張鵬飛 張道榮 凌冬 劉先斌 周芳菊 湯清益 孫華衛(wèi) 唐清
摘要:雄蕊心皮化、雄蕊受損和花粉發(fā)育異常等多種因素都可以導(dǎo)致植物雄性不育,形成敗育的花粉粒。綜述了在雄性不育中植物花粉敗育與呼吸作用、膜脂過氧化、物質(zhì)代謝和小RNA等的關(guān)系。
關(guān)鍵詞:花粉敗育;呼吸作用;膜脂過氧化;物質(zhì)代謝;小RNA
中圖分類號:S5-3? ? ? ? ?文獻(xiàn)標(biāo)識碼:A
文章編號:0439-8114(2019)23-0010-06
DOI:10.14088/j.cnki.issn0439-8114.2019.23.002? ? ? ? ? ?開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Research progress of plant pollen abortion
ZHANG Peng-fei,ZHANG Dao-rong,LING Dong,LIU Xian-bin,ZHOU Fang-ju,
TANG Qing-yi,SUN Hua-wei,TANG Qing
(Xiangyang Academy of Agricultural Sciences,Xiangyang 441057,Hubei,China)
Abstract: Many factors, such as pistillody of stamens, damage of stamens and abnormal pollen development, can lead to male sterility in plants and the formation of abortive pollen grains. The relationship between pollen abortion and respiration, membrane lipid peroxidation, material metabolism and sRNA in male sterile plants was reviewed.
Key words: pollen abortion; respiration; membrane lipid peroxidation; material metabolism; sRNA
在對玉米、水稻、小麥和油菜的研究中都有雄性不育的報道[1-4]。雄蕊心皮化、雄蕊受損和花粉發(fā)育異常等多種因素都可以導(dǎo)致植物雄性不育,形成敗育的花粉粒[5]。目前,基于大量的研究發(fā)現(xiàn),導(dǎo)致花粉敗育主要與線粒體的呼吸作用異常、膜脂過氧化、物質(zhì)代謝紊亂和小RNA功能異常等有著密切的關(guān)聯(lián)。
1? 植物花粉敗育與呼吸作用的關(guān)系
在雄性不育系中,與呼吸過程有關(guān)的酶類活性普遍低于保持系,表明雄性不育系中花藥的呼吸作用受到了抑制,使得能量平衡被打破,這是不育系的一個非常重要的特征[6]。周培疆等[7]在研究細(xì)胞質(zhì)雄性不育系的花藥發(fā)育過程中發(fā)現(xiàn),與呼吸作用有關(guān)的酶(包括參與三羧酸循環(huán)的多種酶)的活性均低于可育系。在小孢子發(fā)育不同時期均觀察到結(jié)構(gòu)異常的線粒體,并且不育系的花粉中線粒體數(shù)量明顯減少,內(nèi)含物異常,不能行使正常代謝功能,最終導(dǎo)致花粉敗育。線粒體是呼吸過程中至關(guān)重要的細(xì)胞器,為植物提供必要的生長、發(fā)育和繁殖所需要的能量。在大部分植物中線粒體是半自主的細(xì)胞器,攜帶著一定的遺傳信息,且不同的物種間差異較大,植物的線粒體基因組在66~11.3 kb,不同種屬間基因的排列順序變化很大[8]。在植物線粒體基因組中含有許多同向和反向重復(fù)序列,在核基因的調(diào)控作用下,這些重復(fù)序列可以實現(xiàn)分子內(nèi)和分子間的重組,產(chǎn)生大小不同的線粒體DNA,同時還存在高度可變的RNA編輯過程。線粒體基因組這些重復(fù)序列間的重組形成的異常嵌合基因和錯誤的RNA編輯可能是引起植物細(xì)胞質(zhì)雄性不育的主要原因之一[9]。如芥菜雄性不育系hau CMS線粒體中的重復(fù)序列是其保持系的兩倍,并且與雄性不育相關(guān)的基因orf288下游的3個大重復(fù)序列與該重復(fù)序列有關(guān)[10]。線粒體中缺少正確的RNA編輯會抑制DNA的轉(zhuǎn)錄過程,最終導(dǎo)致植物或細(xì)胞的死亡。轉(zhuǎn)錄后RNA編輯是線粒體基因調(diào)控非常普遍且重要的方式[11]。通常開花植物中線粒體基因轉(zhuǎn)錄后RNA編輯是將編碼區(qū)中特定的胞嘧啶殘基轉(zhuǎn)化為尿嘧啶(C-U)[12]。在細(xì)胞質(zhì)雄性不育系中,育性恢復(fù)基因RF調(diào)節(jié)特異的RNA轉(zhuǎn)錄后編輯,通過切割或降解導(dǎo)致細(xì)胞質(zhì)雄性不育的相關(guān)產(chǎn)物來恢復(fù)育性[13]。
