]在小鼠胚胎細(xì)胞中抑制H3K27去甲基化酶UTX和JMJD3的表達(dá)后,發(fā)現(xiàn)基因啟動(dòng)子區(qū)H3K27me3的表達(dá)水平升高。
H3K27me3修飾是組蛋白H3亞基最穩(wěn)定的表觀修飾標(biāo)記之一,對(duì)基因轉(zhuǎn)錄、DNA復(fù)制和修復(fù)具有調(diào)控作用,參與干細(xì)胞分化、肌肉分化和發(fā)育等生命活動(dòng)[13]。H3K27me3修飾位點(diǎn)主要位于基因啟動(dòng)子和轉(zhuǎn)錄起始位點(diǎn)附近,是抑制性組蛋白修飾,參與基因表達(dá)、胚胎發(fā)育和細(xì)胞分化等過(guò)程[14,15]。H3K27me3通過(guò)3種方式抑制基因的表達(dá):(1) EZH2催化組蛋白H3K27三甲基化(形成H3K27me3),被組成PRC1的色素框-結(jié)構(gòu)域蛋白(chromobox- domain protein, CBX)亞基識(shí)別并進(jìn)一步募集PRC1復(fù)合物,其RING1亞基將組蛋白H2A亞基第119位賴氨酸單泛素化(H2AK119ub1),使染色質(zhì)結(jié)構(gòu)更加致密,基因轉(zhuǎn)錄起始位點(diǎn)無(wú)法與轉(zhuǎn)錄酶RNA Pol Ⅱ結(jié)合(圖1A)[10,16,17],這是目前發(fā)現(xiàn)的H3K27me3最經(jīng)典的調(diào)控方式;(2) H3K27me3募集其他抑制性調(diào)控因子,如DNA甲基化轉(zhuǎn)移酶(DNA methyltrans-ferase, DNMT),使與之結(jié)合的DNA序列甲基化(圖1B);(3) H3K27me3在受精卵中特異結(jié)合于印記基因的母源等位基因,以不依賴DNA-甲基化的形式對(duì)不同親本來(lái)源的等位基因(主要為母本來(lái)源)進(jìn)行印記(imprinting) (圖1C)[18]。
肌肉質(zhì)量通常由肌纖維的數(shù)目和橫截面積決定,肌纖維數(shù)目的增加表現(xiàn)為肌肉增生,肌纖維橫截面積的增加表現(xiàn)為肌肉肥大[19]。肌纖維數(shù)目的增加依賴于肌細(xì)胞的增殖,而細(xì)胞能否維持增殖狀態(tài)受細(xì)胞周期蛋白和轉(zhuǎn)錄調(diào)控因子的共同作用。研究表明,細(xì)胞周期蛋白(如細(xì)胞周期蛋白激酶Cdk6)需要維持在較高的表達(dá)水平,以及生肌調(diào)節(jié)因子(myogenic regulatory factors, MRFs),如MyoG、MyoD、Myf5和Myf6需要維持在較低的表達(dá)水平才能保證骨骼肌細(xì)胞處于增殖狀態(tài)[19]。肌細(xì)胞生成素(Myogenin, MyoG)是含螺旋-環(huán)-螺旋結(jié)構(gòu)的轉(zhuǎn)錄因子,在成肌分化中發(fā)揮關(guān)鍵作用。H3K27me3能直接抑制基因的表達(dá),促進(jìn)骨骼肌細(xì)胞的增殖。Asp等[20]發(fā)現(xiàn)成肌細(xì)胞系C2C12分化前基因組中總體的H3K27me3修飾水平顯著高于分化后,特異性抑制基因的表達(dá),維持成肌細(xì)胞增殖狀態(tài)。這與小鼠胚胎肌肉發(fā)育的過(guò)程一致。在小鼠早期胚胎(d9.5)的肌節(jié)中,H3K27me3的甲基化酶EZH2及H3K27me3表達(dá)較高,抑制MyoG的表達(dá),同時(shí)成肌分化因子MHCⅡb的啟動(dòng)子和MCK的增強(qiáng)子等調(diào)控區(qū)域也被EZH2和轉(zhuǎn)錄因子YY1識(shí)別,形成H3K27me3修飾,然后進(jìn)一步募集組蛋白去乙?;窰DAC1,促進(jìn)成肌細(xì)胞增殖[21]。H3K27me3修飾同樣促進(jìn)家畜骨骼肌的增殖。Byrne等[22]發(fā)現(xiàn)在出生前后的綿羊骨骼肌基因組中H3K27me3修飾大量存在于啟動(dòng)子中,抑制基因的轉(zhuǎn)錄活性。肌骨素(myostatin,)基因能抑制骨骼肌增殖,抑制的表達(dá)能提高家畜的肌肉量。研究表明,在原代分離的綿羊成肌細(xì)胞中敲除可上調(diào)H3K27me3的甲基化酶EZH2的表達(dá),促進(jìn)肌細(xì)胞增殖[23]。
