亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        電力行業(yè)水-能耦合關(guān)系研究綜述

        2018-12-28 10:03:56王春艷
        中國(guó)環(huán)境科學(xué) 2018年12期
        關(guān)鍵詞:水耗耗水量電力行業(yè)

        王春艷,田 磊,俞 敏,劉 毅*

        電力行業(yè)水-能耦合關(guān)系研究綜述

        王春艷1,田 磊2,俞 敏3,劉 毅1*

        (1.清華大學(xué)環(huán)境學(xué)院,北京 100084;2.國(guó)家發(fā)展和改革委員會(huì)能源所,北京 100038;3.國(guó)務(wù)院發(fā)展研究中心資源與環(huán)境政策研究所,北京 100010)

        電力行業(yè)消耗了全球約8%的水資源,電力生產(chǎn)與輸配過程中消耗的能源與水資源之間的相關(guān)關(guān)系被定義為電力行業(yè)水-能耦合關(guān)系.本文從電力行業(yè)水耗和節(jié)水潛力研究、電力生產(chǎn)與水資源空間分布匹配研究、電力行業(yè)水-能耦合關(guān)系與其他環(huán)境問題的關(guān)系研究三個(gè)角度對(duì)國(guó)際上相關(guān)文獻(xiàn)的研究?jī)?nèi)容、研究方法和主要結(jié)論進(jìn)行梳理.研究結(jié)果表明:冷卻技術(shù)選擇對(duì)電力行業(yè)的水-能耦合關(guān)系影響較大,電力生產(chǎn)的需水量與各地水資源稟賦在空間上不匹配,電力行業(yè)水-能耦合系統(tǒng)管理體系尚未建立且面臨迫切的實(shí)際需求.

        電力生產(chǎn);水-能耦合關(guān)系;水耗預(yù)測(cè);環(huán)境問題;綜合管理

        初級(jí)能源開采[1]、生物質(zhì)能種植[2-3]、能源加工[4-6]、能源使用[7]等能源部門的生產(chǎn)活動(dòng)需要大量的水資源投入.電力生產(chǎn)的需水量在能源部門中占比最高,約為25%~80%[4].火力發(fā)電的取水量可占全社會(huì)用水量的40%以上[8-10].近年來,能源部門,特別是電力部門水耗研究成為了研究熱點(diǎn).學(xué)者們將電力生產(chǎn)過程中能源與水資源的相關(guān)關(guān)系定義為“電力行業(yè)的水-能耦合關(guān)系(Water-Energy Nexus of the Electricity Sector)”.已有關(guān)于電力行業(yè)水-能耦合關(guān)系的綜述總結(jié)了特定區(qū)域電力行業(yè)的水耗估算方法、不同電力生產(chǎn)方式的水耗差異比較等,但尚未對(duì)電力生產(chǎn)與水資源空間分布不匹配、電力行業(yè)水-能-環(huán)境耦合關(guān)系等方面的研究進(jìn)展進(jìn)行總結(jié)和分析[4,11-14].因此,有必要進(jìn)一步梳理電力行業(yè)水-能耦合關(guān)系研究領(lǐng)域的重點(diǎn)和難點(diǎn),為后續(xù)研究提供基礎(chǔ).

        1 電力生產(chǎn)與水資源消耗關(guān)系研究

        在研究電力生產(chǎn)過程的水耗時(shí),學(xué)者們往往考慮以下幾個(gè)方面:①發(fā)電方式(如煤電、核電、太陽(yáng)能發(fā)電、風(fēng)電、水電、生物質(zhì)能發(fā)電等);②冷卻方式(如循環(huán)冷卻、直流冷卻、空冷、海水冷卻等);③水源(如地表水、地下水、海水等);④環(huán)境影響(如溫室氣體排放、大氣污染物排放、生態(tài)影響等).

        1.1 電力生產(chǎn)水耗現(xiàn)狀分析

        對(duì)電力生產(chǎn)水耗分析的相關(guān)文獻(xiàn)從估算方法、數(shù)據(jù)獲取方式、研究對(duì)象、水耗影響因素等幾個(gè)方面分別進(jìn)行歸類總結(jié).

        電力行業(yè)水-能耦合關(guān)系研究中常用的方法包括全生命周期評(píng)估方法(LCA)[15-16]、物質(zhì)流分析方法(MFA)[17-19]、投入產(chǎn)出分析方法(I-O)[5,15-16]、基于過程的分析方法(Process-based Analysis)[17-19].其中,基于過程的分析方法通常以鍋爐、冷卻塔、污染物處理設(shè)施等生產(chǎn)環(huán)節(jié)為基本單元,運(yùn)用MFA對(duì)電力生產(chǎn)中的水資源流和能源流進(jìn)行量化和匡算[17-19].此外,部分學(xué)者將上述方法加以混合使用,如IO-LCA方法[15-16].

