亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        愛因斯坦場方程研究

        2019-04-20 10:02:34王學仁
        哈爾濱理工大學學報 2019年1期

        王學仁

        摘要:我們將介紹我們的工作:①把9個關聯(lián)系數分成兩組:涉及?(線加速度)的A組包括Γ?0?01?,Γ?1?00?, Γ?1?11?, Γ?1?22?, 和 Γ?1?33?;不涉及的B組包括Γ?2?12?, Γ?2?33?, Γ?3?13?, 和 Γ?3?23?。②回顧關系式()?r=()?Nγ?3,這里()?r是相對論力學中的線加速度,()?N是牛頓力學中的線加速度,γ是洛倫茲因數。③我們已經確定(Γ?0?01?)?N=-b?′b?-1?,(Γ?1?00?)?N=-c?2b?′b?-5?,(Γ?1?11?)?N=b?′b?-1?,(Γ?1?22?)?N=-rb?-2?,(Γ?1?33?)?N=-rb?-2?sin?2θ。④我們已經確定(Γ?0?01?)?r=(-b?′b?-1?)γ?3, (Γ?1?00?)?r=(-c?2b?′b?-5?)γ?3,(Γ?1?11?)?r=(b?′b?-1?)γ?3,(Γ?1?22?)?r=(-rb?-2?)γ?3,(Γ?1?33?)?r=(-rb?-2?sin?2θ)γ?3。⑤我們已經證明Γ?0?01?=A?′/(2A)=?-b?′b?-1?,?Γ?1?00?=A?′/(2B)=-c?2b?′b?-5?,Γ?1?11?=b?′/(2B)=b?′b?-1?,Γ?1?22?=-rb?-1?=-rb?-2?,Γ?1?33?=-rb?-1?sin?2θ=-rb?-2?sin?2θ。(6)我們已經確定(Γ?1?12?)?N?r=r?-1?,(Γ?2?33?)?N?r=?sin?θ?cos?θ,(Γ?3?13?)?N?r=r?-1?,(Γ?3?23?)?N?r=?cot?θ。⑥我們分析了?Schwarzschild?解并得出兩個結論:(?a?)B =(1-2GM/(c?2r))?-1?=(1-?r·?2/c?2)?-1?=γ?2,這表明它和牛頓守恒定律有關。(?b?)對于弱引力場GM/(c?2r)1, B=(1-2GM/(c?2r))?-1?≈?1+?2GM/(c?2r)≈1+2GM/(c?2r)+(GM/(c?2r))?2=(1+GM/(c?2r))?2=γ?2,因此,γ=1+GM/(c?2r)=b,這個關系式對強引力場也適用。把這些需要的表達方式帶入方程式,并應用關系式,我們能簡化方程式。我們已經得到了相對論解:-c?2?d?τ?2=c?2(1+GM/(c?2r))?-2?d?t?2-(1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin?2θ?d?φ?2?.

        關鍵詞:廣義相對論;場方程;引力理論

        DOI:10.15938/j.jhust.2019.01.024

        中圖分類號: O412.1

        文獻標志碼: A

        文章編號: 1007-2683(2019)01-0145-04

        A Study of Einstein Field Equation

        WANG Xue?ren

        (School of Applied Science, Harbin University of Science and Technology, Harbin 150080, China)

        Abstract:

        In this paper we present our research work: ①We divide 9 connection coefficients into two groups: Group A involving??(the linear acceleration) includes?Γ?0?01?,Γ?1?00?, Γ?1?11?, Γ?1?22?, and?Γ?1?33?; Group B not involving??includes?Γ?2?12?, Γ?2?33?, Γ?3?13?, and?Γ?3?23?. ②Recalling the relation formula:?()?R=()?Nγ?3?, where?()?R?is the linear acceleration in relativistic mechanics,?()?N?the linear acceleration in Newtoneon mechanics, and?γ?Lorrentz factor. ③We have determined that?(Γ?0?01?)?N= -b?′b?-1?, (Γ?1?00?)?N= -c?2b?′b?-5?, (Γ?1?11?)?N= b?′b?-1?, (Γ?1?22?)?N= -rb?-2?, (Γ?1?33?)?N= -rb?-2?sin?2θ?. ④We have determined that?(Γ?0?01?)?R = (-b?′b?-1?)γ?3, (Γ?1?00?)?R = (-c?2b?′b?-5?)γ?3, (Γ?1?11?)?R = (b?′b?-1?)γ?3, (Γ?1?22?)?R = (-rb?-2?)γ?3, (Γ?1?33?)?R = (-rb?-2?sin?2θ)γ?3?. ⑤We have proved that?Γ?0?01?=A?′/(2A)=-b?′b?-1?, Γ?1?00?= A?′/(2B) = -c?2b?′b?-5?, Γ?1?11?= B?′/(2B) = b?′b?-1?, Γ?1?22?= -rB?-1?= -rb?-2?,Γ?1?33?= -rB?-1?sin?2θ= -rb?-2?sin?2θ?. (6)We have determined that?(Γ?1?12?)?N?R = r?-1?, (Γ?2?33?)?N?R =?sin?θ?cos?θ, (Γ?3?13?)?N?R= r?-1?, (Γ?3?23?)?N?R =?cot?θ?. ⑥We have analyzed Schwarzschild solution, and drawn two conclusions: (a)?B=(1-2GM/(c?2r))?-1?= (1-?r·?2/c?2)?-1?= γ?2?, indicating that it involves Newtoneon formula of energy conservation. (b)In the case of the weak gravitational field,?GM/(c?2r)1, B =?(1-2GM/(c?2r))??-1?≈ 1 + 2GM/(c?2r) ≈ 1 + 2GM/(c?2r) +?(GM/(c?2r))?2 =?(1+GM/(c?2r))?2 = γ?2?, therefore,?γ= 1 + GM/(c?2r) = b?, it holds too, in the case of the strong gravitational field. (8)Substituting the needed expressions into equations, and applying the relation formulas, we can simplify the equations, Obtaining the relativistic solution:

