亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高密實(shí)度模擬月壤力學(xué)特性試驗(yàn)研究

        2019-01-17 09:04:58吳寶廣許述財(cái)李建橋張金換
        關(guān)鍵詞:內(nèi)聚力月壤摩擦角

        黃 晗,吳寶廣,許述財(cái)※,鄒 猛,李建橋,張金換

        ?

        高密實(shí)度模擬月壤力學(xué)特性試驗(yàn)研究

        黃 晗1,吳寶廣2,許述財(cái)1※,鄒 猛2,李建橋2,張金換1

        (1. 清華大學(xué)汽車安全與節(jié)能國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100084; 2. 吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130022)

        為保證月面采樣任務(wù)順利實(shí)施,該文以鉆取采樣的JLU5系列模擬月壤(JLU5-1、JLU5-2和JLU5-3,探月工程內(nèi)場(chǎng)試驗(yàn)采用)為對(duì)象,利用振實(shí)裝置進(jìn)行高密實(shí)度模擬月壤整備,開展不同密實(shí)度條件下(相對(duì)密度為0.85、0.9、0.95和0.99)模擬月壤剪切和貫入特性力學(xué)試驗(yàn),分析了相對(duì)密度對(duì)剪切強(qiáng)度、內(nèi)聚力、內(nèi)摩擦角、圓錐指數(shù)和圓錐指數(shù)梯度的影響規(guī)律。試驗(yàn)結(jié)果表明,剪切強(qiáng)度和內(nèi)聚力隨相對(duì)密度增加總體呈現(xiàn)增加規(guī)律,平均變化率分別為11.1%和35.8%;3種模擬月壤內(nèi)摩擦角隨相對(duì)密度增加無(wú)明顯變化趨勢(shì),范圍為53.3o~67.7o;圓錐指數(shù)和圓錐指數(shù)梯度隨相對(duì)密度增加而增加,且圓錐指數(shù)和圓錐指數(shù)梯度平均變化率較剪切強(qiáng)度和內(nèi)聚力的大;相同試驗(yàn)條件下,顆粒較細(xì)的JLU5-3型模擬月壤較JLU5-1和JLU5-2具有更大的剪切強(qiáng)度、內(nèi)聚力和圓錐指數(shù),JLU5-2內(nèi)摩擦角總體上較JLU5-1和JLU5-3的小。利用EDEM軟件建立貫入特性試驗(yàn)數(shù)值模型,仿真結(jié)果表明:不同模擬月壤圓錐指數(shù)仿真值總體小于實(shí)際試驗(yàn)值,且隨相對(duì)密度變化規(guī)律一致,建立了仿真與試驗(yàn)值線性關(guān)系。研究結(jié)果可為采樣任務(wù)順利實(shí)施、鉆取機(jī)構(gòu)優(yōu)化設(shè)計(jì)、采樣觸月部件與月壤相互作用力學(xué)模型建立提供參考。

        土壤力學(xué);力學(xué)特性;剪切強(qiáng)度;內(nèi)聚力;內(nèi)摩擦角;模擬月壤

        0 引 言

        自2004年正式開展探月工程以來(lái),中國(guó)已先后完成了對(duì)月球的“繞”、“落”探測(cè)任務(wù)。目前正在實(shí)施的探月三期工程—無(wú)人自主采樣任務(wù)包括表層和深層月壤采樣[1-3]。表層采樣使用挖取和鏟取方式[4],而深層月壤采樣將利用鉆取的方式獲取深度約為2 m的連續(xù)月壤樣品[1]。鉆取采樣過(guò)程中不僅取決于采樣裝置設(shè)計(jì),還與月壤力學(xué)特性緊密相關(guān)。月壤的力學(xué)特性由其物理特性決定,包括顆粒形態(tài)、粒徑分布、顆粒比重、相對(duì)密度等。其中,月壤的相對(duì)密度直接影響月壤的力學(xué)特性,進(jìn)而影響采樣裝置受力及鉆取效果[5,6]。由于深層月壤性質(zhì)極其復(fù)雜,為確保月球探測(cè)器在月面鉆取采樣的順利進(jìn)行,開展面向鉆取月壤力學(xué)特性試驗(yàn)研究具有重要意義。

        由于真實(shí)月壤極其珍貴稀少,為滿足地面鉆取試驗(yàn)需求,與真實(shí)月壤具有相似礦物成分和力學(xué)特性的模擬月壤不斷地被研制出來(lái)[7-9],如JSC-1A[10-11]、BP-1[12]、CAS-1[13]、TJ-1[14]和TYII[15]等。月壤/模擬月壤的力學(xué)特性一直都是國(guó)內(nèi)外相關(guān)學(xué)者的研究重點(diǎn)[16]。Arslan等對(duì)模擬月壤JSC-1A進(jìn)行承壓和剪切特性試驗(yàn),將其剪切強(qiáng)度、抗拉強(qiáng)度、剪脹角等力學(xué)特性參數(shù)與真實(shí)月壤進(jìn)行了對(duì)比[17]。Suescun-Florez等對(duì)BP-1模擬月壤力學(xué)特性進(jìn)行測(cè)試,包括粒徑分布、相對(duì)密度、壓縮系數(shù)、剪切強(qiáng)度等[12]。張宇等對(duì)CAS-1模擬月壤開展動(dòng)力學(xué)參數(shù)的試驗(yàn)研究,分析了不同孔隙比、不同圍壓對(duì)動(dòng)剪切模量及剪應(yīng)變的影響規(guī)律[13]。蔣明鏡等對(duì)TJ-1模擬月壤承載特性物理模型試驗(yàn)研究,探討了極限承載力和變形模量隨加載速率變化規(guī)律[18]。

