黃永成 陳銀玲 付俞賀 張曉溪
[摘要] 國(guó)內(nèi)外研究表明創(chuàng)傷患者脾切除術(shù)后患2型糖尿病的長(zhǎng)期風(fēng)險(xiǎn)明顯增加。因此該文結(jié)合團(tuán)隊(duì)近期研究成果,探討了脾臟與胰島損傷、胰島素抵抗之間的關(guān)系,及其通過(guò)炎癥細(xì)胞因子的介導(dǎo),參與胰島損傷與修復(fù)、胰島素抵抗的保護(hù)以及糖尿病發(fā)病的相關(guān)性。與此同時(shí),探討了脾臟的間質(zhì)干細(xì)胞對(duì)胰島細(xì)胞的再生及修復(fù)及其在糖尿病治療中的巨大潛能, 以及脾臟作為胰島移植理想部位的可能性。
[關(guān)鍵詞] 脾;胰島B細(xì)胞;炎癥;免疫;再生;糖尿病;間充質(zhì)干細(xì)胞;胰島移植
[中圖分類號(hào)] R587.2? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1672-4062(2019)01(b)-0195-04
[Abstract] Studies at home and abroad have shown that the long-term risk of type 2 diabetes after splenectomy in trauma patients is significantly increased. Therefore, this paper combines the recent research results of the team to explore the relationship between spleen and islet injury, insulin resistance, and its involvement in islet injury and repair, insulin resistance protection and diabetes mellitus through mediated inflammatory cytokines. At the same time, we explored the regeneration and repair of islet cells by spleen mesenchymal stem cells and their potential in the treatment of diabetes, and the possibility of spleen as an ideal part of islet transplantation.
[Key words] Spleen; Islet B cells; Inflammation; Immunity; Regeneration; Diabetes; Mesenchymal stem cells; Islet transplantation
脾臟在臨床中一直被認(rèn)為是免疫器官,通過(guò)其連接先天和適應(yīng)性免疫的能力,對(duì)體內(nèi)免疫平衡起重要調(diào)節(jié)作用,從而預(yù)防機(jī)體感染[1]。然而脾切除術(shù)一直是創(chuàng)傷性脾臟損傷伴低血壓的患者以及部分胰腺炎的患者中常用的手術(shù)。之前Eric J. Ley等人[2]對(duì)創(chuàng)傷性脾切除的患者進(jìn)行了長(zhǎng)期隨訪調(diào)查,并發(fā)現(xiàn)創(chuàng)傷性脾切除與平均血糖水平升高存在一定的關(guān)系。而Wu SC, CY Fu等人[3]以臺(tái)灣省人口為基礎(chǔ),對(duì)行脾切除術(shù)的患者進(jìn)行罹患2型糖尿?。═2DM)的風(fēng)險(xiǎn)評(píng)估,發(fā)現(xiàn)創(chuàng)傷患者脾切除與術(shù)后T2DM的長(zhǎng)期風(fēng)險(xiǎn)增加有關(guān)。由此可見(jiàn),脾臟可能與胰島功能有一定聯(lián)系,而目前缺乏關(guān)于脾臟對(duì)胰島B細(xì)胞之間相互關(guān)系的描述,脾臟對(duì)胰島細(xì)胞保護(hù)再生的作用機(jī)制未明。該文旨在探討兩者可能存在的相關(guān)性。
1? 胰島細(xì)胞與脾源調(diào)節(jié)性T細(xì)胞的關(guān)系