        -c?2?d?τ?2 = c?2(1+GM/(c?2r))?-2?d?t?2 - (1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin?2θ?d?φ?2

        Keywords:general relativity; field equation; gravitational theory

        0Introduction

        Schwarzschild solution for Einstein field equation has made an important contribution to development of general relativity, but we should point out Schwarzschild solution belongs to Newtonian mechanics, and it is suitable only to the weak gravitational field, but not suitable to the strong gravitational field. In this paper we will give sufficient basis for this conclusion.

        1Classification of connection coefficients

        We divide 9 connection coefficients into two groups: group?A?involving??(the linear acceleration), see Table1; group?B?not involving??, see Table 1 and 2.

        Table1. Group?A?involving

        Γ?0?01?(=A?′/(2A)=-B?′/(2B)) = -Γ?1?11?=?/(r·r·), Γ?1?00?= -/(?t?·t·), Γ?1?11?=-/(r·r·), Γ?1?22?=-/(θ?·θ?·),Γ?1?33?=-/(φ·φ·)

        Table2. Group?B?not involving

        Γ?2?12?=-θ?¨/(r·θ?·), Γ?2?33?=-θ?¨/(φ·φ·), Γ?3?13?=-/(r·φ·), Γ?3?23?=-/(θ?·φ·)

        2?R=?Nγ?3

        R?is linear acceleration in relativistic mechanics,?N?is linear acceleration in Newtoneon mechanics, the relation formula between??R?and??N?is as below (references[2], P38)

        R=?Nγ?3?(1)

        where?γ?is Lorentz factor. So that the expressions of group?A?in two kinds of mechanics are different.

        3The expressions of group A in Newtonian mechanics

        Example 1: Determine the expression of?(Γ?1?11?)?N?.

        Solution: From?-c?2?d?τ?2 = -b?2?d?r?2?(see line element Exp. (4))

        r·=cb?-1?. From??N+?(Γ?1?11?)?N(r·r·)=0?,we can get

        (Γ?1?11?)?N = -?d?r?d?τ?d?r·?d?r/(r·(cb?-1?))=-(r·(-cb?-2?b?′)/(r·(cb?-1?))=b?′b?-1?.

        Following Example 1, we can obtain Table 3.

        Table 3. The expressions of Group A in Newtonian mechanics

        (Γ?0?01?)?N=-b?′b?-1?,?(Γ?1?00?)?N=-c?2b?′b?-5?,?(Γ?1?11?)?N=b?′b?-1?,?(Γ?1?22?)?N=-rb?-2?,?(Γ?1?33?)?N=-rb?-2??sin??2θ.

        4The expressions of group A in relativistic mechanics

        Example 2: Determine the expression of??(Γ?1?11?)?R?.

        Solution: From??()?R+?(Γ?1?11?)?R(r·r·)=0?we can get??(Γ?1?11?)?R=-?()?R/(r·r·)=γ?3(-?N/(r·r·)=?(Γ?1?11?)?Nγ?3?.

        Following Example 2 we can obtain Table 4.

        Table4. The expressions of group A in relativistic mechanics

        (Γ?0?01?)?R=(-b?′b?-1?)γ?3,?(Γ?1?00?)?R=(-c?2b?′b?-5?)γ?3,?(Γ?1?11?)?R=(b?′b?-1?)γ?3,

        (Γ?1?22?)?R=(-rb?-2?)γ?3,?(Γ?1?33?)?R=(-rb?-2??sin??2θ)γ?3

        5Group A used in Schwarzschild solution

        Example 3. Prove?Γ?1?00?=A?′/(2B)= -c?2b?′b?-5

        Proof.