圖1 H3K27me3抑制基因表達(dá)的作用機(jī)制
A:H3K27me3募集PRC1復(fù)合物抑制轉(zhuǎn)錄;B:H3K27me3促進(jìn)DNA序列甲基化;C:H3K27me3對(duì)等位基因進(jìn)行 印記。
H3K27me3除了可直接靶向調(diào)節(jié)成肌分化因子及細(xì)胞周期蛋白的表達(dá)外,還可與長(zhǎng)鏈非編碼RNA (lncRNA)互作,調(diào)控骨骼肌細(xì)胞的增殖。lncRNA是近年來(lái)新發(fā)現(xiàn)的一類非編碼RNA,能通過(guò)與H3K27me3的互作對(duì)骨骼肌增殖分化發(fā)揮重要的調(diào)控作用。Jin等[24]發(fā)現(xiàn)lncRNA SYISL能通過(guò)募集H3K27me3甲基化酶EZH2,進(jìn)行H3K27me3修飾,進(jìn)而抑制細(xì)胞周期蛋白激酶Cdk6的抑制因子基因的表達(dá)及激活靶基因的表達(dá),促進(jìn)成肌細(xì)胞增殖,提高肌纖維數(shù)、肌肉密度和肌肉質(zhì)量(圖2)。Andresini等[25]發(fā)現(xiàn)lncRNA Kcnq1ot1在骨骼肌細(xì)胞C2.7中通過(guò)促進(jìn)細(xì)胞周期抑制因子基因上結(jié)合位點(diǎn)處H3K27me3的累積量,阻礙轉(zhuǎn)錄因子MyoD的結(jié)合,從而抑制細(xì)胞周期抑制因子p57的表達(dá),促進(jìn)骨骼肌增殖。
骨骼肌衛(wèi)星細(xì)胞是一類特殊的具有干細(xì)胞性質(zhì)的肌細(xì)胞,在肌肉損傷修復(fù)等過(guò)程中發(fā)揮重要作用。H3K27me3對(duì)于骨骼肌衛(wèi)星細(xì)胞的發(fā)育同樣是必不可缺。研究表明,EZH2是維持骨骼肌衛(wèi)星細(xì)胞標(biāo)記基因表達(dá)的重要調(diào)控因子。在小鼠衛(wèi)星細(xì)胞中將在骨骼肌中特異性敲除后,小鼠的肌肉量顯著下降,衛(wèi)星細(xì)胞增殖受抑制,且肌肉的損傷修復(fù)功能發(fā)生缺陷[26],說(shuō)明衛(wèi)星細(xì)胞中基因組H3K27me3水平的下調(diào)影響其增殖。該結(jié)果得到了其他研究的證實(shí)。Woodhouse等[27]同樣制備骨骼肌衛(wèi)星細(xì)胞特異敲除小鼠,發(fā)現(xiàn)小鼠肌肉量下降,肌纖維橫截面積下降,且存活率顯著下降,僅54%的條件敲除小鼠存活到50日齡,但靜息狀態(tài)的衛(wèi)星細(xì)胞數(shù)目未發(fā)生變化,推斷H3K27me3水平的降低對(duì)維持骨骼肌自身數(shù)目無(wú)影響,但抑制衛(wèi)星細(xì)胞的生長(zhǎng)增殖。
H3K27me3及其甲基化酶EZH2對(duì)其他類型的肌細(xì)胞增殖的作用與骨骼肌細(xì)胞不完全一致。在橫紋肌肉瘤細(xì)胞中用siRNA敲低的表達(dá),細(xì)胞周期抑制因子的表達(dá)上調(diào),抑制橫紋肌肉瘤細(xì)胞的增殖[28]。而Yu等[29]發(fā)現(xiàn),在小鼠鼻滴灰塵誘導(dǎo)哮喘模型中加入H3K27me3去甲基化酶抑制劑GSK-J4,即維持H3K27me3水平能顯著抑制氣管平滑肌的增殖和遷移以及炎癥反應(yīng),從而抑制哮喘的發(fā)生。LncRNA TINCR能將EZH2募集到靶基因啟動(dòng)子區(qū),提高H3K27me3水平從而抑制的轉(zhuǎn)錄,抑制心肌細(xì)胞增殖和肥大[30]。此外,Akerberg等[31]構(gòu)建了缺失H3K27me3去甲基化酶JMJD3和UTX的斑馬魚(yú)(),與野生型斑馬魚(yú)的心臟組織對(duì)比,發(fā)現(xiàn)共表達(dá)JMJD3和UTX能顯著降低H3K27me3表達(dá)量,并促進(jìn)心肌細(xì)胞的增殖。