        以上研究均偏向低、中密實(shí)度表層月壤力學(xué)特性研究,根據(jù)以往的探月結(jié)果,月壤的體密度隨著深度的增加而增大,次表層的月壤與表層月壤相比更為密實(shí),而與面向鉆取采樣的次表層高密實(shí)度月壤相關(guān)的力學(xué)特性方面的研究涉及較少。因此,采樣器能否順利完成鉆取任務(wù),其關(guān)鍵在于能否在高密實(shí)度的模擬月壤狀態(tài)下穩(wěn)定工作,因此有必要開展模擬月壤在不同密實(shí)度狀態(tài)下力學(xué)特性研究。

        本文采用吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室研制的JLU5型模擬月壤(已被航天部門用于鉆取采樣地面試驗(yàn)研究),代替真實(shí)月壤開展相關(guān)的物理力學(xué)特性試驗(yàn)研究,包括承載特性和剪切特性。由于高密實(shí)度條件下模擬月壤硬度較大,壓板承載試驗(yàn)無(wú)法達(dá)到有效貫入深度,本文采用圓錐貫入阻力特性試驗(yàn)代替壓板承載試驗(yàn)。為模擬極限狀態(tài)下鉆取采樣試驗(yàn),本文研制了高密實(shí)度模擬月壤整備和測(cè)試裝置,開展不同相對(duì)密度模擬月壤整備方法研究;探討相對(duì)密度對(duì)剪切強(qiáng)度、內(nèi)聚力、內(nèi)摩擦角、圓錐指數(shù)和圓錐指數(shù)梯度影響規(guī)律;并通過(guò)EDEM軟件開展貫入特性仿真對(duì)比分析,以期為采樣任務(wù)順利實(shí)施、鉆取機(jī)構(gòu)優(yōu)化設(shè)計(jì)、采樣觸月部件與月壤相互作用力學(xué)模型建立提供參考。

        1 材料與方法

        1.1 試驗(yàn)設(shè)備

        為實(shí)現(xiàn)高密實(shí)度模擬月壤整備,研制了振動(dòng)壓實(shí)裝置,如圖1所示,主要由電機(jī)、土樣盒、凸輪組件等組成。電機(jī)額定轉(zhuǎn)速為3 000 r/min, 額定功率為750 W,為保護(hù)設(shè)備避免溫升過(guò)高,裝置可允許連續(xù)工作的最長(zhǎng)時(shí)間為10 h。通過(guò)步進(jìn)電機(jī)帶動(dòng)凸輪組件的運(yùn)動(dòng),進(jìn)而使土樣盒上下振動(dòng),實(shí)現(xiàn)模擬月壤的密實(shí)整備,電機(jī)振動(dòng)頻率為200次/min。為完成模擬月壤剪切特性測(cè)試,土樣盒設(shè)計(jì)為上、下2部分,整備過(guò)程中,上、下土樣盒采用螺栓固定,土樣盒內(nèi)部直徑為110 mm,高度為140 mm。

        1. 支撐底座 2. 電機(jī) 3. 上土樣盒 4. 下土樣盒 5. 密封蓋 6. 進(jìn)料桶7. 凸輪組件

        針對(duì)高密實(shí)度模擬月壤,研制了剪切特性試驗(yàn)裝置,如圖2所示。其中,上、下土樣盒安置于壓桿正下方。采用伺服電機(jī)實(shí)現(xiàn)恒定法向載荷加載,水平方向上通過(guò)電機(jī)推動(dòng)下土樣盒,與上土樣盒產(chǎn)生相對(duì)位移,力和位移傳感器分別測(cè)量剪切力和剪切位移。標(biāo)準(zhǔn)剪切速度為2.4 mm/min,剪切力測(cè)量范圍為0~2 kN,最大剪切位移為9 mm。

        土壤貫入阻力(又稱堅(jiān)實(shí)度、擠壓阻力、土壤硬度)作為土壤重要的物理特性指標(biāo)之一,是指土壤對(duì)外物垂直穿透時(shí)的阻力[19]。貫入阻力與圓錐基底面積的比值,這個(gè)比值稱為“圓錐指數(shù)”(cone index),是判斷鉆取采樣任務(wù)是否能順利完成的重要參考指標(biāo)之一。由于普通手持式土壤硬度儀無(wú)法滿足本研究試驗(yàn)需求,本文研制了一種高密實(shí)度模擬月壤貫入阻力測(cè)量裝置,如圖3所示,主要由貫入錐頭、升降機(jī)、絲桿副和數(shù)據(jù)采集PC等組成。

        1. 下土樣盒 2. 位移傳感器 3. 上土樣盒 4. 壓桿 5. 力傳感器

        1. 支撐底板 2. 錐頭 3. 副手輪 4. 升降機(jī) 5. 主手輪 6. 位移編碼器 7. 壓力傳感器 8. 絲杠副 9. 數(shù)據(jù)采集PC

        試驗(yàn)中,通過(guò)轉(zhuǎn)動(dòng)副手輪使得錐頭緩慢貫入模擬月壤中,平均貫入速度約為30 mm/min,主手輪用于快速調(diào)節(jié)升降機(jī)高度。貫入阻力和深度數(shù)據(jù)分別通過(guò)壓力傳感器和位移編碼器進(jìn)行采集,其中位移傳感器的精度為 0.01 mm,力傳感器精度為0.01 N,數(shù)據(jù)最終由PC記錄保存。貫入錐頭采用淬火工藝處理,以滿足高強(qiáng)度的試驗(yàn)要求,錐頭的額定載荷為2 kN,最大貫入深度為100 mm。