眾所周知,糖尿病是由于胰島細(xì)胞團(tuán)中胰島B細(xì)胞分泌胰島素相對(duì)或絕對(duì)缺乏而引起的機(jī)體糖代謝紊亂以及血中葡萄糖水平異常升高的疾病[4]。但是臨床工作中發(fā)現(xiàn)即使在給予糖尿病病人足夠的血糖監(jiān)控以及胰島素來(lái)控制血糖,糖尿病并發(fā)癥依舊會(huì)或早或晚的發(fā)生。如果糖尿病僅僅是因?yàn)橐葝u素的分泌不足導(dǎo)致,那么在普遍使用胰島素的今天,同樣無(wú)法解釋糖尿病至今仍未完全攻克的疑問(wèn)。另一方面糖尿病領(lǐng)域相關(guān)研究提出,調(diào)節(jié)性T細(xì)胞介導(dǎo)的免疫抑制可能是糖尿病自身耐受和免疫調(diào)節(jié)機(jī)制的關(guān)鍵。Treg和效應(yīng)T細(xì)胞(Teff)之間的不平衡是糖尿病中胰島B細(xì)胞破壞的原因之一,這種破壞是由于自我耐受的破壞造成的[5]。研究發(fā)現(xiàn)T2DM患者和糖尿病合并癥患者免疫抑制性CD4+CD25+Foxp3+Treg細(xì)胞減少,IL-10、TGF-β和TNF-α蛋白氨化增加[6]。T1DM患者血清TNF-α水平顯著升高,并且TNF-α水平與患者的年齡、病程和種族存在顯著相關(guān)[7]。進(jìn)一步說(shuō)明了糖尿病合并癥的存在對(duì)受損的免疫抑制有影響。免疫和代謝平衡之間存在著明顯的相互作用。近期通過(guò)人胰淀素(human amylin, HA)誘導(dǎo)脾源調(diào)節(jié)性T細(xì)胞發(fā)現(xiàn)在經(jīng)過(guò)HA處理的小鼠中,脾細(xì)胞CD4+Foxp3+Treg增加,轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)和Toll樣受體4(TLR-4)表達(dá)上調(diào)[8]。由此考慮HA可能通過(guò)誘導(dǎo)脾源CD4+Foxp3+Treg來(lái)調(diào)節(jié)免疫,從而延緩自身免疫性糖尿病的發(fā)展,這個(gè)發(fā)現(xiàn)不僅為改善自身免疫狀況提供了新的方法,同樣提示胰島內(nèi)分泌與脾臟的相互調(diào)控在糖尿病發(fā)生發(fā)展中扮演重要角色。
2? 胰島細(xì)胞及胰島素抵抗與炎癥的關(guān)系
相關(guān)研究表明,炎癥作為介質(zhì),在胰島素抵抗與T2DM發(fā)展中扮演著重要角色[9-12]。炎癥不僅能增加急性期反應(yīng)物的標(biāo)志物數(shù)量,還能提高炎癥介質(zhì)水平,這些都與T2DM發(fā)生有相關(guān)性[13]。此外,一些參與肥胖誘導(dǎo)T2DM形成機(jī)制的促炎細(xì)胞因子,可以損害胰島素信號(hào)傳導(dǎo)或者改變胰島B細(xì)胞的功能。免疫細(xì)胞釋放的大量炎癥因子[TNF-α,IL-1b,IL-6,單核細(xì)胞趨化蛋白-1(MCP-1)等]阻斷了胰島素受體信號(hào)傳導(dǎo)(IRS)轉(zhuǎn)導(dǎo)通路,導(dǎo)致IRS磷酸化異常,胰島素受體結(jié)合能力失調(diào),進(jìn)而破壞胰島素信號(hào)傳導(dǎo)[9]。另一方面,胰島B細(xì)胞衰竭同時(shí)伴隨胰島素抵抗也是T2DM發(fā)展的一個(gè)關(guān)鍵因素。由于細(xì)胞因子誘導(dǎo)的多個(gè)級(jí)聯(lián)導(dǎo)致炎性細(xì)胞因子和細(xì)胞死亡信號(hào)的進(jìn)一步產(chǎn)生,導(dǎo)致胰島B細(xì)胞功能障礙并最終死亡。最重要的是,T2DM是一種促炎狀態(tài),胰島B細(xì)胞死亡的最終共同途徑是由細(xì)胞因子決定的。因此,減少炎癥反應(yīng)是治療和改善T2D的關(guān)鍵步驟[14-16]。
3? 脾臟對(duì)胰島細(xì)胞炎癥反應(yīng)的調(diào)節(jié)與保護(hù)
臨床資料及實(shí)驗(yàn)研究顯示,脾臟與胰島內(nèi)分泌功能關(guān)系密切。有文獻(xiàn)分析指出,胰腺切除手術(shù)中,胰腺切除的同時(shí)是否保留脾臟與術(shù)后患者糖尿病發(fā)生率顯著相關(guān)[17],慢性胰腺炎中僅切除胰腺的患者,其糖尿病發(fā)生率顯著低于部分胰腺合并脾切除患者[18]??梢?jiàn)脾臟在胰島損傷中起保護(hù)作用,而這種保護(hù)方式很有可能是通過(guò)脾臟分泌的淋巴細(xì)胞以及細(xì)胞因子對(duì)胰島損傷進(jìn)行調(diào)節(jié)。