        電力行業(yè)水-能耦合關(guān)系研究的數(shù)據(jù)主要來源于兩方面:LCA模型或者I-O模型中的水耗理論估計(jì)值、大量的電力企業(yè)一手調(diào)研數(shù)據(jù)[20].其中,通過調(diào)研獲取的水耗參數(shù)來源(如企業(yè)上報(bào)、理論估算等)不同,可能會(huì)導(dǎo)致數(shù)據(jù)質(zhì)量可信度較低[21].

        從研究對(duì)象來看,學(xué)者主要關(guān)注不同發(fā)電方式、不同冷卻方式的取水量和耗水量差異(表1).電力生產(chǎn)的取水量一般高于耗水量,直流冷的取水量甚至可高于耗水量100倍以上[22].以采用循環(huán)冷卻的煤炭發(fā)電為例,其取水量中約有80%-90%在蒸發(fā)過程中損失,20%-15%的水量轉(zhuǎn)移到了可銷售的固體副產(chǎn)品中,剩余5%在經(jīng)過廢水處理后外排,即耗水量約為取水量的95%[20].此外,已有研究多關(guān)注全生命周期階段和運(yùn)行階段的水耗.例如,中國(guó)風(fēng)力發(fā)電耗水量為0.6L/kWh,其中上游關(guān)聯(lián)產(chǎn)業(yè)的耗水量約占風(fēng)力發(fā)電耗水量的50%[15].需要注意的是,水力發(fā)電的水耗研究仍有一定的爭(zhēng)議.水力發(fā)電,特別是蓄洪式水電站,會(huì)使得水體表面蒸發(fā)量增大[23].但水電站除具有發(fā)電功能外,還有防洪、灌溉等多種功能,在計(jì)算水力發(fā)電水耗時(shí)如何將蒸發(fā)水耗分配到各個(gè)功能上尚缺乏統(tǒng)一認(rèn)識(shí)[24-25].

        表1 不同類型發(fā)電方式的取水量和耗水量比較(L/kWh)

        此外,學(xué)者們還對(duì)發(fā)電水耗的影響因素進(jìn)行了分析.除了能源品種、冷卻方式外,外界環(huán)境(如溫度、濕度等)也會(huì)影響發(fā)電水耗.例如,火力發(fā)電的夏季耗水量比年平均耗水量高15%以上,而冬季耗水量則低12%以上[20].生物質(zhì)能源作物的耕種方式對(duì)其水耗也有較為重要的影響[3].

        1.2 電力生產(chǎn)水耗預(yù)測(cè)

        電力是經(jīng)濟(jì)發(fā)展的基礎(chǔ).電力生產(chǎn)與水資源消耗之間關(guān)系密切,越來越多的學(xué)者開始關(guān)注電力生產(chǎn)水耗預(yù)測(cè)問題.已有研究通常以發(fā)電水耗參數(shù)估計(jì)和電力生產(chǎn)結(jié)構(gòu)及產(chǎn)量預(yù)測(cè)為基礎(chǔ),分析未來電力生產(chǎn)的水耗情況,預(yù)測(cè)的時(shí)間跨度(2030年、2050年、2095年等)和空間范圍(全球、美國(guó)、中國(guó)、歐洲等)均較大.表2對(duì)其中代表性文獻(xiàn)的研究方法、時(shí)空尺度以及主要目的和結(jié)論進(jìn)行了總結(jié).目前的研究從微觀企業(yè)的水耗數(shù)據(jù)估算到宏觀區(qū)域?qū)用娴哪茉瓷a(chǎn)、調(diào)配及水耗預(yù)測(cè)都有所涉及,并多以2030、2050年為節(jié)點(diǎn).研究?jī)?nèi)容上,已有研究主要分析電力生產(chǎn)結(jié)構(gòu)、水資源供給方式、冷卻技術(shù)選擇等的變化對(duì)區(qū)域(省級(jí)、流域、或電網(wǎng)等)電力行業(yè)水-能耦合關(guān)系的影響,以及電力生產(chǎn)與其他經(jīng)濟(jì)活動(dòng)之間的權(quán)衡關(guān)系.總結(jié)發(fā)現(xiàn),電力生產(chǎn)水耗預(yù)測(cè)方面的研究尚未建立統(tǒng)一的研究方法和框架.雖然研究方法不盡相同,但研究結(jié)果均表明冷卻技術(shù)選擇對(duì)電力系統(tǒng)的水耗影響較大,水耗和發(fā)電量之間存在一定的權(quán)衡關(guān)系.