        1.2 模擬月壤及整備

        本文采用的試驗(yàn)介質(zhì)為JLU5型模擬月壤(探月工程三期內(nèi)場(chǎng)試驗(yàn)采用),以吉林輝南玄武質(zhì)火山灰為主要原料,通過(guò)篩選、研磨、粒徑級(jí)配加工而成[19-21],含水率小于0.3%,屬于干性砂土。模擬月壤顆粒形態(tài)以棱角狀和次棱角狀為主,按不同粒徑級(jí)配分為3種類型,如圖4所示,分別為JLU5-1、JLU5-2和JLU5-3。由圖4可知,JLU5型模擬月壤粒徑分布均在真實(shí)月壤范圍之內(nèi)[22],其中,相較于JLU5-1和JLU5-2型模擬月壤,JLU5-3的顆粒粒徑偏細(xì),接近真實(shí)月壤粒徑級(jí)配上限。

        注:JLU5-1、JLU5-2和JLU5-3分別代表JLU5-1型模擬月壤、JLU5-2型模擬月壤和JLU5-3型模擬月壤。下同。

        對(duì)于基于模擬月壤的各項(xiàng)地面試驗(yàn),模擬月壤在不同密實(shí)度下呈現(xiàn)的物理力學(xué)性質(zhì)差異將對(duì)試驗(yàn)結(jié)果產(chǎn)生影響[11]。為了提高鉆取的安全系數(shù),地面試驗(yàn)中應(yīng)放大模擬月壤密實(shí)度的范圍。為獲取不同密實(shí)度狀態(tài)的模擬月壤,本文采用振動(dòng)壓實(shí)的方法進(jìn)行模擬月壤整備,模擬月壤密實(shí)度用相對(duì)密度表示,如式(1)所示。

        式中D為相對(duì)密度,無(wú)量綱;γmax為最大體密度,g/cm3;γmin為最小體密度g/cm3;γ為體密度,g/cm3。針對(duì)相對(duì)密度為0.85~1.00的采樣模擬月壤,相對(duì)密度共分為4個(gè)等間距水平,分別為0.85、0.90、0.95和0.99,其中由于相對(duì)密度為1.00為理想狀態(tài),實(shí)際試驗(yàn)中無(wú)法達(dá)到,故相對(duì)密度最高取為0.99。

        為獲取不同水平的相對(duì)密度,需要確定最大、最小體密度和體密度。試驗(yàn)中,模擬月壤體密度隨著振動(dòng)次數(shù)增加而增大,當(dāng)整備次數(shù)達(dá)到20萬(wàn)次時(shí),模擬月壤體密度逐漸趨于一個(gè)穩(wěn)定值,本文將這一穩(wěn)定值作為最大體密度。模擬月壤最小體密度采用傾倒法獲取。本文模擬月壤最大和最小體密度如表1所示。前期通過(guò)試驗(yàn),得到模擬月壤體密度與振動(dòng)次數(shù)關(guān)系,如式(2)所示。

        式中為振動(dòng)次數(shù)。該公式計(jì)算的體密度值和實(shí)際測(cè)量值間的相對(duì)誤差不超過(guò)0.2%。模擬月壤不同相對(duì)密度條件下體密度數(shù)值如表2所示。

        表1 模擬月壤體密度最大和最小值

        表2 模擬月壤相對(duì)密度與體密度對(duì)應(yīng)關(guān)系

        1.3 試驗(yàn)方法

        在整備完成的模擬月壤基礎(chǔ)上,開展不同密實(shí)度度條件下的貫入和剪切特性分析,獲取的物理力學(xué)特征參數(shù)包括剪切強(qiáng)度、內(nèi)聚力、內(nèi)摩擦角和圓錐指數(shù)和圓錐指數(shù)梯度。

        本文采用莫爾—庫(kù)倫強(qiáng)度理論來(lái)描述月壤的剪切特性[23],振動(dòng)密實(shí)后的模擬月壤屬于脆性地面,剪切特性曲線會(huì)出現(xiàn)最大剪切應(yīng)力,即為剪切強(qiáng)度。通過(guò)測(cè)量不同法向應(yīng)力條件下剪切強(qiáng)度,得到模擬月壤內(nèi)聚力和內(nèi)摩擦角,如式(3)所示。

        式中max為剪切強(qiáng)度,kPa;為內(nèi)聚力,kPa;為內(nèi)摩擦角,(°);為作用在模擬月壤單位支撐面積上的法向應(yīng)力,kPa。

        在進(jìn)行剪切特性試驗(yàn)時(shí),首先將位移傳感器和剪切電機(jī)調(diào)整到零位置點(diǎn),并做清零處理;控制法向電機(jī)施加試驗(yàn)所需載荷,其數(shù)值由力傳感器測(cè)量;啟動(dòng)水平方向電機(jī)開始剪切,根據(jù)土工試驗(yàn)方法標(biāo)準(zhǔn),剪切速度設(shè)置為0.8 mm/min;當(dāng)剪切位移達(dá)到9 mm時(shí),停止試驗(yàn)并保存數(shù)據(jù);最后,控制法向電機(jī)卸壓,并讓剪切電機(jī)后退至初始位置。試驗(yàn)中,法向載荷分為4個(gè)等級(jí),分別為10、20、30和40 kPa,每級(jí)法向載荷條件下進(jìn)行3次重復(fù)試驗(yàn)。