以上研究表明,H3K27me3主要促進(jìn)成肌細(xì)胞和骨骼肌衛(wèi)星細(xì)胞的增殖,但具有細(xì)胞類型特異性。
H3K27me3及其修飾酶不僅促進(jìn)骨骼肌細(xì)胞的增殖,還對(duì)成肌細(xì)胞分化起重要調(diào)控作用。Adrian等[32]通過(guò)全基因組定位分析,發(fā)現(xiàn)在人的胚胎成纖維細(xì)胞中H3K27me3能與多種誘導(dǎo)細(xì)胞特異分化的基因,包括各種成肌調(diào)節(jié)因子和肌酸激酶(creatine kinase, CKM)等的調(diào)控區(qū)域結(jié)合,H3K27me3被去甲基化使骨骼肌成肌分化因子去抑制,從而誘導(dǎo)骨骼肌分化。骨骼肌中H3K27me3的去甲基化對(duì)啟動(dòng)骨骼肌分化過(guò)程至關(guān)重要。骨骼肌中H3K27me3的去甲基化的過(guò)程分為兩步:在肌肉分化早期,反式激活蛋白Six4募集去甲基化酶UTX到骨骼肌分化相關(guān)基因的啟動(dòng)子和編碼區(qū)部分區(qū)域,使轉(zhuǎn)錄起始位點(diǎn)附近區(qū)域發(fā)生H3K27me3去甲基化;轉(zhuǎn)錄復(fù)合物RNA Pol Ⅱ與成肌分化因子結(jié)合并向下游延伸,輔助UTX將基因編碼區(qū)下游的H3K27me3標(biāo)記去除[33]。
肌肉的分化過(guò)程主要由生肌調(diào)節(jié)因子調(diào)控,大量研究表明這些生肌調(diào)節(jié)因子與EZH2的表達(dá)趨勢(shì)相反。在小鼠肌肉分化過(guò)程中,EZH2顯著下調(diào)表達(dá),促進(jìn)肌細(xì)胞分化[21]。同樣,在山羊骨骼肌衛(wèi)星細(xì)胞的分化過(guò)程中,EZH2的表達(dá)量在分化過(guò)程中顯著下調(diào)[34]。此外,Asp等[20]發(fā)現(xiàn)H3K27me3的下調(diào)是控制基因表達(dá)和觸動(dòng)成肌細(xì)胞分化的開(kāi)關(guān)。而在C2C12和骨骼肌衛(wèi)星細(xì)胞中過(guò)表達(dá)基因,從而提高H3K27me3的水平能抑制這兩種肌細(xì)胞的分化[21]。
H3K27me3除了可直接調(diào)控成肌細(xì)胞的分化過(guò)程外,也能與lncRNA及siRNA互作,進(jìn)而調(diào)控成肌細(xì)胞的分化。最近研究發(fā)現(xiàn),敲除lcnRNA SYISL能顯著降低成肌分化因子、以及啟動(dòng)子上H3K27me3的水平,促進(jìn)成肌細(xì)胞分化[24]。而SYISL含有多個(gè)潛在的miRNA結(jié)合位點(diǎn),如miR-1、miR-125、miR-214、miR-133和miR-124位點(diǎn),它們參與調(diào)節(jié)成肌分化[35]。此外,在橫紋肌肉瘤細(xì)胞中用siRNA敲低的表達(dá),即降低H3K27me3的水平,能上調(diào)/的 表達(dá),促進(jìn)橫紋肌肉瘤細(xì)胞的分化[35]。同樣,H3K27me3在虹鱒魚(yú)()發(fā)育過(guò)程中下調(diào)表達(dá),促進(jìn)的同源基因和在發(fā)育4~8天分化過(guò)程中上調(diào)表達(dá),促進(jìn)其肌肉分化[36]。在C2C12細(xì)胞中敲除H3K27me3去甲基化酶UTX,即提高H3K27me3的水平能抑制骨骼肌分化[33]。實(shí)際上在分化中的成肌細(xì)胞,UTX會(huì)被招募到和基因的轉(zhuǎn)錄調(diào)節(jié)區(qū)域,使H3K27me3下調(diào),進(jìn)一步促進(jìn)成肌細(xì)胞的分化。此外,組蛋白伴侶Spt6可促進(jìn)UTX在染色質(zhì)上富集并降低調(diào)節(jié)區(qū)域的H3K27me3水平[37]。