        表2 電力預(yù)測(cè)及水耗研究進(jìn)展

        根據(jù)研究地區(qū)進(jìn)行分類,全球主要國(guó)家的相關(guān)研究結(jié)果如下:

        (1)中國(guó)

        學(xué)者們分析了電力結(jié)構(gòu)[8,53]、冷卻技術(shù)[8,53]等方面的變化對(duì)中國(guó)2030-2050年的電力生產(chǎn)水耗的影響,結(jié)果發(fā)現(xiàn)電力生產(chǎn)水耗將依然集中在北方和沿海地區(qū),能源效率提高、電力結(jié)構(gòu)調(diào)整和冷卻技術(shù)均有助于節(jié)水,其中冷卻技術(shù)的節(jié)水效果更顯著.Li等[15]還發(fā)現(xiàn)2020年中國(guó)風(fēng)電的推廣應(yīng)用可以帶來23%的碳強(qiáng)度減排,同時(shí)節(jié)約8億m3水資源,相當(dāng)于1120萬(wàn)家庭用水的需求.

        (2)美國(guó)

        學(xué)者們分別預(yù)測(cè)了美國(guó)2050年[27]和2095年[55]的電力生產(chǎn)的水耗,結(jié)果發(fā)現(xiàn)冷卻技術(shù)變化帶來的部分地區(qū)(如加州)電力系統(tǒng)取水量和耗水量之間的折中關(guān)系尤為突出[55].

        (3)英國(guó)

        學(xué)者們預(yù)估了2030和2050年英國(guó)電力生產(chǎn)的水耗變化情況[28,31,52],結(jié)果表明到2030年,電力生產(chǎn)水耗將有所降低,但到2050年,若將溫室氣體減排作為約束條件,電力生產(chǎn)水耗會(huì)由于高水耗的低碳技術(shù)的推廣應(yīng)用而增加[31].

        (4)歐洲

        Behrens等[51]分析了歐洲熱電生產(chǎn)與水資源之間的匹配關(guān)系,發(fā)現(xiàn)到2030年部分流域范圍內(nèi)的熱電企業(yè)會(huì)因?yàn)樗Y源量的減少而降低發(fā)電量.

        (5)全球及其他地區(qū)

        全球來看,通過提升能源生產(chǎn)技術(shù)的用水效率,特別是可再生能源的用水效率,能源系統(tǒng)水耗到2030年可以降低37%~66%(相對(duì)于2012年)[58].

        Parkinson等[59]以成本、水資源可持續(xù)性、和電力部門的CO2為約束,分析了沙特阿拉伯地區(qū)電力生產(chǎn)結(jié)構(gòu)(如燃?xì)獍l(fā)電、太陽(yáng)能發(fā)電、煤電等)、水資源供給結(jié)構(gòu)(地下水、海水淡化、廢水循環(huán)等)、冷卻方式等因素變化對(duì)水-能耦合關(guān)系的影響. Antipova等[56]對(duì)錫爾河流域的水力發(fā)電和農(nóng)業(yè)灌溉用水進(jìn)行優(yōu)化分析,尋求該地區(qū)水電電力供應(yīng)和灌溉水量之間的最佳平衡方式.

        1.3 電力生產(chǎn)中節(jié)水潛力分析

        學(xué)者們對(duì)電力生產(chǎn)的節(jié)水潛力進(jìn)行了量化分析,包括電力結(jié)構(gòu)的轉(zhuǎn)變帶來的節(jié)水效果[42,60]、電力系統(tǒng)節(jié)能措施帶來的協(xié)同節(jié)水效果[61-63]、電力系統(tǒng)節(jié)能成本等[64].例如Taxes地區(qū)從燃煤發(fā)電到燃?xì)獍l(fā)電的轉(zhuǎn)化帶來的節(jié)水量相當(dāng)于現(xiàn)狀煤電水耗的60%[42];Tucson地區(qū)光伏發(fā)電量增加15%,其電力系統(tǒng)的水耗可以減少17%,同時(shí)還可以減少13%的電力輸送損耗[60].中國(guó)2007~2012能源部門節(jié)能措施的協(xié)同節(jié)水效果主要來自于電力行業(yè),其直接的節(jié)水量約為5.6億m3,上下游相關(guān)產(chǎn)業(yè)的節(jié)水效果為12.5億m3[62].除對(duì)節(jié)水效果絕對(duì)量的考量外,學(xué)者們選取單位節(jié)水量的經(jīng)濟(jì)成本作為指標(biāo),分析電力行業(yè)的節(jié)水潛力[64].