        在進(jìn)行貫入特性試驗(yàn)時(shí),將整備后裝有模擬月壤的土樣盒放置于貫入錐頭下方,并保證錐頭對(duì)準(zhǔn)土樣盒中心位置。轉(zhuǎn)動(dòng)主手輪使錐頭下降至恰好與模擬月壤表面接觸,打開數(shù)據(jù)采集軟件,轉(zhuǎn)動(dòng)副手輪使錐頭貫入模擬月壤中,PC開始采集保存貫入阻力和位移數(shù)據(jù)。前期試驗(yàn)發(fā)現(xiàn)錐頭下降速度對(duì)貫入阻力影響相對(duì)較小,因此,為保證錐頭平均下降速度約為30 mm/min,對(duì)應(yīng)副手輪轉(zhuǎn)速為120 r/min),上述操作由固定試驗(yàn)人員完成。

        2 結(jié)果與分析

        2.1 剪切特性分析

        模擬月壤剪切強(qiáng)度隨相對(duì)密度和法向應(yīng)力變化趨勢(shì)如圖5所示,3種模擬月壤剪切強(qiáng)度范圍為36.6~158.4 kPa。相同試驗(yàn)條件下,JLU5-3的剪切強(qiáng)度最大,其次是JLU5-1,JLU5-2的剪切強(qiáng)度最小。模擬月壤剪切強(qiáng)度總體上隨相對(duì)密度增加呈現(xiàn)增加趨勢(shì),平均變化率約為11.1%。結(jié)果表明,隨著整備后模擬月壤密實(shí)度的不斷增加,其抗剪能力也相應(yīng)增強(qiáng)。

        當(dāng)D由0.90增加到0.95時(shí),JLU5-1和JLU5-2剪切強(qiáng)度在= 20 kPa分別減少了13.5%和22.2%;當(dāng)D由0.95增加到0.99時(shí),JLU5-3型模擬月壤剪切強(qiáng)度在= 20、30和40 kPa呈現(xiàn)明顯減小趨勢(shì),平均減少了16.4%。由此可見,高密實(shí)度會(huì)使模擬月壤剪切強(qiáng)度出現(xiàn)一定的波動(dòng),尤其對(duì)于顆粒較細(xì)的JLU5-3型模擬月壤。

        模擬月壤不同相對(duì)密度條件下內(nèi)聚力如圖6所示,JLU5系列模擬月壤內(nèi)聚力范圍為14.9~68 kPa,約為TJ-1和JSC-1A型模擬月壤內(nèi)聚力的3~10倍[14-16]。由圖6可知,內(nèi)聚力隨相對(duì)密度增加呈現(xiàn)增加趨勢(shì),3種模擬月壤分別增加了24.7%(JLU5-1)、22.8%(JLU5-2)和37.5%(JLU5-3)。隨相對(duì)密度增加,內(nèi)聚力平均變化率為35.8%,高于剪切強(qiáng)度平均變化率(11.1%)。因此,相對(duì)密度對(duì)內(nèi)聚力影響更為明顯。

        注:Dr為相對(duì)密度。下同。

        圖6 模擬月壤不同相對(duì)密度下的內(nèi)聚力

        當(dāng)相對(duì)密度達(dá)到0.9時(shí),JLU5-3內(nèi)聚力較JLU5-1和JLU5-2的大,且隨著相對(duì)密度逐漸增加,差距越來(lái)越明顯,分析其原因是由于隨著粒徑變細(xì),模擬月壤表面能作用愈加凸顯,黏性效應(yīng)也越顯著,導(dǎo)致JLU5-3內(nèi)聚力較大。

        模擬月壤不同相對(duì)密度條件下內(nèi)摩擦角如表3所示,由表3可知,內(nèi)摩擦角變化范圍為53.3o~67.7o,明顯高于其他類型模擬月壤自然狀態(tài)下內(nèi)摩擦角[24-26]。模擬月壤內(nèi)摩擦角隨密實(shí)度增加無(wú)明顯變化規(guī)律。不同相對(duì)密度條件下,JLU5-2內(nèi)摩擦角總體上較JLU5-1和JLU5-3的小。

        2.2 貫入特性及仿真分析

        貫入特性試驗(yàn)中,貫入深度為40 mm。模擬月壤圓錐指數(shù)隨貫入深度變化規(guī)律如圖7所示,由圖7可見,隨著貫入深度增加,圓錐指數(shù)雖出現(xiàn)一定波動(dòng),但總體仍呈現(xiàn)增加趨勢(shì)。

        表3 模擬月壤不同相對(duì)密度下的內(nèi)摩擦角

        圖7 圓錐指數(shù)隨貫入深度的變化

        圖8給出了模擬月壤不同相對(duì)密度條件下圓錐指數(shù)變化趨勢(shì),由圖8可知,圓錐指數(shù)隨相對(duì)密度增加而增加。當(dāng)貫入深度為40 mm、D為0.99時(shí),模擬月壤圓錐指數(shù)分別達(dá)到129.8(JLU5-1)、142.9(JLU5-2)和175.2 MPa(JLU5-3)。相同試驗(yàn)條件下,由于顆粒較細(xì)導(dǎo)致模擬月壤圓錐指數(shù)增加,與內(nèi)聚力隨相對(duì)密度變化規(guī)律一致。相同試驗(yàn)條件下,JLU5-3圓錐指數(shù)較JLU5-2的增加了13.4%,JLU5-2圓錐指數(shù)較JLU5-1的增加了20.5%。結(jié)果表明,顆粒較細(xì)的模擬月壤經(jīng)振動(dòng)壓實(shí)后圓錐指數(shù)偏大。

        為對(duì)比不同密實(shí)度條件下圓錐指數(shù),采用線性擬合方法表征其變化趨勢(shì),其斜率為圓錐指數(shù)梯度(cone index gradient)。