2 植物花粉敗育與膜脂過氧化的關(guān)系
水稻中較高濃度H2O2的積累與膜脂過氧化的加劇是雄性不育的重要原因之一[14]。水稻不育系中SOD、POD、CAT等的活性低于保持系,這使得不育系小孢子中高濃度的H2O2無法及時清除[15]。在花椰菜雄性不育系的研究中發(fā)現(xiàn)活性氧清除酶的活性比保持系高,這可能是不育系通過清除體內(nèi)過量的活性氧的一種自我保護(hù)反應(yīng)[16]。2013年有研究發(fā)現(xiàn)在水稻中成功克隆的野敗型細(xì)胞質(zhì)雄性不育基因 WA352是一個組成型表達(dá)的基因。WA352特異積累在花粉母細(xì)胞期的絨氈層與核基因編碼且定位于線粒體的蛋白COX11進(jìn)行互作。COX11具有消除活性氧的功能,可以抑制細(xì)胞程序性死亡。WA352與COX11互作干擾了活性氧的正常清除,絨氈層線粒體中積累了過量活性氧,同時誘導(dǎo)細(xì)胞程序化死亡(PCD)的細(xì)胞色素c釋放到細(xì)胞漿,絨氈層提前啟動PCD過程,這種與小孢子發(fā)育不同步的絨氈層異常降解可能是導(dǎo)致花粉敗育的主要原因之一[17]。異常的絨氈層PCD過程,使得過氧化物酶的活性發(fā)生了異常,產(chǎn)生大量的H2O2無法及時正常清除,從而對蛋白質(zhì)的合成起到了抑制作用。此時正值小孢子內(nèi)生化反應(yīng)最活躍,是核進(jìn)行有絲分裂的時期,蛋白質(zhì)的缺失最終致使核發(fā)育畸形,最終導(dǎo)致花粉敗育[18]。
3 植物花粉敗育與物質(zhì)代謝的關(guān)系
高等植物的小孢子沉浸在充滿來自體細(xì)胞絨氈層的糖類和脂類的花粉囊中,花藥發(fā)育早期大量的糖類被運輸?shù)交ㄋ幹泄┢浒l(fā)育[19]。絨氈層細(xì)胞適時進(jìn)入PCD過程,向花粉囊釋放大量糖類、脂類和蛋白等營養(yǎng)和結(jié)構(gòu)物質(zhì),以保證小孢子正常發(fā)育及成功授粉[20]。絨氈層作為物質(zhì)運輸和轉(zhuǎn)運的中轉(zhuǎn)站,對流入藥室中的各種物質(zhì)進(jìn)行篩選,在絨氈層內(nèi)部的酶系統(tǒng)可以將脂滴轉(zhuǎn)化為糖類物質(zhì),也可以將糖類物質(zhì)轉(zhuǎn)化為脂滴,亦可以將多糖轉(zhuǎn)化成單糖,這些重要的物質(zhì)最終都運輸給小孢子供其正常發(fā)育[21]。在花粉發(fā)育后期,花粉內(nèi)會積累大量的淀粉,這為花粉的萌發(fā)儲存能量,并且這也是花粉成熟的標(biāo)志。因此,高等植物絨氈層細(xì)胞是否能夠正常向花粉囊中釋放糖類、脂類和蛋白質(zhì)等,直接決定著花藥內(nèi)營養(yǎng)物質(zhì)的積累、分配與花粉的育性。
3.1? 多糖積累與小孢子育性的關(guān)系
植物花藥發(fā)育是一個以花粉為庫的營養(yǎng)物質(zhì)運輸和轉(zhuǎn)化的過程,最終在成熟花粉中積累大量的營養(yǎng)物質(zhì)供其萌發(fā)時利用。在小麥花粉發(fā)育的早期,干旱脅迫導(dǎo)致花藥中可溶性糖和蔗糖含量異常積累,最終導(dǎo)致花粉敗育,推測蔗糖的水解過程受到抑制影響了花粉的育性[22]。細(xì)胞壁轉(zhuǎn)化酶調(diào)節(jié)蔗糖的卸載,液泡轉(zhuǎn)化酶調(diào)節(jié)碳水化合物的代謝過程[23]。在花藥中干擾糖類的卸載和代謝能夠抑制花粉的發(fā)育并引起雄性不育。在小麥水分脅迫引起的雄性不育系中,花藥中高度表達(dá)的細(xì)胞壁轉(zhuǎn)化酶基因IVR1和液泡轉(zhuǎn)化酶基因IVR5都下調(diào)表達(dá),這兩個關(guān)鍵酶的功能缺失影響糖類的轉(zhuǎn)運和代謝過程,可能是導(dǎo)致花粉敗育的主要原因[24]。在水稻類似的研究中發(fā)現(xiàn),特異性的在花藥中表達(dá)的基因OSINV4,在冷脅迫下表達(dá)水平降低,該基因表達(dá)下調(diào)可能導(dǎo)致花粉粒中己糖產(chǎn)生和淀粉形成積累受到一定影響,最終導(dǎo)致花粉敗育。