MicroRNA (miRNA)能通過(guò)影響H3K27me3的修飾水平從而調(diào)控骨骼肌分化。研究表明,miR-214在骨骼肌分化中發(fā)揮重要作用。在成肌細(xì)胞中,miR-214前體所在的內(nèi)含子上募集了大量PRC2復(fù)合物,使H3K27me3高表達(dá),miR-214轉(zhuǎn)錄受到抑制,抑制細(xì)胞分化;在成肌細(xì)胞分化時(shí),EZH2的表達(dá)量下調(diào),miRNA調(diào)控區(qū)域的H3K27me3結(jié)合量降低,使和能與miR-214轉(zhuǎn)錄前體調(diào)控區(qū)域結(jié)合,促進(jìn)miR-214表達(dá),而miR-214又能與EZH2的3′非翻譯區(qū)結(jié)合,負(fù)調(diào)控EZH2的表達(dá),進(jìn)一步促進(jìn)分化的進(jìn)行[38]。類似的調(diào)控模式在橫紋肌肉瘤細(xì)胞中也有報(bào)道。EZH2和H3K27me3能與miR-101的轉(zhuǎn)錄前體序列miR-101-2結(jié)合,抑制其表達(dá),同時(shí)miR-101也能負(fù)調(diào)控EZH2的表達(dá)[39]。此外,有研究表明miR-26a也能通過(guò)靶向EZH2基因,促進(jìn)C2C12的分化[40]。
圖2 H3K27me3參與調(diào)控成肌細(xì)胞增殖和分化的過(guò)程
H3K27me3通過(guò)抑制Pax7和生肌調(diào)節(jié)因子的表達(dá)從而調(diào)節(jié)骨骼肌的增殖和分化;在衛(wèi)星細(xì)胞的增殖和分化過(guò)程中,H3K27me3會(huì)促進(jìn)衛(wèi)星細(xì)胞的增殖但抑制衛(wèi)星細(xì)胞的分化。H3K27me3的甲基化酶EZH2能分別與JARID2和lncRNA SYISL作用,調(diào)控生肌調(diào)節(jié)因子的表達(dá)。
雖然上述研究表明H3K27me3的下調(diào)是促進(jìn)骨骼肌分化的,但也有研究表明H3K27me3在某些基因上的修飾可能通過(guò)信號(hào)通路的級(jí)聯(lián)反應(yīng)抑制肌肉細(xì)胞的分化。JARID2是jumonji蛋白家族中起抑制性作用的主要成員,為PRC2復(fù)合體中非催化亞基[41]。2018年,Adhikari和Davie[42]發(fā)現(xiàn)JARID能通過(guò)抑制Wnt通路的拮抗劑Sfrp1從而激活Wnt通路,Wnt通路的非經(jīng)典途徑被激活,即Wnt蛋白與細(xì)胞膜FZD受體(frizzled)結(jié)合,β-連環(huán)蛋白(β-catenin)降解復(fù)合體分解,釋放β-catenin進(jìn)入細(xì)胞核,與成肌細(xì)胞分化因子和的調(diào)控區(qū)結(jié)合,促進(jìn)其表達(dá),從而促進(jìn)骨骼肌分化。這說(shuō)明H3K27me3也可能促進(jìn)骨骼肌分化,與前人的報(bào)道結(jié)果相反。
綜上所述,H3K27me3通過(guò)以下幾個(gè)方面對(duì)骨骼肌發(fā)育過(guò)程進(jìn)行調(diào)控:(1) H3K27me3及其甲基化酶EZH2能夠直接特異性結(jié)合細(xì)胞周期蛋白及成肌分化相關(guān)基因,如、、等因子,從而促進(jìn)成肌細(xì)胞增殖抑制肌肉的分化,而當(dāng)H3K27me3受到去甲基化酶UTX、JMJD3作用,發(fā)生去甲基化,則促進(jìn)其分化;(2) H3K27me3與lncRNA及miRNA等互作,調(diào)控肌肉發(fā)育;(3) H3K27me3能調(diào)控骨骼肌發(fā)育重要的信號(hào)通路,如Wnt信號(hào)通路,以啟動(dòng)骨骼肌分化過(guò)程(圖2)。
