亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        愛因斯坦場方程研究

        2019-04-20 10:02:34王學仁
        哈爾濱理工大學學報 2019年1期

        王學仁

        摘要:我們將介紹我們的工作:①把9個關聯(lián)系數分成兩組:涉及?(線加速度)的A組包括Γ?0?01?,Γ?1?00?, Γ?1?11?, Γ?1?22?, 和 Γ?1?33?;不涉及的B組包括Γ?2?12?, Γ?2?33?, Γ?3?13?, 和 Γ?3?23?。②回顧關系式()?r=()?Nγ?3,這里()?r是相對論力學中的線加速度,()?N是牛頓力學中的線加速度,γ是洛倫茲因數。③我們已經確定(Γ?0?01?)?N=-b?′b?-1?,(Γ?1?00?)?N=-c?2b?′b?-5?,(Γ?1?11?)?N=b?′b?-1?,(Γ?1?22?)?N=-rb?-2?,(Γ?1?33?)?N=-rb?-2?sin?2θ。④我們已經確定(Γ?0?01?)?r=(-b?′b?-1?)γ?3, (Γ?1?00?)?r=(-c?2b?′b?-5?)γ?3,(Γ?1?11?)?r=(b?′b?-1?)γ?3,(Γ?1?22?)?r=(-rb?-2?)γ?3,(Γ?1?33?)?r=(-rb?-2?sin?2θ)γ?3。⑤我們已經證明Γ?0?01?=A?′/(2A)=?-b?′b?-1?,?Γ?1?00?=A?′/(2B)=-c?2b?′b?-5?,Γ?1?11?=b?′/(2B)=b?′b?-1?,Γ?1?22?=-rb?-1?=-rb?-2?,Γ?1?33?=-rb?-1?sin?2θ=-rb?-2?sin?2θ。(6)我們已經確定(Γ?1?12?)?N?r=r?-1?,(Γ?2?33?)?N?r=?sin?θ?cos?θ,(Γ?3?13?)?N?r=r?-1?,(Γ?3?23?)?N?r=?cot?θ。⑥我們分析了?Schwarzschild?解并得出兩個結論:(?a?)B =(1-2GM/(c?2r))?-1?=(1-?r·?2/c?2)?-1?=γ?2,這表明它和牛頓守恒定律有關。(?b?)對于弱引力場GM/(c?2r)1, B=(1-2GM/(c?2r))?-1?≈?1+?2GM/(c?2r)≈1+2GM/(c?2r)+(GM/(c?2r))?2=(1+GM/(c?2r))?2=γ?2,因此,γ=1+GM/(c?2r)=b,這個關系式對強引力場也適用。把這些需要的表達方式帶入方程式,并應用關系式,我們能簡化方程式。我們已經得到了相對論解:-c?2?d?τ?2=c?2(1+GM/(c?2r))?-2?d?t?2-(1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin?2θ?d?φ?2?.

        關鍵詞:廣義相對論;場方程;引力理論

        DOI:10.15938/j.jhust.2019.01.024

        中圖分類號: O412.1

        文獻標志碼: A

        文章編號: 1007-2683(2019)01-0145-04

        A Study of Einstein Field Equation

        WANG Xue?ren

        (School of Applied Science, Harbin University of Science and Technology, Harbin 150080, China)

        Abstract:

        In this paper we present our research work: ①We divide 9 connection coefficients into two groups: Group A involving??(the linear acceleration) includes?Γ?0?01?,Γ?1?00?, Γ?1?11?, Γ?1?22?, and?Γ?1?33?; Group B not involving??includes?Γ?2?12?, Γ?2?33?, Γ?3?13?, and?Γ?3?23?. ②Recalling the relation formula:?()?R=()?Nγ?3?, where?()?R?is the linear acceleration in relativistic mechanics,?()?N?the linear acceleration in Newtoneon mechanics, and?γ?Lorrentz factor. ③We have determined that?(Γ?0?01?)?N= -b?′b?-1?, (Γ?1?00?)?N= -c?2b?′b?-5?, (Γ?1?11?)?N= b?′b?-1?, (Γ?1?22?)?N= -rb?-2?, (Γ?1?33?)?N= -rb?-2?sin?2θ?. ④We have determined that?(Γ?0?01?)?R = (-b?′b?-1?)γ?3, (Γ?1?00?)?R = (-c?2b?′b?-5?)γ?3, (Γ?1?11?)?R = (b?′b?-1?)γ?3, (Γ?1?22?)?R = (-rb?-2?)γ?3, (Γ?1?33?)?R = (-rb?-2?sin?2θ)γ?3?. ⑤We have proved that?Γ?0?01?=A?′/(2A)=-b?′b?-1?, Γ?1?00?= A?′/(2B) = -c?2b?′b?-5?, Γ?1?11?= B?′/(2B) = b?′b?-1?, Γ?1?22?= -rB?-1?= -rb?-2?,Γ?1?33?= -rB?-1?sin?2θ= -rb?-2?sin?2θ?. (6)We have determined that?(Γ?1?12?)?N?R = r?-1?, (Γ?2?33?)?N?R =?sin?θ?cos?θ, (Γ?3?13?)?N?R= r?-1?, (Γ?3?23?)?N?R =?cot?θ?. ⑥We have analyzed Schwarzschild solution, and drawn two conclusions: (a)?B=(1-2GM/(c?2r))?-1?= (1-?r·?2/c?2)?-1?= γ?2?, indicating that it involves Newtoneon formula of energy conservation. (b)In the case of the weak gravitational field,?GM/(c?2r)1, B =?(1-2GM/(c?2r))??-1?≈ 1 + 2GM/(c?2r) ≈ 1 + 2GM/(c?2r) +?(GM/(c?2r))?2 =?(1+GM/(c?2r))?2 = γ?2?, therefore,?γ= 1 + GM/(c?2r) = b?, it holds too, in the case of the strong gravitational field. (8)Substituting the needed expressions into equations, and applying the relation formulas, we can simplify the equations, Obtaining the relativistic solution:

        -c?2?d?τ?2 = c?2(1+GM/(c?2r))?-2?d?t?2 - (1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin?2θ?d?φ?2

        Keywords:general relativity; field equation; gravitational theory

        0Introduction

        Schwarzschild solution for Einstein field equation has made an important contribution to development of general relativity, but we should point out Schwarzschild solution belongs to Newtonian mechanics, and it is suitable only to the weak gravitational field, but not suitable to the strong gravitational field. In this paper we will give sufficient basis for this conclusion.

        1Classification of connection coefficients

        We divide 9 connection coefficients into two groups: group?A?involving??(the linear acceleration), see Table1; group?B?not involving??, see Table 1 and 2.

        Table1. Group?A?involving

        Γ?0?01?(=A?′/(2A)=-B?′/(2B)) = -Γ?1?11?=?/(r·r·), Γ?1?00?= -/(?t?·t·), Γ?1?11?=-/(r·r·), Γ?1?22?=-/(θ?·θ?·),Γ?1?33?=-/(φ·φ·)

        Table2. Group?B?not involving

        Γ?2?12?=-θ?¨/(r·θ?·), Γ?2?33?=-θ?¨/(φ·φ·), Γ?3?13?=-/(r·φ·), Γ?3?23?=-/(θ?·φ·)

        2?R=?Nγ?3

        R?is linear acceleration in relativistic mechanics,?N?is linear acceleration in Newtoneon mechanics, the relation formula between??R?and??N?is as below (references[2], P38)

        R=?Nγ?3?(1)

        where?γ?is Lorentz factor. So that the expressions of group?A?in two kinds of mechanics are different.

        3The expressions of group A in Newtonian mechanics

        Example 1: Determine the expression of?(Γ?1?11?)?N?.

        Solution: From?-c?2?d?τ?2 = -b?2?d?r?2?(see line element Exp. (4))

        r·=cb?-1?. From??N+?(Γ?1?11?)?N(r·r·)=0?,we can get

        (Γ?1?11?)?N = -?d?r?d?τ?d?r·?d?r/(r·(cb?-1?))=-(r·(-cb?-2?b?′)/(r·(cb?-1?))=b?′b?-1?.

        Following Example 1, we can obtain Table 3.

        Table 3. The expressions of Group A in Newtonian mechanics

        (Γ?0?01?)?N=-b?′b?-1?,?(Γ?1?00?)?N=-c?2b?′b?-5?,?(Γ?1?11?)?N=b?′b?-1?,?(Γ?1?22?)?N=-rb?-2?,?(Γ?1?33?)?N=-rb?-2??sin??2θ.

        4The expressions of group A in relativistic mechanics

        Example 2: Determine the expression of??(Γ?1?11?)?R?.

        Solution: From??()?R+?(Γ?1?11?)?R(r·r·)=0?we can get??(Γ?1?11?)?R=-?()?R/(r·r·)=γ?3(-?N/(r·r·)=?(Γ?1?11?)?Nγ?3?.

        Following Example 2 we can obtain Table 4.