耐寒品種中,OSINV4的表達(dá)不會因寒冷而降低,蔗糖不會在花藥中積累,花粉粒中的淀粉形成也不受影響[25]。油菜中,通過反義抑制花藥中特異表達(dá)的細(xì)胞壁轉(zhuǎn)化酶基因Bncw INV2,導(dǎo)致花粉發(fā)育過程受到阻斷、花粉敗育[26]。在生理性雄性不育的研究中發(fā)現(xiàn),可育1376自二核期開始,營養(yǎng)細(xì)胞中積累大量的淀粉顆粒,隨著二核花粉中大液泡的消失和內(nèi)容物的增加,至三核期花粉粒中充實著大量的淀粉顆粒,為花粉萌發(fā)儲存能量。而(S)-1376提前降解的絨氈層過早地釋放營養(yǎng)物質(zhì),致使在二核期以后,花粉不溶性多糖積累有限,最終致使花粉敗育[27]。
3.2? 脂類的積累與小孢子育性的關(guān)系
脂類物質(zhì)的合成一般有兩種形式:一種是在質(zhì)體中從頭合成;另一種是內(nèi)質(zhì)網(wǎng)中脂肪酸的修飾,如不飽和化、羥基化、脂肪酸鏈的延長等[28]。在質(zhì)體和脂質(zhì)體中適當(dāng)?shù)闹惙e累和花粉壁的正常形成呈正相關(guān),參與脂肪代謝的基因突變會導(dǎo)致絨氈層形態(tài)異常和花粉外壁形成缺失[29]。不育系的四分體時期花粉母細(xì)胞分布較少的脂質(zhì)顆粒,可能由于提前降解的絨氈層不能釋放油脂和質(zhì)體類物質(zhì),最終導(dǎo)致花粉敗育[30]。絨氈層降解釋放的大量孢粉素運至花粉母細(xì)胞外壁,形成形態(tài)規(guī)則、結(jié)構(gòu)完整的球狀花粉壁。小孢子外壁主要是由脂肪酸代謝物和酚醛酸高度聚合形成的孢粉素構(gòu)成的[31]。在白菜核不育兩用系中,小孢子時期的可育花藥中絨氈層細(xì)胞將植物體內(nèi)轉(zhuǎn)運到花藥中的多糖類物質(zhì)轉(zhuǎn)化為脂類物質(zhì)供花粉吸收[32]。在水稻dpw突變體中,絨氈層和小孢子中無法特異性地形成正常功能的DPW蛋白,致使脂肪酸代謝發(fā)生紊亂,不能形成功能性的脂肪醇,花粉粒退化,花粉外壁不規(guī)則,花藥發(fā)育異常[33]。
3.3? 蛋白質(zhì)的積累與小孢子育性的關(guān)系
小孢子的整個發(fā)育過程具有一定的時序性,如果這種時序性被打斷或擾亂就可能導(dǎo)致雄性不育[34]。蛋白質(zhì)組學(xué)研究認(rèn)為,細(xì)胞質(zhì)雄性不育以及細(xì)胞核雄性不育中,植物雄性不育與某些重要的蛋白質(zhì)的表達(dá)量的上調(diào)、下降、甚至缺失不表達(dá),或者某些蛋白質(zhì)的新增表達(dá)有關(guān),這些重要的蛋白質(zhì)分別參與了生物體內(nèi)雄配子發(fā)育過程中各種物質(zhì)代謝、DNA轉(zhuǎn)錄、信號轉(zhuǎn)導(dǎo)、蛋白質(zhì)合成、淀粉合成、細(xì)胞凋亡等重要生理過程[35]。趙海燕等[36]在棉花小孢子敗育的研究中發(fā)現(xiàn),在棉花不育系異常降解的絨氈層使得過氧化物酶的活性發(fā)生了紊亂。王澤立等[37]在玉米CMS-S恢復(fù)基因的研究中發(fā)現(xiàn),雙向電泳中某些特異性關(guān)鍵的蛋白質(zhì)點的出現(xiàn)與消失,可能與玉米S型雄性不育的育性恢復(fù)有一定關(guān)系。在細(xì)胞質(zhì)雄性不育的花藥發(fā)育過程中,不育系的營養(yǎng)物質(zhì)和重要的蛋白酶類物質(zhì)隨著花藥敗育過程的進(jìn)行,其分解代謝逐漸增強(qiáng)而使得代謝紊亂,影響花粉的育性[38]。
花粉發(fā)育是一個復(fù)雜的過程,是多種代謝途徑、信號通路等協(xié)調(diào)進(jìn)行的,在這個過程中,細(xì)胞間的信號傳導(dǎo)也起著非常重要的作用。許多轉(zhuǎn)錄因子,如在絨氈層和小孢子中特異表達(dá)的MYB80使得絨氈層異常降解而不能正常給小孢子提供營養(yǎng)物質(zhì)導(dǎo)致雄性不育[39]。DEFECTIVE POLLEN WALL(DPW)是一個核基因編碼脂肪代謝的脂酰還原酶,該基因主要在絨氈層和小孢子中特異表達(dá),并且其編碼的酶通過N端的一段信號肽定位在質(zhì)體中,與其時空表達(dá)模式類似的基因CYP704B2的表達(dá)產(chǎn)物可能被定位在內(nèi)質(zhì)網(wǎng)上,主要功能是催化C16和C18脂肪酸的羥基化,其突變體dpw表現(xiàn)花粉外壁缺陷,導(dǎo)致小孢子敗育[40]。大量的試驗表明,絨氈層在小孢子正常發(fā)育過程中起著非常重要的作用。擬南芥中AtMYB103是絨氈層發(fā)生和形成正常小孢子所必須的基因,其突變體myb103絨氈層細(xì)胞提前降解,不能釋放油脂和質(zhì)體類物質(zhì)。在AtMYB103的3′端融合了一個編碼12個氨基酸一小段DNA,抑制AtMYB103的表達(dá),將其轉(zhuǎn)入擬南芥中,使得絨氈層提前降解,不能釋放油脂和質(zhì)體類物質(zhì),從而得到大部分植株為完全雄性不育系[41]。