        圖8 模擬月壤不同相對(duì)密度下圓錐指數(shù)隨貫入深度變化

        表4為不同相對(duì)密度條件下圓錐指數(shù)梯度。當(dāng)相對(duì)密度由0.85增加到0.90時(shí),圓錐指數(shù)梯度增加較大;當(dāng)相對(duì)密度由0.90增加大0.95時(shí),圓錐指數(shù)增加不明顯,進(jìn)一步增加到0.99時(shí),圓錐指數(shù)梯度則再次出現(xiàn)大幅度增加。隨著相對(duì)密度增加,圓錐指數(shù)梯度平均增加率為50.6%,結(jié)果表明,高密實(shí)度條件下,圓錐指數(shù)梯度對(duì)相對(duì)密度增加較為敏感。

        表4 不同相對(duì)密度下的圓錐指數(shù)梯度

        對(duì)比3種模擬月壤,發(fā)現(xiàn)JLU5-3圓錐指數(shù)梯度始終較JLU5-1和JLU5-2的大,分析其原因是由于顆粒粒徑偏小的JLU5-3,相同相對(duì)密度條件下實(shí)際體密度較JLU5-1和JLU5-2的大,導(dǎo)致模擬月壤總體上偏硬,因此JLU5-3的圓錐指數(shù)梯度最大。由于振動(dòng)條件下顆粒的分離現(xiàn)象,導(dǎo)致土樣盒模擬月壤存在垂直方向差異,因此,有必要進(jìn)一步開展貫入特性的離散元仿真分析。

        摩爾-庫(kù)倫模型是巖土力學(xué)分析中應(yīng)用非常廣泛的塑性模型,主要適用于單調(diào)載荷下顆粒狀材料[27,28]。本文采用離散元仿真軟件EDEM開展貫入特性仿真分析,如圖9所示。仿真建模中,模擬月壤顆粒泊松比為0.3,靜摩擦系數(shù)為0.5,滾動(dòng)摩擦系數(shù)為0.01[29-31],錐頭下降速度為30 mm/min,如圖9a所示。由圖9b可知,錐頭下降的過(guò)程中,模擬月壤顆粒之間相互接觸并且擠壓過(guò)程中,由于壓力的偏心作用,使得顆粒間發(fā)生相對(duì)滑移,圓錐指數(shù)產(chǎn)生一定的波動(dòng),隨著貫入深度增加,圓錐指數(shù)總體上仍呈現(xiàn)線性增加趨勢(shì)。

        圖9 模擬月壤貫入特性仿真分析

        貫入特性仿真與試驗(yàn)結(jié)果對(duì)比如圖10所示。由圖10a可知,仿真結(jié)果中,圓錐指數(shù)隨著貫入深度的增加而增大,且模擬月壤JLU5-3的圓錐指數(shù)較JLU5-2的大,JLU5-1的最小,與試驗(yàn)結(jié)果一致。

        圖10 模擬月壤貫入特性仿真與試驗(yàn)結(jié)果對(duì)比

        當(dāng)貫入深度大于20 mm時(shí),隨著貫入深度進(jìn)一步增加,仿真值逐漸小于試驗(yàn)值,分析其原因可能是粒徑分布與實(shí)際情況存在差異,主要是限于仿真計(jì)算速度條件,仿真中對(duì)小粒徑(<0.1 mm)顆粒設(shè)置存在限制。另外,與實(shí)際試驗(yàn)條件相比,仿真中條件設(shè)置較為理想,模擬月壤離散程度較小,導(dǎo)致圓錐指數(shù)仿真值隨貫入深度變化的波動(dòng)較小,且線性規(guī)律較試驗(yàn)值更為明顯。

        圖10b為圓錐指數(shù)梯度仿真結(jié)果與試驗(yàn)結(jié)果對(duì)比,由圖10b可知圓錐指數(shù)梯度仿真值始終小于試驗(yàn)值,且與試驗(yàn)值存在線性關(guān)系。

        3 結(jié) 論

        1)提出了高密實(shí)度模擬月壤整備方法,得到模擬月壤不同體密度與振動(dòng)次數(shù)關(guān)系,體密度計(jì)算值和測(cè)量值間的相對(duì)誤差不超過(guò)0.2%,符合試驗(yàn)要求。

        2)本文試驗(yàn)條件下,模擬月壤剪切強(qiáng)度總體上隨相對(duì)密度增加呈現(xiàn)增加趨勢(shì),平均變化率約為11.1%;內(nèi)聚力總體隨相對(duì)密度增加呈現(xiàn)增加趨勢(shì),顆粒較細(xì)的模擬月壤JLU5-3內(nèi)聚力較JLU5-1和JLU5-2的大;模擬月壤內(nèi)摩擦角變化范圍為53.3o~67.7o,且隨密實(shí)度增加無(wú)明顯變化規(guī)律,JLU5-2內(nèi)摩擦角總體上較JLU5-1和JLU5-3的小。

        3)隨著貫入深度增加,圓錐指數(shù)雖出現(xiàn)一定波動(dòng),但總體仍呈現(xiàn)增加趨勢(shì);JLU5-3型模擬月壤圓錐指數(shù)較JLU5-1和JLU5-2的大,與內(nèi)聚力隨相對(duì)密度變化規(guī)律一致;圓錐指數(shù)梯度隨貫入深度增加,平均增加率為50.6%。高密實(shí)度條件下,圓錐指數(shù)梯度對(duì)相對(duì)密度增加較為 敏感。