哺乳動(dòng)物骨骼肌發(fā)育是一個(gè)非常復(fù)雜的過(guò)程,受經(jīng)典遺傳和表觀遺傳共同調(diào)控。H3K27me3作為組蛋白甲基化修飾類型的重要一員,其本身能特異性結(jié)合成肌分化相關(guān)基因,起到調(diào)節(jié)骨骼肌增殖分化過(guò)程的作用。H3K27me3還參與調(diào)控骨骼肌發(fā)育信號(hào)通路,并能與lncRNA及miRNA等互作,以調(diào)控骨骼肌發(fā)育。目前已有大量研究表明H3K27me3在骨骼肌發(fā)育過(guò)程中發(fā)揮了重要的調(diào)控作用,但其對(duì)骨骼肌發(fā)育機(jī)制的具體調(diào)控過(guò)程尚不清楚。因此,本文主要概述了H3K27me3及其修飾酶對(duì)骨骼肌成肌細(xì)胞增殖分化的調(diào)控。然而,H3K27me3在骨骼肌發(fā)育過(guò)程的分子調(diào)控機(jī)制尚無(wú)進(jìn)一步研究,其與骨骼肌發(fā)育的更深層次關(guān)聯(lián)也有待闡明。H3K27me3對(duì)骨骼肌的調(diào)控為人們對(duì)于骨骼肌發(fā)育的認(rèn)識(shí)提供一個(gè)新角度,為更深入了解和闡明骨骼肌分化和生長(zhǎng)發(fā)育過(guò)程提供新的研究方向。隨著對(duì)H3K27me3調(diào)控骨骼肌發(fā)育機(jī)制的深入研究,將為促進(jìn)骨骼肌生長(zhǎng)發(fā)育提供理論基礎(chǔ),不僅可以提高個(gè)體生長(zhǎng)水平及運(yùn)動(dòng)能力,也可應(yīng)用于畜禽生產(chǎn)中提高肌肉質(zhì)量及肌肉產(chǎn)量以產(chǎn)生更多經(jīng)濟(jì)效益。因此,深入研究H3K27me3對(duì)骨骼肌發(fā)育的調(diào)控機(jī)制有著重要的價(jià)值和意義,為哺乳動(dòng)物促進(jìn)個(gè)體生長(zhǎng)、提高肌肉質(zhì)量及肌肉損傷后修復(fù)提供解決方案。
[1] Jiang ZW, Liu XG, Zhou ZJ. The regulation of histone modifications., 2009, 36(10): 1252–1259.蔣智文, 劉新光, 周中軍. 組蛋白修飾調(diào)節(jié)機(jī)制的研究進(jìn)展. 生物化學(xué)與生物物理進(jìn)展, 2009, 36(10): 1252– 1259.
[2] Murray K. The occurrence of Epsilon-N-methyl lysine in histones.,1964, 3(1): 10–15.
[3] Kim S, Paik WK. Studies on the origin of epsilon-N- methyl-L-lysine in protein., 1965, 240(12): 4629–4634.
[4] Martin C, Zhang Y. The diverse functions of histone lysine methylation.,2005, 6(11): 838–849.
[5] Song BY, Zhu WG. Advances in effector protein of histone methylation.,2011, 33(4): 285–292.宋博研, 朱衛(wèi)國(guó). 組蛋白甲基化修飾效應(yīng)分子的研究進(jìn)展. 遺傳, 2011, 33(4): 285–292.