脾臟作為體內(nèi)最大的次級(jí)免疫器官,含有高達(dá)全身15%的固定巨噬細(xì)胞,大量的T淋巴細(xì)胞和自然殺傷細(xì)胞(NK細(xì)胞),同時(shí)在臨界狀態(tài)下產(chǎn)生各種細(xì)胞因子[19]。關(guān)于脾臟來(lái)源的炎癥相關(guān)細(xì)胞因子與糖尿病之間關(guān)系的報(bào)道很多,例如白細(xì)胞介素(IL)-10,是一種有效的抗炎細(xì)胞因子,在急性胰腺炎期間釋放后通過(guò)下調(diào)促炎介質(zhì)的釋放來(lái)限制炎癥反應(yīng),Gotoh K[20]通過(guò)研究發(fā)現(xiàn)脾臟來(lái)源的IL-10可以阻止非酒精性脂肪性胰腺疾?。∟AFPD)的發(fā)展,而Harrington等人[21]也發(fā)現(xiàn)脾臟來(lái)源的IL-10可以改善高脂飲食誘導(dǎo)的肥胖,同時(shí)改善了高脂飲食誘導(dǎo)的非酒精性脂肪性胰腺疾病的抗炎狀態(tài)。Wu L等人[22]研究?jī)?nèi)臟白色脂肪組織(VAT)中的固有B細(xì)胞,在飲食誘導(dǎo)的肥胖(DIO)、腹腔及脾臟中分別有對(duì)應(yīng)關(guān)系。通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)IL-10可介導(dǎo)脾臟來(lái)源的固有B細(xì)胞,在飲食肥胖(DIO)誘導(dǎo)的胰島素抵抗保護(hù)作用中起主導(dǎo)作用[22]。而在新生兒中發(fā)現(xiàn)Th1細(xì)胞可異常上調(diào)IL-4Ra/IL-13Ra1異型受體(HR),通過(guò)IL-4和IL-13發(fā)出信號(hào)引起炎癥細(xì)胞死亡[23]。與此同時(shí),脾臟中的各種B細(xì)胞亞群可以表達(dá)多種TLR,并且通過(guò)這種TLR的信號(hào)傳導(dǎo)可以大量增殖和分泌抗體及相關(guān)的抗炎因子[24]。
4? 脾臟與胰島細(xì)胞的再生修復(fù)及移植
脾臟可能也參與了胰島細(xì)胞的再生,胚胎發(fā)生過(guò)程中,胰腺的發(fā)育是胰原基細(xì)胞從導(dǎo)管中遷移,同時(shí)分化成簇,在管道相鄰的間充質(zhì)中形成胰島之后繼續(xù)分化形成[25],而脾臟作為體內(nèi)最大的次級(jí)免疫器官,它的發(fā)育在胚胎學(xué)上類似于胰腺,與胰腺有著非常密切的發(fā)展關(guān)系,脾臟間充質(zhì)在發(fā)育的早期是從胰腺間充質(zhì)中萌芽出來(lái)[26]。
大量的動(dòng)物實(shí)驗(yàn)表明,脾臟與胰島細(xì)胞再生之間的關(guān)系。Rosenberg L.等人發(fā)現(xiàn)PDX-1 +β前體細(xì)胞可在胰管或胰腺以及其他部位(例如:肝,脾等)發(fā)育為分泌胰島素的B細(xì)胞[27-30]。Kodama等人[31-32]給予患有糖尿病的NOD小鼠經(jīng)過(guò)紫外線照射后的成年小鼠供體脾細(xì)胞,逆轉(zhuǎn)了NOD小鼠的糖尿病,推測(cè)脾細(xì)胞含有與胰島細(xì)胞再生相關(guān)的干細(xì)胞群。之后他們通過(guò)Hox-11的持續(xù)表達(dá)發(fā)現(xiàn)成年小鼠的脾臟含有假定的間充質(zhì)干細(xì)胞群,證明了之前的假設(shè)。隨后Robertson SA, Rowan-Hull AM等人[30]運(yùn)用禽類體外胰腺發(fā)育模式,排除存在于脾臟中胰島上皮細(xì)胞的影響,指出脾臟間充質(zhì)干細(xì)胞可以分化成胰島生成細(xì)胞,這種特異性這被定義為發(fā)展伴隨TLX1(HOX11)表達(dá)的獨(dú)特譜系,然而,關(guān)于B細(xì)胞復(fù)制和新生的討論從未停止。Dor等人[33]研究發(fā)現(xiàn)胰島再生的關(guān)鍵并不是胰島的新生,而是現(xiàn)有成體B細(xì)胞的增殖。此外,B細(xì)胞復(fù)制是人類出生后B細(xì)胞團(tuán)擴(kuò)增的主要機(jī)制。之后YIN D, TAO J,等人[34]在STZ誘導(dǎo)的C57BL / 6糖尿病小鼠的單側(cè)腎囊上進(jìn)行胰島移植,恢復(fù)了糖尿病小鼠的正常血糖,但是Yin并不能證明血糖的恢復(fù)是由脾細(xì)胞直接形成胰島B細(xì)胞而產(chǎn)生的。之后Park S, SM Hong等人[35]將小鼠的90%胰腺切除并行全脾切除術(shù),之后將脾細(xì)胞重新注射入胰腺及全脾切除小鼠體內(nèi),發(fā)現(xiàn)小鼠的胰島細(xì)胞簇較未注射組生存率提高,表明盡管脾細(xì)胞對(duì)胰島素缺乏的T2DM大鼠的B細(xì)胞再生并不重要,但在B細(xì)胞新生中同樣起重要作用。近期Itoh T, Nishinakamura H等人[36]對(duì)鏈脲佐菌素(STZ)誘導(dǎo)的C57BL/6糖尿病小鼠行同基因胰島移植到門靜脈(PV)、腎膠囊(KC)下方及脾臟(SP)3個(gè)部位進(jìn)行對(duì)比,發(fā)現(xiàn)相對(duì)其他部位,移植脾臟不僅減輕了炎癥反應(yīng),同時(shí)改善了移植胰島面積的擴(kuò)張,表明脾臟是替代胰島移植位點(diǎn)的理想候選者。