        4)圓錐指數(shù)仿真值隨貫入深度變化的波動(dòng)較小,且呈現(xiàn)的線性規(guī)律較試驗(yàn)值更為明顯;圓錐指數(shù)梯度仿真值始終小于試驗(yàn)值,建立了仿真與試驗(yàn)值間線性關(guān)系。

        [1] 唐鈞躍,鄧宗全,陳崇斌,等. 面向深空探測(cè)的星球鉆取采樣技術(shù)綜述[J]. 宇航學(xué)報(bào),2017,38(6):555-565. Tang Junyue, Deng Zongquan, Chen Chongbin, et al. Review of planetary drilling & coring technologies oriented towards deep space exploration[J]. Journal of Astronautics, 2017, 38(6): 555-565. (in Chinese with English abstract)

        [2] 葉培建,彭兢. 深空探測(cè)與我國(guó)深空探測(cè)展望[J]. 中國(guó)工程科學(xué),2006,8(10):13-18.Ye Peijian, Peng Jing. Deep space exploration and its prospect in China[J]. Engineering Science, 2006, 8(10): 13-18. (in Chinese with English abstract)

        [3] 吳偉仁,于登云. 深空探測(cè)發(fā)展與未來(lái)關(guān)鍵技術(shù)[J]. 深空探測(cè)學(xué)報(bào),2014,1(1):5-17. Wu Weiren, Yu Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17. (in Chinese with English abstract)

        [4] 蔣明鏡,奚邦祿,申志福,等. 月壤水平開挖推剪阻力影響因素離散元數(shù)值分析[J]. 巖土力學(xué),2016,37(1):229-236. Jiang Mingjing, Xi Banglu, Shen Zhifu, et al. Discrete element numerical analysis of factors affecting horizontal pushing resistance in lunar ground excavation [J]. Rock and Soil Mechanics, 2016, 37(1): 229-236. (in Chinese with English abstract)

        [5] Gao Y, Thomas E D, Pitcher C. Piercing the extraterrestrial surface: integrated robotic drill for planetary exploration[J]. IEEE Robotics & Automation Magazine, 2015, 22(1): 45-53.

        [6] Tian Ye, Tang Dewei, Deng Zongquan, et al. Drilling power consumption and soil conveying volume performances of lunar sampling auger[J]. Chinese Journal of Mechanical Engineering, 2015, 28(3): 451-459.

        [7] 史曉萌,節(jié)德剛,全齊全,等. 模擬月壤鉆進(jìn)負(fù)載分析與試驗(yàn)研究[J]. 宇航學(xué)報(bào),2015,35(6):648-656. Shi Xiaomeng, Jie Degang, Quan Qiquan, et al. Experimental research on lunar soil simulant drilling load analysis[J]. Journal of Astronautics, 2015, 35(6): 648-656. (in Chinese with English abstract)

        [8] Taylor L A, Pieters C M, Britt D. Evaluations of lunar regolith simulants[J]. Planetary and Space Science, 2016, 126(7): 1-7.

        [9] He Chunmei, Zeng Xiangwu, Wilkinson A. Geotechnical properties of GRC-3 lunar simulant[J]. Journal of Aerospace Engineering, 2011, 26(3): 528-534.

        [10] King R H, Van Susante P, Gefreh M A. Analytical models and laboratory measurements of the soil–tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths[J]. Journal of Terramechanics, 2011, 48(1): 85-95.

        [11] Allan S, Braunstein J, Baranova I, et al. Computational modeling and experimental microwave processing of JSC-1A lunar simulant[J]. Journal of Aerospace Engineering, 2012, 26(1): 143-151.

        [12] Suescun Florez E, Roslyakov S, Iskander M, et al. Geotechnical properties of BP-1 lunar regolith simulant[J]. Journal of Aerospace Engineering, 2014, 28(5): 04014124.

        [13] 張宇,余飛,陳善雄,等. CAS-1 模擬月壤動(dòng)剪切模量與阻尼比的試驗(yàn)研究[J]. 巖土力學(xué),2014,35(1):74-82.Zhang Yu, Yu Fei, Chen Shanxiong, et al. Experimental study of dynamic shear modulus and damping ratio of CAS- -1 lunar soil simulant [J]. Rock and Soil Mechanics, 2014, 35(1): 74-82. (in Chinese with English abstract)

        [14] Jiang Mingjing, Li Liqing, Yang Qijun. Experimental investigation on deformation behavior of TJ-1 lunar soil simulant subjected to principal stress rotation[J]. Advances in Space Research, 2013, 52(1): 136-146.

        [15] Zou Meng, Fan Shichao, Shi Ruiyang, et al. Effect of gravity on the mechanical properties of lunar regolith tested using a low gravity simulation device[J]. Journal of Terramechanics, 2015, 60(4): 11-22.

        [16] Sture S. A review of geotechnical properties of lunar regolith simulants[M]//Houston: American Society of Civil Engineers. 2006.

        [17] Arslan H, Batiste S, Sture S. Engineering properties of lunar soil simulant JSC-1A[J]. Journal of Aerospace Engineering, 2009, 23(1): 70-83.