水稻csa突變體中,花藥絨氈層細(xì)胞在花藥發(fā)育的后期降低了碳水化合物的水平,且引起雄性不育的同時下調(diào)編碼單糖轉(zhuǎn)運體基因MST8的表達(dá)[42]。花藥中特異表達(dá)的TAZ1基因功能的喪失會引起矮牽牛絨氈層提前降解,并最終導(dǎo)致小孢子的提前退化敗育[43]。絨氈層細(xì)胞的適時解體,可為小孢子的發(fā)育提供營養(yǎng)核結(jié)構(gòu)物質(zhì)以及發(fā)育所需要的空間,在花粉發(fā)育的整個過程中,為營養(yǎng)物質(zhì)、結(jié)構(gòu)物質(zhì)的運輸和轉(zhuǎn)化,信號的正常傳遞等起關(guān)鍵性的作用。
4? 植物花粉敗育與小RNA的關(guān)系
最近幾年非編碼RNA(nc RNAs)參與植物雄性不育被逐漸證明[44]。有研究表明,不同的作物可育系和不育系中miRNAs的表達(dá)是不同的,這些證據(jù)證明雄性不育系的形成與miRNAs異常有關(guān)[45]。深度測序和生物信息學(xué)的發(fā)展為深入研究nc RNAs參與植物雄性不育提供了更好更嚴(yán)謹(jǐn)?shù)募夹g(shù)手段[46]。
4.1? sRNA參與植物雄性不育
有研究表明,在擬南芥、番茄和蘆筍中miR167家族參與生長素應(yīng)答來調(diào)控雄性不育[47-49]。在擬南芥中過表達(dá)miR167導(dǎo)致雄性不育[50]。在白菜中一個編碼PPR蛋白的基因bra027656,是miR158的靶基因。在過表達(dá)bra-miR158的轉(zhuǎn)基因品系中,編碼PPR蛋白的基因表達(dá)受到抑制,引起花粉代謝和花粉內(nèi)壁發(fā)育缺陷,導(dǎo)致花粉萌發(fā)和花粉活力顯著下降[51]。類似,有實驗室在大豆中鑒定了包括gma-miR156、gma-miR160等一系列的miRNAs,這些miRNAs都抑制PPR蛋白的形成[52]。在擬南芥中過表達(dá)miR159能夠延遲開花,miR159通過調(diào)節(jié)編碼MYB轉(zhuǎn)錄因子的基因與花藥發(fā)育有著非常廣泛的關(guān)聯(lián)。如,擬南芥中來自MYB轉(zhuǎn)錄因子家族的MYB103對花粉外壁的形成起著非常重要的作用,過表達(dá)miR159導(dǎo)致MYB103合成受到抑制,并且導(dǎo)致絨氈層提前降解,導(dǎo)致花粉敗育[53]。在蘿卜的不育系和保持系中,miR159的表達(dá)差異非常顯著,試驗中miR159轉(zhuǎn)錄本水平的升高降低了MYB101的表達(dá),從而抑制了蘿卜花藥絨氈層的發(fā)育和外壁的形成[46]。在玉米中zma-miR601靶向調(diào)控與花形態(tài)建成和花粉發(fā)育有關(guān)的MADs-box轉(zhuǎn)錄因子家族的基因,還可能參與調(diào)控含黃素單氧化酶(FMO)和乙酰輔酶A水合酶(ECH)的基因,ECH在絨氈層脂肪酸代謝中必不可少。在細(xì)胞質(zhì)雄性不育系的花藥中上調(diào)miR601的表達(dá)量后導(dǎo)致ECH的表達(dá)水平降低,擾亂了脂肪酸代謝,導(dǎo)致絨氈層中能量不足,最終導(dǎo)致絨氈層細(xì)胞異常[54]。在芥菜生殖發(fā)育過程中,細(xì)胞質(zhì)雄性不育系中ATP硫?;?(APS1)的表達(dá)明顯高于雄性可育系。與此同時,miR395的表達(dá)降低。進(jìn)一步分析證實,在芥菜不育系中,APS1表達(dá)與miR395轉(zhuǎn)錄水平呈負(fù)相關(guān)[55]。
4.2? lncRNAs參與植物雄性不育
在植物和動物的轉(zhuǎn)錄本中,有很大一部分包括200 nt長的未翻譯RNA轉(zhuǎn)錄本,通常稱為長非編碼RNA(Long non-coding RNAs,lnc RNAs)。這些lnc RNAs分子具有多種生物學(xué)功能[56]。迄今為止,大多數(shù)lnc RNA研究都是在動物(包括人類)上進(jìn)行的,而對植物的研究則較少。最初在植物中報道的一些具有生物學(xué)意義的lnc RNA,包括大豆[57]和蒺藜苜蓿(Medicago truncatula)[58]中的GmENOD40和MtENOD40,并且已知它們調(diào)節(jié)結(jié)節(jié)的器官發(fā)生。也有報道表明植物開花和雄性不育也與lnc RNAs有關(guān)[59]。