綜上所述,脾與胰島的關(guān)系在功能上是復(fù)雜的。同時(shí),我們不難看出脾臟與胰島損傷、胰島素抵抗之間的關(guān)系是密不可分的,更多的資料顯示了脾通過(guò)炎癥細(xì)胞因子的介導(dǎo)參與了胰島損傷與修復(fù)、胰島素抵抗的保護(hù)機(jī)制、糖尿病發(fā)病進(jìn)展等作用。特別是脾含有的間充質(zhì)干細(xì)胞群的獨(dú)特潛力,雖然對(duì)恢復(fù)胰島功能的機(jī)制仍需討論,但其有助于受損組織的修復(fù),在治療自身免疫性疾病方面不失為一種新方法。而脾作為胰島移植的理想部位,有望成為胰島功能恢復(fù)的新希望,為其在糖尿病的治療開(kāi)辟了新途徑。
[參考文獻(xiàn)]
[1]? Dameshek W. Hypersplenism[J]. Bull N Y Acad Med, 1955, 31(2):113.
[2]? Ley E J, Singer M B, Clond M A, et al. Long-term effect of trauma splenectomy on blood glucose[J]. Journal of Surgical Research, 2012, 172(2):201-201.
[3]? Wu SC, CY Fu, CH Muo,et al.Splenectomy in trauma patients is associated with an increased risk of postoperative type II diabetes: a nationwide population-based study. Am J Surg,2014(208):811-816.
[4]? WU J, YAN LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic, cell glucotoxicity[J]. Diabetes MetabSyndr Obes, 2015, 2(8):1 81 -1 88.
[5]? Visperas A, Vignali D A. Are Regulatory T Cells Defective in Type 1 Diabetes and Can We Fix Them[J]. Journal of Immunology, 2016, 197(10):3762.
[6]? Yong-chaoQiao, Jian Shen, Lan He, et al. Changes of Regul- atory T Cells and of Proinflammatory and Immunosuppr- essive Cytokines in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis[J]. Journal of Diabetes Research, 2016, 2016(3):1-19.
[7]? Qiao Y C, Chen Y L, Pan Y H, et al. The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: A systematic review and meta-analysis.[J]. Plos One, 2017, 12(4):e0176157.
[8]? Zhang X X, Qiao Y C, Li W, et al. Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes[J]. Immunologic Research, 2017, 66(1):1-8.
[9]? Daniele G, R Guardado Mendoza, D Winnier, et al.The inflammatory status score including IL-6, TNF-a, osteopon tin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus[J]. ActaDia- betol,2014,51:123-131.
[10]? Donath MY, SE Shoelson.Type 2 diabetes as an inflamm- atory disease[M].Nat Rev Immunol 11:98–107.
[11]? Lumeng CN and AR Saltiel.Inflammatory links between obesity and metabolic disease[J].J Clin Invest,2011(121):2111-2117.
[12] Odegaard JI,A Chawla. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis[J].Science,2013(339):172-177.