        [18] 蔣明鏡,奚邦祿,孫德安,等. TJ-1 模擬月壤承載特性物理模型試驗(yàn)研究[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2016,44(2):167-172. Jiang Mingjing, Xi Banglu, Sun Dean, et al. Experimental study of bearing behavior of TJ-1 lunar soil simulant using physical model[J]. Journal of Tongji University: Natural science 2016, 44(2): 167-172. (in Chinese with English abstract)

        [19] 鄒猛,李建橋,李因武,等. 剛性輪—月壤相互作用預(yù)測(cè)模型及試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(12):119-123. Zou Meng, Li Jianqiao, Li Yinwu, et al. Prediction model and experimental study on the interaction of rigid-wheel and lunar soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(12): 119-123. (in Chinese with English abstract)

        [20] 黃晗,李建橋,陳百超,等. 滑轉(zhuǎn)條件下星球車坡面通過(guò)性評(píng)估試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):40-44. Huang Han, Li Jianqiao, Chen Baichao, et al. Experiment of slope trafficability assessment of planetary rover under slip condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 40-44. (in Chinese with English abstract)

        [21] 黃晗,李建橋,吳寶廣,等. 輕載荷條件下輕型車輛車輪牽引通過(guò)性模型的建立與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):64-70. Huang Han, Li Jianqiao, Wu Baoguang, et al. Research on lightweight vehicle wheel tractive trafficability model under light load[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 64-70. (in Chinese with English abstract)

        [22] Morris R V. Handbook of lunar soils[M]. Houston: Northrop Services, Inc., 1983.

        [23] 林呈祥,凌道盛,鐘世英. 模擬月壤抗剪強(qiáng)度試驗(yàn)研究及離散元分析[J]. 巖土力學(xué),2017,38(3):893-901.Lin Chengxiang, Ling Daosheng, Zhong Shiying. Experimental research and discrete element analysis of shear strength of lunar soil simulants[J]. Rock and Soil Mechanics, 2017, 38(3): 893-901. (in Chinese with English abstract)

        [24] Klosky J L, Sture S, Ko H Y, et al. Geotechnical Behavior of JSC-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13(4): 133-138.

        [25] Zeng X W, Chun M H, Heather O. Geotechnical properties of JSC-1A lunar soil simulant[J]. Journal of Aerospace Engineering, 2010, 23(2): 111-116.

        [26] Perkins S W. Bearing capacity of highly frictional material[J]. Geotechnical Testing Journal, 1991, 18(4): 450-462.

        [27] 張銳,羅剛,薛書亮,等. 沙地剛性輪構(gòu)型仿生設(shè)計(jì)及牽引性能數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):122-128. Zhang Rui, Luo Gang, Xue Shuliang, et al. Bionic design of configuration of rigid wheel moving on sand and numerical analysis on its traction performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 122-128. (in Chinese with English abstract)

        [28] 林呈祥,鐘世英,凌道盛. 模擬月壤顆粒形狀特征及其對(duì)抗剪強(qiáng)度影響分析[J]. 東北大學(xué)學(xué)報(bào):自然科學(xué)版,2016,37(11):1640-1644.Lin Chengxiang, Zhong Shiying, Ling Daosheng. Analysis of particle shape characteristics of lunar soil simulant and its effect on shear strength[J]. Journal of Northeastern University: Natural Science, 2016, 37(11): 1640-1644.(in Chinese with English abstract)

        [29] 林呈祥,凌道盛,鐘世英. 模擬月壤抗剪強(qiáng)度試驗(yàn)研究及離散元分析[J]. 巖土力學(xué),2017,38(3):893-901.Lin Chengxiang, Ling Daosheng, Zhong Shiying. Experimental research and discrete element analysis of shear strength of lunar soil simulants[J]. Rock and Soil Mechanics, 2017, 38(3): 893-901. (in Chinese with English abstract)

        [30] Knuth M A, Johnson J B, Hopkins M A, et al. Discrete element modeling of a Mars Exploration Rover wheel in granular material[J]. Journal of Terramechanics, 2012, 49(1): 27-36.

        [31] Johnson J B, Kulchitsky A V, Duvoy P, et al. Discrete element method simulations of Mars Exploration Rover wheel performance[J]. Journal of Terramechanics, 2015, 62(6): 31-40.

        [32] Jiang Mingjing, Yin Zhenyu, Shen Zhifu. Shear band formation in lunar regolith by discrete element analyses[J]. Granular Matter, 2016, 18(2): 32.

        Test study on mechanical properties of lunar soil simulant under high compactness condition

        Huang Han1, Wu Baoguang2, Xu Shucai1※, Zou Meng2, Li Jianqiao2, Zhang Jinhuan1

        (1.100084,; 2.130022,)