有大量的研究表明lnc RNAs在雄配子體發(fā)育過程中上調(diào)表達(dá)。如,玉米lnc RNA(zm401)在雄性配子體發(fā)育和成熟花粉粒中表達(dá)非常豐富[60]。進(jìn)一步研究證實,該表達(dá)模式對玉米雄性生殖發(fā)育具有特異性。并且推斷zm401在調(diào)控花粉發(fā)育特異性基因MZm3-3、ZmMADS2和ZmC5的表達(dá)中起重要作用,zm401突變體絨氈層和小孢子發(fā)育異常,最終產(chǎn)生不育花粉[61]。在大白菜中克隆了一個具有花粉特異性表達(dá)的nc RNA(828 bp),標(biāo)記為Brassica campestris Male Fertility 11(BcMF11)。通過反義RNA技術(shù)抑制BcMF11的活性,導(dǎo)致絨氈層解體異常、小孢子無細(xì)胞質(zhì)等,最終導(dǎo)致小孢子敗育[62]。
植物中基于lnc RNA調(diào)控基因表達(dá)的方式有以下幾種:與RNA結(jié)合蛋白(nuclear speckle RNA-binding protein NSR)的相互作用調(diào)節(jié)可變性剪接;通過染色質(zhì)重塑進(jìn)行轉(zhuǎn)錄調(diào)控和mRNA的翻譯水平調(diào)控;靶目標(biāo)模仿機(jī)制;通過直接與目標(biāo)RNA結(jié)合,形成雙鏈lnc RNA-RNA,掩蔽剪接位點和信號[63-65]。
與miRNA相似,真核生物中的大多數(shù)lnc RNAs都是由RNA pol Ⅱ轉(zhuǎn)錄的。植物中也有研究報道RNA pol Ⅳ和RNA pol Ⅴ也可以轉(zhuǎn)錄lnc RNAs,該類lncRNAs特異性地參與RNA介導(dǎo)的DNA甲基化過程[66]。在水稻中,LDMAR(Long-day-specific Male-fertility associated RNA)是長度為1 236 nt的lnc RNA,研究表明其參與調(diào)控水稻生殖發(fā)育,在長日照條件下,LDMAR的表達(dá)維持水稻花粉正常發(fā)育[67]。但是單堿基的突變改變LDMAR的二級結(jié)構(gòu),導(dǎo)致LDMAR的啟動子區(qū)域的甲基化程度升高,LDMAR的表達(dá)量下降,花粉程序化死亡,最終導(dǎo)致光敏不育[68]。
5? 展望
本文綜述了呼吸作用、膜脂過氧化、物質(zhì)代謝和nc RNAs與植物花粉敗育間的關(guān)系,對這些領(lǐng)域深入的研究將為作物育種和雜種優(yōu)勢利用提供更廣闊的視野。呼吸作用和膜脂過氧化與植物雄性不育間的關(guān)系一直是熱門的研究領(lǐng)域,最近幾年越來越多的實驗室開始關(guān)注絨氈層和nc RNA分子與雄性不育之間的聯(lián)系。nc RNA對雄性不育的貢獻(xiàn)仍有待發(fā)掘,破譯nc RNA的工作機(jī)制將有助于更好地理解細(xì)胞質(zhì)基因組與細(xì)胞核基因組之間的相互作用而導(dǎo)致的花粉不育。近年來,水稻中nc RNA與TGMS、PGMS的相關(guān)性研究為今后的研究提供了廣闊的空間。同時,植物線粒體基因組中存在的nc RNA提供了基礎(chǔ)去證明nc RNA與雄性不育間的聯(lián)系。
參考文獻(xiàn):
[1] BOSACCHI M,GURDON C,MALIGA P. Plastid genotyping reveals the uniformity of cytoplasmic male sterile-T maize cytoplasms[J].Plant physiol,2015,169:2129-2137.
[2] HUANG J Z,ZHANG H L,SHU Q Y,et al. Workable male sterility systems for hybrid rice:Genetics,biochemistry,molecular biology, and utilization[J].Rice (NY),2014,7:13.