        Table4. The expressions of group A in relativistic mechanics

        (Γ?0?01?)?R=(-b?′b?-1?)γ?3,?(Γ?1?00?)?R=(-c?2b?′b?-5?)γ?3,?(Γ?1?11?)?R=(b?′b?-1?)γ?3,

        (Γ?1?22?)?R=(-rb?-2?)γ?3,?(Γ?1?33?)?R=(-rb?-2??sin??2θ)γ?3

        5Group A used in Schwarzschild solution

        Example 3. Prove?Γ?1?00?=A?′/(2B)= -c?2b?′b?-5

        Proof.

        Γ?1?00?= A?′/(2B)=?(c?2B?-1?)?′/(2B)=?(c?2b?-2?)?′/(2b?2)=-2c?2b?-3?b?′/(2b?2)=-c?2b?′b?-5

        Following Example 3 we can obtain Table 5.

        Table 5. Equivalence

        Γ?0?01?=A?′/(2A)=-b?′b?-1?, Γ?1?00?=A?′/(2B)= -c?2b?′b?-5?,

        Γ?1?11?=B?′/(2B)=b?′b?-1?, Γ?1?22?=-rB?-1?=-rb?-2?,

        Γ?1?33?=-rB?-1??sin??2θ=-rb?-2??sin??2θ

        6The expression of Group B

        The expressions of group B in two kinds of mechanics have no difference. See Table 6.

        Table 6. The expression of group B

        (Γ?2?12?)?N?R=r?-1?,?(Γ?2?33?)?N?R=?sin?θ?cos?θ,?(Γ?3?13?)?N?R=r?-1?,?(Γ?3?23?)?N?R=?cot?θ

        7Analyzing Schwarzschild Solution

        Schwarzschild solution is a very important result in general relativity, practice has proved that it is suitable for the weak gravitational field very well.

        As a part of Schwarzschild solution?B =?(1-2GM/(c?2r))??-1??is related closely with Lorentz factor,

        γ?2=?(1-?r·?2/c?2)??-1?=?(1-2GM/(c?2r))??-1?=B=b?2

        It is very clear that Schwarz Schild solution involves a Newtoneon formula of energy conservation.

        r·?2/2=GM/r?(2)

        In the case of the weak gravitational field,?GM/(c?2r)<<1,

        b?2=B=?(1-2GM/(c?2r))??-1?≈1+2GM/(c?2r)≈

        1+2GM/(c?2r))+?(GM/(c?2r))?2=?(1+GM/(c?2r))?2=γ?2

        That is

        γ=1+GM/(c?2r)=b?(3)

        Form. (3) holds still in the case of the strong gravitational field.

        8Solving Einstein field equation

        Line element is expressed as below:

        -c?2?d?τ?2=a?2(r)?d?t?2-b?2(r)?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(4)

        In the following we will write a(r) and b(r) as a and b. The relation formulas between a and b are as following:

        ab=c

        a?′b+ab?′=0?(5)

        Einstein field equation can be written as below:

        R?μν?=?νΓ?σ?μσ?-?σ?Γ?σ?μν?+Γ?ρ?μσ?Γ?σ?ρν?-Γ?ρ?μν?Γ?σ?ρσ?=0?(6)

        Eq. (6) can be rewritten as following:

        R?00?=-?rΓ?1?00?+Γ?1?00?(Γ?0?01?-Γ?1?11?)-Γ?1?00?(Γ?2?12?+Γ?3?13?)=0

        R?11?=?rΓ?0?01?+Γ?0?01?(Γ?0?01?-Γ?1?11?)-Γ?1?11?(Γ?2?12?+Γ?3?13?)=0

        R?22?=-?rΓ?1?22?+?θ?Γ?3?23?+Γ?3?23?Γ?3?23?=0?(7)

        Substituting the needed expressions of Tables 4 and 6 into Eq. (7), we obtain:

        R?00?=c?2b?″b?-5?γ?3-c?2b?′b?-5?γ?5?(5b?′b?-1?γ-3γ?′-2b?′b?-1?γ)+2c?2b?′b?-5?γ?3r?-1?=0

        R?11?=-b?″b?-1?γ?3+b?′b?-1?γ?4?(b?′b?-1?γ?2-3γ?′γ+2b?′b?-1?γ?2)-2b?′b?-1?γ?3r?-1?=0

        R?22?=?(rb?-2?γ?3)?′-1=0?(8)

        Applying?γ= b?(Form. 3), Eqs. (8) can be simplified as:

        b?″+2b?′r?-1?=0

        b?″+2b?′r?-1?=0

        (rb)?′-1=0.?(9)

        From Eq.(9) we can get

        b=1+C/r?(10)

        Comparing Exp.(10) with Form. (3) we can determine:

        C=GM/c?2?,

        so that

        b(r)=1+GM/(c?2r)?(11)

        using relation Form (5a) we can get

        a(r)=c?(1+GM/((c?2r))??-1?(12)