[13]? Shoelson SE, J Lee, AB Goldfine. (2006). Inflammation and insulin resistance[J]. J Clin Invest 116:1793-1801.
[14]? Nieto-Vazquez I, S Ferna ndez-Veledo, DK Kramer,et al.? Insulin resistance associated to obesity: the link TNF-alpha[J].Arch PhysiolBiochem:2008(114):183-194.
[15] Vanderford NL.Defining the regulation of IL-1b and CHOP-mediated b-cell apoptosis[J].Islets,2010(2):334-336.
[16] Eder K, N Baffy, A Falus, AK Fulop. The major inflam- matory mediator interleukin-6 and obesity[J].Inflamm Res,2009.58:727-736.
[17]? Govil S, Imrie C W. Value of splenic preservation during distal pancreatectomy for chronic pancreatitis[J].British Journal of Surgery, 1999, 86(7):895.
[18]? Fernándezcruz L, Ordua D, Cesarborges G, et al. Distal pancreatectomy: en-bloc splenectomy vs spleen-preserving pancreatectomy[J].Hpb the Official Journal of the International HepatoPancreato Biliary Association, 2005, 7(2):93-98.
[19]? Olivier G, Gwenoline B, Gamal B, et al. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond[J]. BMC Immunology, 2012, 13(1):63.
[20]? Gotoh K, M Inoue, K Shiraishi,et al.Spleen-derived interleukin-10 downregulates the severity of high-fat diet-induced non-alcoholic fatty pancreas dis- ease. PLoS One,2012(7): e53154.
[21]? Harrington L E, RD Hatton, PR Mangan H,et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat. Immunol,2005,(6):1123-1132.
[22]? Wu L, VV Parekh, J Hsiao, et al.Spleen supports a pool of innate-like B cells in white adipose tissue that protects against obesity-associated insulin resistance[J]. Proc Natl AcadSci U S A,2014(2111): E4638– E4647.
[23]? Dhakal M, MM Miller, AA Zaghouani, et al.Neonatal basophils stifle the function of early-life dendritic cells to curtail Th1 immunity in newborn mice. J[J]. Immunol,2015(195):507-518.
[24]? Murali G, Joshy J, Bali P. Toll-Like Receptor Expression and Responsiveness of Distinct Murine Splenic and Mucosal B-Cell Subsets: [J]. Plos One, 2007, 2(9): e863.
[25]? G. Gu, J.R. Brown, D.A. Melton. Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis[J]. Mech Dev, 120 (2003) 35-43.
[26]? Asayesh A, Sharpe J, Watson RP, et al. Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1/mice[J]. Genes Dev,2006(20):2208-13.
[27]? Rosenberg L. In vivo cell transformation: neogenesis of beta cells from pancreatic ductal cells[J]. Cell Transplant,1995(4):371-383.
[28]? Fernandes A, LC King, Y Guz, et al. Teitelman Differ- entiation of new insulin-producing cells is induced by injury in adult pancreatic islets[J].En- docrinology,1997(138):1750-1762.
[29]? Kojima H, M Fujimiya, K Matsumura, et al.NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and re- verses diabetes in mice[J].Nat Med,2003(9):596-603.
[30]? Robertson SA,Rowan-Hull AM, Johnson PR.The spleen--a potential source of new islets for transplantation[J]. Journal of Pediatric Surgery, 2008, 43(2):274-278.
[31]? Kodama S, W Ku htreiber, S Fujimura, et al.Islet rege- neration during the reversal of autoimmune diabetes in NOD mice[J].Science,2003(302):1223-1227.
[32]? Kodama S, Davis M, Faustman DL. Diabetes and stem cell researchers turn to the lowly spleen[J].Sci Aging Knowl Environ,2005(3):pe2.
[33]? Dor Y, J Brown, OI Martinez,et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation[J].Nature,2004(429):41-46.
[34]? YIN D, TAO J, LEE DD, et al. Recovery of islet β cell function in streptozotocin-induced diabetic mice[J]. Diabetes, 2006(55):3256-3263.
[35]? Park S, SM Hong, IS Ahn. Can splenocytes enhance pancreatic beta-cell function and mass in 90% pan-createctomized rats fed a high fat diet Life Sci. 2009(84):358–363.
[36]? Itoh T, Nishinakamura H, Kumano K, et al. The Spleen Is an Ideal Site for Inducing Transplanted Islet Graft Expan sion in Mice[J]. Plos One, 2017, 12(1):e0170899.
(收稿日期:2018-10-24)