[3] CASTILLO A,ATIENZA S G,MART?魱N A C. Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome[J].J Exp Bot,2014,65:6667-6677.
[4] YAMAGISHI H,BHAT S R. Cytoplasmic male sterility in Brassicaceae crops[J].Breed Sci,2014,64:38-47.
[5] CHASE C D,GABAY-LAUGHNAN S. Cytoplasmic male sterility and fertility restoration by nuclear genes[M].New York:Molecular biology and biotechnology of plant organelles,2004,593-622.
[6] ZHANG M Y,XU S X. Identification of a rice cDNA encoding the acyl-CoA-binding protein(ACBP)[J].Acta phytophysiologica sinica,1999,25(4):327-331.
[7] 周培疆,凌杏元,張端陽,等.植物細(xì)胞質(zhì)雄性不育的能量代謝及其分子機(jī)制[J].植物生理學(xué)通訊,1999,35(6):491-500.
[8] CHEN Z,ZHAO N,LI S,et al. Plant mitochondrial genome evolution and cytoplasmic male sterility[J].Crit Rev Plant Sci,2017,36:55-69.
[9] TAKENAKA M,VERBITSKIY D,MERWE J,et al. The process of RNA editing in plant mitochondria[J].Mitochondrion,2008,8:35-46.
[10] HENG S,WEI C,JING B,et al. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288[J].BMC Genomics,2014,15:322.
[11] GREWE F,EDGER P,KEREN I,et al. Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea[J].Mitochondrion 19,2014,Part B:135-143.
[12] SZKLARCZYK M,SZYMANSKI M,SIMON W,et al. Mitochondrial atp9 genes from petaloid male-sterile and male-fertile carrots differ in their status of heteroplasmy,recombination involvement, post-transcriptional processing as well as accumulation of RNA and protein product[J].Theor Appl Genet,2014, 127:1689-1701.
[13] YAN J,ZHANG H,ZHENG Y,et al. Comparative expression profiling of miRNAs between the cytoplasmic male sterile line Meixiang A and its maintainer line Meixiang B during rice anther development[J].Planta,2015,241:109-123.
[14] 陳賢豐,梁承鄴.水稻不育花約中H2O2積累與膜質(zhì)過氧化加劇[J].植物生理學(xué)報,1991,17(1):44-48.
[15] 李美茹,劉鴻生,王以柔.氧化脅迫對水稻幼苗抗冷能力的影響[J].熱帶亞熱帶植物學(xué)報,1999,7(4):323-328.
[16] 王春國,陳小強(qiáng),李? 慧,等.花椰菜細(xì)胞質(zhì)雄性不育系及保持系中特異序列的克隆、分析[J].分子細(xì)胞生物學(xué)報,2008,41(1):19-27.
[17] LUO D P,XU H,LIU Z L,et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice[J].Nature genetics,2013,45:573-577.