        The relativistic solution can be expressed as

        -c?2?d?τ?2=c?2?(1+GM/(c?2r))??-2?d?t?2-?(1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2.?(13)

        Appendix A.Schwarzschild Solution

        Line element can be written as below:

        -c?2?d?τ?2=A(r)?d?t?2-B(r)?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(A1)

        In the following we will write?A(r)?and?B(r)?as?A?and?B?. Therelation formulas between A and B as following:

        AB=c?2?(A2a)

        A?′B+Ab?′=0?(A2b)

        The expressions of connection coefficients are as below:

        Γ?0?01?=A?′/(2A)=12A?′A?-1?, Γ?1?00?=A?′/(2B)=12c?2A?′A,

        Γ?1?11?=B?′/(2B)=-12A?′A?-1?, Γ?1?22?=-rB?-1?=-c?-2?rA,

        Γ?1?33?=-rB?-1??sin??2θ=-c?2rA?sin??2θ?(A3a)

        Γ?2?12?=r?-1?, Γ?1?33?=?sin?θ?cos?θ, Γ?3?13?=r?-1?, Γ?3?23?=?cot?θ?(A3b)

        Substituting the needed expressions in (A3a) and (A3b) into Eqs. (7), ones can obtain:

        R?00?=-?r(12c?-2?A?′A)+(12c?-2?A?′A)(12A?′A?-1?-(-12A?′A?-1?))-(12c?-2?A?′A)(r?-1?+r??-1?)=0?(A4a)

        R?11?=?r(12A?′A?-1?)+(12A?′A?-1?)(12A?′A?-1?-(-12A?′A?-1?))-(-12A?′A?-1?)(r?-1?+r??-1?)=0?(A4b)

        R?22?=-?r(-rA/c?2)+?θ?cot?θ+?cot?θ?cot?θ=0?(A4c)

        Eqs.(A4a)~(A4c)can be simplified as

        A?″+2A?′r?-1?=0?(A5a)

        A?″+2A?′r?-1?=0?(A5b)

        (rA)?′/c?2-1=0?(A5c)

        From Eq. (A5c) ones can get

        A=c?2(1+C/r).

        Analyzing the gravitational field, a conclusion is given ([1], p.121)

        h?00?=-2GM/(c?2r)=C/r,

        So that

        C =-2GM/c?2,

        A(r)=c?2(1-2GM/(c?2r))?(A6a)

        Applying relation Form. (A2a), ones can get

        B(r)=?(1-2GM/(c?2r))??-1?(A6b)

        Therefore Schwarzschild solution can be written as

        -c?2?d?τ?2=c?2(1-2GM/(c?2r))?d?t?2-?(1-2GM/(c?2r))??-1?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(A7)

        References:

        [1]FOSTER J., Nightingale J.D.A short Course in General Relativity[M]. SecondEdition. 1995. New York: Springer Verlag, Chaps 2, 3.

        [2]RINDLER W. Introduction to Special Relativity[M]. Oxford: Clarendon press,1982.

        欧美成人a视频免费专区| 男男啪啪激烈高潮cc漫画免费| 久久亚洲中文字幕无码| 日本高清色惰www在线视频| 久久中文字幕国产精品| 久久婷婷色香五月综合缴缴情 | 91产精品无码无套在线| 国产精品亚洲在钱视频| 亚洲最全av一区二区| 一性一交一口添一摸视频| 中文字幕久无码免费久久| 亚洲国产都市一区二区| 精品亚洲一区二区三区四区五区 | 好大好深好猛好爽视频免费| 亚洲午夜久久久久中文字幕| 日本一二三区在线不卡| 国产精品无码素人福利不卡| 国产亚洲av人片在线观看| 亚洲熟伦在线视频| 国产性虐视频在线观看| a级毛片100部免费观看| 国产偷v国产偷v亚洲偷v| av免费观看在线网站| 18禁裸体动漫美女无遮挡网站 | 亚洲av乱码一区二区三区按摩 | 亚洲 欧美 国产 日韩 精品| 亚洲av综合色区久久精品天堂| 91色老久久偷偷精品蜜臀懂色| 女人让男人桶爽30分钟| 少妇无码av无码去区钱| 国产伦精品一区二区三区| 亚洲理论电影在线观看| 无码丰满少妇2在线观看| 亚洲av综合色区久久精品天堂| 亚洲乱码中文字幕在线| 青青草原精品99久久精品66 | 最新亚洲人成无码网站| 亚洲一区二区av偷偷| 黄色av一区二区在线观看| 成年无码av片完整版| 国产极品喷水视频|