        Γ?1?00?= A?′/(2B)=?(c?2B?-1?)?′/(2B)=?(c?2b?-2?)?′/(2b?2)=-2c?2b?-3?b?′/(2b?2)=-c?2b?′b?-5

        Following Example 3 we can obtain Table 5.

        Table 5. Equivalence

        Γ?0?01?=A?′/(2A)=-b?′b?-1?, Γ?1?00?=A?′/(2B)= -c?2b?′b?-5?,

        Γ?1?11?=B?′/(2B)=b?′b?-1?, Γ?1?22?=-rB?-1?=-rb?-2?,

        Γ?1?33?=-rB?-1??sin??2θ=-rb?-2??sin??2θ

        6The expression of Group B

        The expressions of group B in two kinds of mechanics have no difference. See Table 6.

        Table 6. The expression of group B

        (Γ?2?12?)?N?R=r?-1?,?(Γ?2?33?)?N?R=?sin?θ?cos?θ,?(Γ?3?13?)?N?R=r?-1?,?(Γ?3?23?)?N?R=?cot?θ

        7Analyzing Schwarzschild Solution

        Schwarzschild solution is a very important result in general relativity, practice has proved that it is suitable for the weak gravitational field very well.

        As a part of Schwarzschild solution?B =?(1-2GM/(c?2r))??-1??is related closely with Lorentz factor,

        γ?2=?(1-?r·?2/c?2)??-1?=?(1-2GM/(c?2r))??-1?=B=b?2

        It is very clear that Schwarz Schild solution involves a Newtoneon formula of energy conservation.

        r·?2/2=GM/r?(2)

        In the case of the weak gravitational field,?GM/(c?2r)<<1,

        b?2=B=?(1-2GM/(c?2r))??-1?≈1+2GM/(c?2r)≈

        1+2GM/(c?2r))+?(GM/(c?2r))?2=?(1+GM/(c?2r))?2=γ?2

        That is

        γ=1+GM/(c?2r)=b?(3)

        Form. (3) holds still in the case of the strong gravitational field.

        8Solving Einstein field equation

        Line element is expressed as below:

        -c?2?d?τ?2=a?2(r)?d?t?2-b?2(r)?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(4)

        In the following we will write a(r) and b(r) as a and b. The relation formulas between a and b are as following:

        ab=c

        a?′b+ab?′=0?(5)

        Einstein field equation can be written as below:

        R?μν?=?νΓ?σ?μσ?-?σ?Γ?σ?μν?+Γ?ρ?μσ?Γ?σ?ρν?-Γ?ρ?μν?Γ?σ?ρσ?=0?(6)

        Eq. (6) can be rewritten as following:

        R?00?=-?rΓ?1?00?+Γ?1?00?(Γ?0?01?-Γ?1?11?)-Γ?1?00?(Γ?2?12?+Γ?3?13?)=0

        R?11?=?rΓ?0?01?+Γ?0?01?(Γ?0?01?-Γ?1?11?)-Γ?1?11?(Γ?2?12?+Γ?3?13?)=0

        R?22?=-?rΓ?1?22?+?θ?Γ?3?23?+Γ?3?23?Γ?3?23?=0?(7)

        Substituting the needed expressions of Tables 4 and 6 into Eq. (7), we obtain:

        R?00?=c?2b?″b?-5?γ?3-c?2b?′b?-5?γ?5?(5b?′b?-1?γ-3γ?′-2b?′b?-1?γ)+2c?2b?′b?-5?γ?3r?-1?=0

        R?11?=-b?″b?-1?γ?3+b?′b?-1?γ?4?(b?′b?-1?γ?2-3γ?′γ+2b?′b?-1?γ?2)-2b?′b?-1?γ?3r?-1?=0

        R?22?=?(rb?-2?γ?3)?′-1=0?(8)

        Applying?γ= b?(Form. 3), Eqs. (8) can be simplified as:

        b?″+2b?′r?-1?=0

        b?″+2b?′r?-1?=0

        (rb)?′-1=0.?(9)

        From Eq.(9) we can get

        b=1+C/r?(10)

        Comparing Exp.(10) with Form. (3) we can determine:

        C=GM/c?2?,

        so that

        b(r)=1+GM/(c?2r)?(11)

        using relation Form (5a) we can get

        a(r)=c?(1+GM/((c?2r))??-1?(12)