[18] 陳蕊紅,葉景秀,張改生,等.小麥質(zhì)核互作型雄性不育系及其保持系花藥差異蛋白質(zhì)組學(xué)分析[J].生物化學(xué)與生物物理進(jìn)展,2009,36(4):431-440.
[19] PACINI E,GUARNIERI M,NEPI M. Pollen carbohydrates and water content during development,presentation,and dispersal:A short review[J].Protoplasma,2006,23(228):73-77.
[20] MORANT M,JORGENSEN K,SCHALLER H,et al. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen[J].The plant cell,2007, 19(5):3398-3403.
[21] ZHANG H,LIANG W Q,YANG X,et al. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development[J].The plant cell,2010,22(3):672-689.
[22] DORION S,LALONDE S,SAINI H S. Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers[J].Plant physiology,1996,111(1):137-145.
[23] INVERTASES S A.Primary structures, functions,and roles in plant development and ucrose partitioning[J].Plant physiology,1999,121(1):1-8.
[24] KOONJUL P,MINHAS J,NUNES C,et al. Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat[J].Journal of experimental botany,2005,56(409):179-190.
[25] OLIVER S N,VAN DONGEN J T,ALFRED S C,et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility[J].Plant,cell & environment,2005,28(12):1534-1551.
[26] ENGELKE T,HIRSCHE J,ROITSCH T. Metabolically engineered male sterility in rapeseed (Brassica napus L.)[J].Theoretical and applied genetics,2011,122(1):163-174.
[27] 張鵬飛,宋瑜龍,張改生,等.小麥雄性不育系絨氈層異常代謝與小孢子敗育的關(guān)系[J].中國農(nóng)業(yè)科學(xué),2014,47(9):1670-1680.
[28] SAMUELS L,KUNST L. Sealing plant surfaces:Cuticular wax formation by epidermal cells[J].Annual review of plant biology,2008,59:683-707.
[29] AYA K,UEGUCHI-TANAKA M,KONDO M,et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J].The plant cell,2009,21(5):1453-1472.
[30] WANG A,XIA Q,XIE W,et al. Male gametophyte development in bread wheat (Triticum aestivum L.):Molecular,cellular,and biochemical analyses of a sporophytic contribution to pollen wall ontogeny[J].The plant journal,2002,30(6):613-623.
[31] EDLUND A F,SWANSON R,DAPHNE P. Pollen and stigma structure and function:The role of diversity in pollination[J].The plant cell,2004,16(S1):84-97.
[32] XIE C T,YANG Y H,QIU Y L,et al. Cytochemical investigation of genic male-sterility in Chinese cabbage[J].Sex plant repord,2005,18(2):75-80.
[33] SHI J,TAN H X,YU X H,et al. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier proteinreductase[J].Plant cell,2011,23(6):2225-2246.
[34] SANG Y L,XU M,MA F F,et al. Comparative proteomic analysis reveals similar and distinct features of proteins in dry and wet stigmas[J].Proteomics,2012,12(12):1983-1998.
[35] 林文娟,彭少丹,艾麗君,等.植物雄性不育的蛋白質(zhì)組學(xué)研究進(jìn)展[J].中國農(nóng)學(xué)通報,2013,29(33):277-280.
[36] 趙海燕,黃晉玲.棉花雄性不育材料亞棉A的小孢子敗育研究[J].中國農(nóng)業(yè)科學(xué),2012,45(20):4130-4140.
[37] 王澤立,楊? 會,祝靜靜,等.玉米CMS-S恢復(fù)基因Rf3近等基因系的蛋白質(zhì)分析[J].中國農(nóng)業(yè)科學(xué),2007,40(5):1050-1055.
[38] 王淑華,魏毓棠,馮? 輝.大白菜雄性不育株與可育株花蕾生理生化特性比較分析[J].沈陽農(nóng)業(yè)大學(xué)學(xué)報,1998,18(3):361-365.
[39] PHAN H,PARISH R. MYB80,a regulator of tapetal and pollen development is functionally conserved in crops[J].Plant molecular biology,2012,78(1-2):171-183.
[40] PAXSON-SOWDERS D M,DODRILL C H,OWEN H A,et al. DEX1,a novel plant protein,is required for exine pattern formation during pollen development in Arabidopsis[J].Plant physiology,2001,127(4):1739-1749.
[41] LI S F,IACUONE S,PARISH R W. Suppression and restoration of male fertifility using a transcription factor[J].Plant biotechnology journal,2007,5(2):297-312.
[42] 林賢杰,王峙嶠.擬南芥MYB56基因與水稻CSA基因種子性狀方面的進(jìn)化同源性研究[J].上海交通大學(xué)學(xué)報,2012,35:1-20.