[6] Chang CP, Bruneau BG. Epigenetics and cardiovascular development.,2012, 74: 41–68.
[7] Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. Histone H3K27ac separates active from poised enhancers and predicts developmental state., 2010, 107(50): 21931–21936.
[8] Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B. Histone modifications at human enhancers reflect global cell-type-specific gene expression., 2009, 459(7243): 108–112.
[9] Vieux-Rochas M, Fabre PJ, Leleu M, Duboule D, Noordermeer D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain., 2015, 112(15): 4672–4677.
[10] Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development., 2007, 449(7163): 731–734.
[11] Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases., 2007, 104(47): 18439–18444.
[12] Shpargel KB, Starmer J, Yee D, Pohlers M, Magnuson T. KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development., 2014, 10(8): e1004507.
[13] Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers., 2010, 142(6): 967–980.
[14] Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns., 2009, 10(10): 697–708.
[15] Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins., 2007, 128(4): 735–745.
[16] Marchesi I, Bagella LM. Role of enhancer of zeste homolog 2 polycomb protein and its significance in tumor progression and cell differentiation. In: Radzioch D. Chromatin Remodeling. In tech, 2013, 119–152.
[17] Dhar SS, Lee S, Chen K, Zhu G, Oh W, Allton K, Gafni O, Kim YZ, Tomoiga AS, Barton MC, Hanna JH, Wang Z, Li W, Lee MG. An essential role for UTX in resolution and activation of bivalent promoters., 2016, 44(8): 3659–3674.
[18] Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting., 2017, 547(7664): 419–424.
[19] Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis.,2011, 12(6): 349–361.
[20] Asp P, Blum R, Vethantham V, Parisi F, Micsinai M, Cheng J, Bowman C, Kluger Y, Dynlacht B D. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation., 2011, 108(22): E149–E158.
[21] Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation.,2004, 18(21): 2627–2638.
[22] Byrne K, Mcwilliam S, Vuocolo T, Gondro C, Cockett NE, Tellam RL. Genomic architecture of histone 3 lysine 27 trimethylation during late ovine skeletal muscle development., 2014, 45(3): 427–438.
[23] Wei C, Ren H, Xu L, Li L, Liu R, Zhang L, Zhao F, Lu J, Zhang X, Du L. Signals of Ezh2, Src, and Akt Involve in myostatin-Pax7 pathways regulating the myogenic fate determination during the sheep myoblast proliferation and differentiation., 2015, 10(3): e0120956.
[24] Jin JJ, Lv W, Xia P, Xu ZY, Zheng AD, Wang XJ, Wang SS, Zeng R, Luo HM, Li GL, Zuo B. Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2., 2018, 115(42): E9802–E9811.
[25] Andresini O, Rossi MN, Matteini F, Petrai S, Santini T, Maione R. The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region., 2019, 12(1): 8.
[26] Juan AH, Derfoul A, Feng X, Ryall JG, Dell'Orso S, Pasut A, Zare H, Simone JM, Rudnicki MA, Sartorelli V. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells., 2011, 25(8): 789–794.
[27] Woodhouse S, Pugazhendhi D, Brien P, Pell JM. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation., 2012, 126(Pt 2): 565–579.
[28] Ciarapica R, Carcarino E, Adesso L, De Salvo M, Bracaglia G, Leoncini PP, Dall'Agnese A, Verginelli F, Milano GM, Boldrini R, Inserra A, Stifani S, Screpanti I, Marquez VE, Valente S, Mai A, Puri PL, Locatelli F, Palacios D, Rota R. Pharmacological inhibition of EZH2 as a promising differentiation therapy in embryonal RMS., 2014, 14: 139.
[29] Yu Q, Yu X, Zhao W, Zhu M, Wang Z, Zhang J, Huang M, Zeng X. Inhibition of H3K27me3 demethylases attenuates asthma by reversing the shift in airway smooth muscle phenotype., 2018, 48(11): 1439–1452.
[30] Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C. LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII., 2017, 8(29): 47565–47573.
[31] Akerberg AA, Henner A, Stewart S, Stankunas K. Histone demethylases Kdm6ba and Kdm6bb redundantly promote cardiomyocyte proliferation during zebrafish heart ventricle maturation., 2017, 426(1): 84–96.