        The relativistic solution can be expressed as

        -c?2?d?τ?2=c?2?(1+GM/(c?2r))??-2?d?t?2-?(1+GM/(c?2r))?2?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2.?(13)

        Appendix A.Schwarzschild Solution

        Line element can be written as below:

        -c?2?d?τ?2=A(r)?d?t?2-B(r)?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(A1)

        In the following we will write?A(r)?and?B(r)?as?A?and?B?. Therelation formulas between A and B as following:

        AB=c?2?(A2a)

        A?′B+Ab?′=0?(A2b)

        The expressions of connection coefficients are as below:

        Γ?0?01?=A?′/(2A)=12A?′A?-1?, Γ?1?00?=A?′/(2B)=12c?2A?′A,

        Γ?1?11?=B?′/(2B)=-12A?′A?-1?, Γ?1?22?=-rB?-1?=-c?-2?rA,

        Γ?1?33?=-rB?-1??sin??2θ=-c?2rA?sin??2θ?(A3a)

        Γ?2?12?=r?-1?, Γ?1?33?=?sin?θ?cos?θ, Γ?3?13?=r?-1?, Γ?3?23?=?cot?θ?(A3b)

        Substituting the needed expressions in (A3a) and (A3b) into Eqs. (7), ones can obtain:

        R?00?=-?r(12c?-2?A?′A)+(12c?-2?A?′A)(12A?′A?-1?-(-12A?′A?-1?))-(12c?-2?A?′A)(r?-1?+r??-1?)=0?(A4a)

        R?11?=?r(12A?′A?-1?)+(12A?′A?-1?)(12A?′A?-1?-(-12A?′A?-1?))-(-12A?′A?-1?)(r?-1?+r??-1?)=0?(A4b)

        R?22?=-?r(-rA/c?2)+?θ?cot?θ+?cot?θ?cot?θ=0?(A4c)

        Eqs.(A4a)~(A4c)can be simplified as

        A?″+2A?′r?-1?=0?(A5a)

        A?″+2A?′r?-1?=0?(A5b)

        (rA)?′/c?2-1=0?(A5c)

        From Eq. (A5c) ones can get

        A=c?2(1+C/r).

        Analyzing the gravitational field, a conclusion is given ([1], p.121)

        h?00?=-2GM/(c?2r)=C/r,

        So that

        C =-2GM/c?2,

        A(r)=c?2(1-2GM/(c?2r))?(A6a)

        Applying relation Form. (A2a), ones can get

        B(r)=?(1-2GM/(c?2r))??-1?(A6b)

        Therefore Schwarzschild solution can be written as

        -c?2?d?τ?2=c?2(1-2GM/(c?2r))?d?t?2-?(1-2GM/(c?2r))??-1?d?r?2-r?2?d?θ?2-r?2?sin??2θ?d?φ?2?(A7)

        References:

        [1]FOSTER J., Nightingale J.D.A short Course in General Relativity[M]. SecondEdition. 1995. New York: Springer Verlag, Chaps 2, 3.

        [2]RINDLER W. Introduction to Special Relativity[M]. Oxford: Clarendon press,1982.

        朋友的丰满人妻中文字幕| 青青草针对华人超碰在线| 日本二区三区视频在线观看| 亚洲精选自偷拍一区二| 婷婷久久香蕉五月综合加勒比| 亚洲美国产亚洲av| 国产精品反差婊在线观看| 国产白浆一区二区三区佳柔 | 人妻少妇人人丰满视频网站| 精品国产三区在线观看| 高h小月被几个老头调教| 亚洲av无码专区国产乱码不卡 | 国内精品熟女一区二区| 国产自拍偷拍精品视频在线观看| 粗大的内捧猛烈进出视频| 欧美巨大精品欧美一区二区| 人妻少妇久久精品一区二区 | 在线精品国产亚洲av蜜桃| 人妻无码一区二区视频| 美女裸体无遮挡免费视频的网站| 久久婷婷色香五月综合激激情| 青青草精品视频在线播放| 国产精品久久国产三级国不卡顿| 国产日韩A∨无码免费播放| 国产av精品一区二区三区不卡 | 天天爽夜夜爽人人爽| 中文字幕亚洲乱码熟女一区二区 | 99久久亚洲精品加勒比| 91在线视频在线视频| 亚洲精品国偷拍自产在线麻豆| 一本无码人妻在中文字幕| 伊人狼人激情综合影院| 岳丰满多毛的大隂户| 亚洲精品人成无码中文毛片| 日日噜噜噜夜夜爽爽狠狠视频| 日本久久精品福利视频| 屁屁影院ccyy备用地址| 国产爆乳乱码女大生Av| 亚洲天堂线上免费av| 色综合久久久无码中文字幕| 中文字幕人妻偷伦在线视频|