[43] SANJAY K,AKIRA K,HIROSHI T. Silencing of the tapetumspecific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia[J].The plant cell,2002,14(10):2353-2367.
[44] YANG X,ZHAO Y,XIE D,et al. Identification and functional analysis of micro-RNAs involved in the anther development in cotton genic male sterile line Yu98-8A[J].Int J Mol Sci,2016, 17:E1677.
[45] OMIDVAR V,MOHORIANU I,DALMAY T,et al. Identification of miRNAs with potential roles in regulation of anther development and male sterility in 7B-1 male sterile tomato mutant[J].BMC Genom,2015,28:878.
[46] ZHANG W,XIE Y,XU L,et al. Identification of microRNAs and their target genes explores miRNA mediated regulatory network of cytoplasmic male sterility occurenc during anther development in radish(Raphanus sativus L.)[J].Front Plant Sci,2016,7:1054.
[47] WU M F,TIAN Q,REED J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression,and regulates both female and male reproduction[J].Development,2006,133:4211-4218.
[48] LIU N,WU S,JASON V H,et al. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato[J].J Exp Bot,2014,65:2507-2520.
[49] CHEN J,ZHENG Y,QIN L,et al. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis[J]. BMC Plant Biol,2016,16:80.
[50] SIEBER P,WELLMER F,GHEYSELINCK J,et al. Redundancy and specialization among plant microRNAs:Role of the MIR164 family in developmental robustness[J].Development,2007,134:1051-1060.
[51] MA Z,JIANG J,HU Z,et al. Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. Chinensis[J].Plant Mol Biol,2017,93:313-326.
[52] DING X,LI J,ZHANG H,et al. Identification of miRNAs and their targets by high throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean[J].BMC Genom,2016,17:24.
[53] ZHANG Z B,ZHU J,GAO J F,et al. Transcription factor AtMYB103 is required for anther development by regulating tapetum development,callose dissolution and exine formation in Arabidopsis[J].Plant J,2007,52(3):528-538.
[54] SHEN Y,ZHANG Z,LIN H,et al. Cytoplasmic male sterility-regulated novel microRNAs from maize[J].Funct Integr Genom,2011,11:179-191.
[55] YANG J,LIU X,XU B,et al. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea[J].BMC Genom,2013,14:9.
[56] PONTING C P,OLIVER P L,Reik W. Evolution and functions of long non-coding RNAs[J].Cell,2009,136:629-641.
[57] YANG W C,KATINAKIS P,HENDRIKS P,et al. Characterization of GmENOD40,a gene showing novel patterns of cell-specific expression during soybean nodule development[J].Plant J,1993,3:573-585.
[58] CRESPI M D,JURKEVITCH E,POIRET M,et al. Enod40,a gene expressed during nodule organogenesis,codes for a non-translatable RNA involved in plant growth[J].EMBO J,1994,13:5099.
[59] LIU X,HAO L,LI D,et al. Long non-coding RNAs and their biological roles in plants[J].Genom proteom bioinform,2015,13:137-147.
[60] DAI X Y,YU J I,ZHAO Q,et al. Non-coding RNA for ZM401,a pollen-specific Gene of Zea mays[J].Acta Bot Sin,2004,46:497-504.
[61] MA J,YAN B,QU Y,et al. Zm401,a short-open reading-frame mRNA or noncoding RNA,is essential for tapetum and microspore development and can regulate the floret formation in maize[J].J Cell Biochem,2008,105:136-46.
[62] SONG J,CAO J,WANG C. BcMF11,a novel non-coding RNA gene from Brassica campestris,is required for pollen development and male fertility[J].Plant Cell Rep,2013,32:21-30.
[63] BARDOU F,ARIEL F,SIMPSON C G,et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis[J].Dev Cell,2014,30:166-176.
[64] JABNOUNE M,SECCO D,LECAMPION C,et al. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness[J].Plant cell,2013,25:4166-4182.
[65] BELTRAN M,PUIG I,PENA C,et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial mesenchymal transition[J].Genes Dev,2008, 22:756-769.
[66] ARIEL F,JEGU T,LATRASSE D,et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop[J].Molecular cell,2014,55(3):383-396.
[67] 牛旭龍,馮萬軍,馬金虎,等.植物長鏈非編碼RNA功能研究進(jìn)展[J].生物技術(shù)通報,2015,31(6):1-7.
[68] DING J,LU Q,OUYANG Y,et al. A long non-coding RNA regulates photoperiod-sensitive male sterility,an essential component of hybrid rice[J].Proc Natl Acad Sci USA,2012,109:2654-2659.