[32] Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions., 2006, 20(9): 1123–1136.
[33] Seenundun S, Rampalli S, Liu QC, Aziz A, Palii C, Hong S, Blais A, Brand M, Ge K, Dilworth F J. UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis., 2010, 29(8): 1401–1411.
[34] Li JT, Zhao W, Li DD. MiR-101a targeting EZH2 promotes the differentiation of goat skeletal muscle satellite cells., 2017, 39(9): 828–836.李俊濤, 趙薇, 李丹丹. MiR-101a靶向EZH2促進(jìn)山羊骨骼肌衛(wèi)星細(xì)胞的分化. 遺傳, 2017, 39(9): 828–836.
[35] Luo W, Nie Q, Zhang X. MicroRNAs involved in skeletal muscle differentiation., 2013, 40(3): 107–116.
[36] Seiliez I, Froehlich JM, Marandel L, Gabillard J, Biga PR. Evolutionary history and epigenetic regulation of the three paralogous pax7 genes in rainbow trout., 2015, 359(3): 715–727.
[37] Wang AH, Zare H, Mousavi K, Wang C, Moravec CE, Sirotkin HI, Ge K, Gutierrez-Cruz G, Sartorelli V. The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis., 2013, 32(8): 1075–1086.
[38] Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells., 2009, 36(1): 61–74.
[39] Vella S, Pomella S, Leoncini PP, Colletti M, Conti B, Marquez VE, Strillacci A, Roma J, Gallego S, Milano GM, Capogrossi MC, Bertaina A, Ciarapica R, Rota R. MicroRNA-101 is repressed by EZH2 and its restoration inhibits tumorigenic features in embryonal rhabdomyo-sarcoma., 2015, 7(1): 82–94.
[40] Wong CF, Tellam RL. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis.2008, 283(15): 9836–9843.
[41] Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D. Jarid2 and PRC2, partners in regulating gene expression., 2010, 24(4): 368–380.
[42] Adhikari A, Davie J. JARID2and the PRC2complex regulate skeletal muscle differentiation through regulation of canonical Wnt signaling., 2018, 11(1): 46.
Histone H3K27me3 in the regulation of skeletal muscle development
Yanmin Gan1, Jian Zhou1, Rong Quan1, Linjun Hong1, Zicong Li1, Enqin Zheng1, Dewu Liu1, Zhenfang Wu1,2, Gengyuan Cai1,2,Ting Gu1
Histone methylation is a modification which occurs in the N-terminal peptide chains of the histone nucleosome. The 4th, 9th, 27th, 36th and 79th lysines in N-terminal peptide chain of histone H3 are hot spots for this modification, including mono-, di-, and tri-methylation. H3K27me3 is the tri-methylation modification on histone H3 lysine 27, which mainly functions as a transcriptional repressor regulating skeletal muscle development. Studies have shown that H3K27me3 can finely regulate skeletal muscle proliferation, including the level and duration of skeletal muscle development by specifically binding to myogenic regulatory factors (e.g., MyoD, MyoG, etc.), cell cycling regulators, and epigenetic regulators including lncRNA and miRNA. In this review, we introduce the types and mechanisms of histone methylation and de-methylation of H3K27. We also summarize how H3K27me3 functions in the proliferation and differentiation of skeletal muscle cell. This review will contribute to the comprehension of the function of H3K27me3 in regulating skeletal muscle development and provide reference for further improving our understanding of mammalian muscle.
histone; methylation; skeletal muscle; H3K27me3
2018-09-27;
2019-02-26
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31802036)和廣東省自然科學(xué)基金項(xiàng)目(編號(hào):2017A030310001)資助[Supported by the National Natural Science Foundation of China(No.31802036) and the Guangdong Provincial Natural Science Foundation of China (No.2017A030310001)]
甘炎民,碩士研究生,專業(yè)方向:動(dòng)物遺傳與繁育。E-mail: 542362882@qq.com
顧婷,博士,講師,研究方向:動(dòng)物遺傳與繁育。E-mail: tinggu@scau.edu.cn蔡更元,博士,研究員,研究方向:動(dòng)物遺傳與繁育。E-mail: cgy0415@163.com
10.16288/j.yczz.18-272
2019/3/6 10:19:23
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20190306.1018.002.html
(責(zé)任編委: 李明洲)