        In order to analyze the mechanical properties of lunar soil simulant at different densities,3 types of high density lunar soil simulant (JLU5-1, JLU5-2 and JLU5-3, which has been adopted in the Chinese lunar exploration program) was prepared by a self-designed vibrating device, the shearing and penetrating tests of 4 different soil relative density (0.85, 0.9, 0.95 and 0.99) were performed, the influence of relative density on shear strength, cohesion, internal friction angle, cone index and cone index gradient were analyzed. The result showed that the shear strength of 3 lunar soil simulant ranged from 36.6 to 158.4 kPa. The shear strength increased with the increase of relative density, the average change rate was 11.1%, which indicated that the shear capacity was enhanced with the increase of soil relative density. JLU5-3 had the largest shear strength, while the shear strength of JLU5-2 was smallest. The cohesion ranged from 14.9 to 68.0 kPa, which was about 3 to 10 times higher than that of lunar soil simulant JSC-1A and TJ-1. The cohesion increased by 35.8% with the increase of relative density, the average change rate for different lunar soil simulant was 24.7% (JLU5-1), 22.8% (JLU5-2) and 37.5% (JLU5-3), respectively. When the relative density reached 0.9, the cohesion of JLU5-3 was larger than that of JLU5-1 and JLU5-2, and the difference between them increased apparently, which may due to the effect of interface energy and viscidity became more obvious with the decreasing of soil grain size. The internal friction angle ranged from 53.3o to 67.7o, which had no obvious variation trend with the increase of relative density. The internal friction angle of JLU5-2 was always smaller than that of the JLU5-1 and JLU5-3 under different soil relative density conditions. The internal friction angle of JLU5 under high compactness condition was apparently larger than other series lunar soil simulant regolith under natural condition. When penetration depth reached 40 mm in the tests, the cone index of 3 types high-density simulant lunar soil were 129.8 MPa (JLU5-1), 142.9 MPa (JLU5-2) and 175.2 MPa (JLU5-3), respectively. Cone index presented the fluctuations but generally increased with the increase of penetration depth, smaller grain size lead to the increasing of cone index under same testing condition, which was similar to variation trend of cohesion. The cone index of JLU5-3 increased by 13.4% on average compared with that of JLU5-2, and the cone index of JLU5-2 increased on average by 20.5% compared with that of JLU5-1. Cone index gradient was defined as the curve gradient of the cone index versus with penetration depth. When the relative density changed from 0.85 to 0.9 and 0.95 to 0.99, the cone index gradient obviously increased, while there was no significant increase for cone index gradient when relative density changed from 0.9 to 0.95. The average increasing ratio of cone index gradient was 50.6% with the increasing of relative density, greater than that of the cohesion, which indicated that cone index gradient was more sensitive to soil relative density. For different types of lunar soil simulant, JLU5-3 had larger shear strength, cohesion and cone index and cone index gradient than that of JLU5-1 and JLU5-2 under same testing conditions, which may due to JLU5-3 had smaller particle size. Numerical model for penetration characteristic test had been conducted by using discrete element method software (EDEM), simulation results showed that, the simulative value of cone index was always smaller than that of the testing value, however, their variation trend versus with the relative density was consistent. A linear relation model between simulative and testing value was established, the determination coefficient value of the proposed model was 0.87. The simulation method could provide technique method for cone index prediction of lunar soil simulant under high compactness condition. The results of this paper were expected to provide references for drilling sampling mission of lunar soil, optimization design of drilling mechanism, and establishment of mechanical interaction model between drilling component and lunar soil.

        soil mechanics; mechanical properties; shear strength; adhesion; internal friction angle; lunar soil stimulant

        2018-06-26

        2018-10-10

        國(guó)家自然科學(xué)基金資助項(xiàng)目(51375199);中國(guó)博士后科學(xué)基金面上資助項(xiàng)目(2018M641338)

        黃 晗,博士,主要從事地面機(jī)器系統(tǒng)及其仿生研究。Email:huanghan452012@163.com

        許述財(cái),博士,副研究員,主要從事汽車被動(dòng)安全性方面的研究。Email:xushc@tsinghua.edu.cn

        10.11975/j.issn.1002-6819.2019.01.004

        TU 411

        A

        1002-6819(2019)-01-0031-08

        黃 晗,吳寶廣,許述財(cái),鄒 猛,李建橋,張金換.高密實(shí)度模擬月壤力學(xué)特性試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):31-38. doi:10.11975/j.issn.1002-6819.2019.01.004 http://www.tcsae.org

        Huang Han, Wu Baoguang, Xu Shucai, Zou Meng, Li Jianqiao, Zhang Jinhuan.Test study on mechanical properties of lunar soil simulant under high compactness condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 31-38. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.004 http://www.tcsae.org

        猜你喜歡
        內(nèi)聚力月壤摩擦角
        月壤中有天然玻璃纖維?
        軍事文摘(2023年20期)2023-10-31 08:42:30
        應(yīng)用摩擦角,巧解動(dòng)力學(xué)問題
        驚喜!月壤成功種出植物
        CRTS Ⅱ型軌道板/CA 砂漿界面內(nèi)聚力模型研究
        超豪華月壤地球行
        自如呼吸靠月壤
        基于內(nèi)聚力模型的輪盤破裂轉(zhuǎn)速預(yù)測(cè)方法研究
        借助摩擦角 快解勻速運(yùn)動(dòng)問題
        大學(xué)英語(yǔ)教學(xué)中影響閱讀教學(xué)的因素淺析
        摩擦角在平衡問題中的應(yīng)用
        亚洲精品女同在线观看| 中文国产日韩欧美二视频| 人人妻人人爽人人做夜欢视频九色| 视频国产精品| 加勒比久草免费在线观看| 亚洲精品乱码久久久久99| 国产激情视频在线观看首页| 亚洲成av人片在www鸭子| 国产办公室沙发系列高清| 亚洲美女影院| 日韩精品夜色二区91久久久| 亚洲一区二区日韩专区| 狠狠色婷婷久久综合频道日韩| 色婷婷七月| 久久伊人精品只有这里有 | 精品国产一区二区三区不卡在线| 免费看黄a级毛片| 欧美成人久久久| 久久熟女精品—区二区蜜臀| av在线免费观看蜜桃| 国产三级av在线播放| 日本免费人成视频播放| 98精品国产高清在线xxxx| 男女上床免费视频网站| 成人在线免费电影| 99久久久无码国产精品免费砚床| 国产无遮挡又黄又爽无VIP| 99久久国产精品免费热| 亚洲a∨国产av综合av下载| 日本成人久久| 澳门精品一区二区三区| 天天做天天爱夜夜爽毛片毛片 | 秋霞在线视频| 任你躁国产自任一区二区三区| 久久精品国产亚洲AⅤ无码| 久久丁香花综合狼人| 成人激情视频在线手机观看| 久久精品亚洲一区二区三区浴池| 伊人久久大香线蕉免费视频| 亚洲免费av第一区第二区| 久久精品丝袜高跟鞋|