        2 電力生產(chǎn)與水資源的空間匹配性研究

        學(xué)者們注意到了區(qū)域水資源稟賦與電力生產(chǎn)水耗之間的緊密關(guān)系.研究的空間尺度包括:行政區(qū)域[26,65]、流域?qū)用鎇66]、電網(wǎng)層面[39].例如APEC經(jīng)濟(jì)體中,約55%(437條)的因能源生產(chǎn)帶來的高水資源風(fēng)險(xiǎn)的流域與熱電有關(guān),主要分布于美國(guó)東部、中國(guó)東北部、澳大利亞、俄羅斯西部等地區(qū)[66].學(xué)者對(duì)典型國(guó)家的電力生產(chǎn)與水資源壓力的空間匹配進(jìn)行了更詳細(xì)的分析.例如中國(guó)煤電耗水量占全國(guó)總工業(yè)耗水量的11%,且約75%來自于極度缺水和長(zhǎng)期缺水的地區(qū)[26].美國(guó)東部40%以上的電廠冷卻水耗都取自于缺水地區(qū)[67],到2035年美國(guó)10%~19%的新增熱電企業(yè)有可能會(huì)建在地表/地下水資源缺乏的地區(qū)[65,67].這種水-能矛盾還具有兩個(gè)主要特征:①季節(jié)性差異,一方面是由于季節(jié)性降水差異引起,另一方面是由于冬季結(jié)冰導(dǎo)致可用水量降低,水資源壓力增大[8];②可傳輸性,電力生產(chǎn)和水資源壓力之間的匹配關(guān)系會(huì)隨著電力輸送而產(chǎn)生一定的空間變化,例如中國(guó)水資源較匱乏的東北電網(wǎng)、北方電網(wǎng)、西北電網(wǎng)和中部電網(wǎng)由于電力輸出引起的虛擬水輸出加劇了當(dāng)?shù)氐乃Y源壓力[39,68].總體來看,全球各個(gè)國(guó)家和地區(qū)均存在一定程度的水資源和電力生產(chǎn)空間不匹配的問題,從水-能耦合關(guān)系的角度出發(fā),綜合考慮和評(píng)估未來電力生產(chǎn)布局和水資源稟賦之間的關(guān)系顯得尤為重要.

        3 水-能耦合關(guān)系與其他環(huán)境問題

        電力行業(yè)是主要的溫室氣體(GHG)排放者,相關(guān)研究主要包括:核算不同能源類型下發(fā)電帶來的GHG排放[15,69-71]、碳捕獲與封存技術(shù)的使用與發(fā)電水耗之間的折中關(guān)系[42]、GHG減排壓力下發(fā)電結(jié)構(gòu)的調(diào)整路徑[59,72]等.除GHG外,電力行業(yè)水-能耦合系統(tǒng)引起的環(huán)境問題還包括冷卻廢水外排時(shí)還會(huì)帶來熱污染問題[1],水力發(fā)電引起的生態(tài)環(huán)境問題[73-74],發(fā)電過程產(chǎn)生的SO2、NO等大氣污染物[19,75].

        此外,生物質(zhì)能源的種植占用了大量的土地資源,對(duì)糧食的生產(chǎn)、農(nóng)業(yè)灌溉等均有一定程度的影響[2,76-80].據(jù)估算,全球生物質(zhì)種植消耗了2%~3%的農(nóng)業(yè)用水和用地,相當(dāng)于30%的營(yíng)養(yǎng)不良人口(Malnourished Population)的資源消耗量[2].

        除電力生產(chǎn)引起環(huán)境問題外,外界環(huán)境也會(huì)對(duì)水-能耦合關(guān)系有影響.例如干旱不僅會(huì)造成水力發(fā)電的減少,還會(huì)引起地下水使用的增加,從而需要更多的能源(如電力等)提取地下水[81].

        現(xiàn)有研究表明,電力行業(yè)水-能耦合系統(tǒng)與環(huán)境問題具有密切的相互作用關(guān)系,但如何量化評(píng)估該作用關(guān)系,進(jìn)一步增加對(duì)耦合系統(tǒng)的認(rèn)識(shí)仍面臨一定的挑戰(zhàn).

        4 電力行業(yè)水資源和能源的綜合管理

        水、能以及其他環(huán)境要素之間的緊密關(guān)聯(lián)關(guān)系使得單要素的環(huán)境管理措施可能出現(xiàn)偏差.如若維持現(xiàn)有的冷卻技術(shù)不變,中國(guó)東部電網(wǎng)的電力行業(yè)水耗將會(huì)超過“三條紅線”規(guī)定的水耗要求[8].此外,節(jié)能措施的應(yīng)用也可能帶來一定的節(jié)水效果[64].因而多個(gè)要素的綜合管理和核算十分必要[55,82].

        學(xué)術(shù)界在水、能綜合管理的方法和框架方面已經(jīng)有初步進(jìn)展.例如以水、能安全為主要目標(biāo)的歐盟COST(European Cooperation in Science and Technology)框架可協(xié)助綜合管理水-能耦合關(guān)系,并制定相應(yīng)的政策制度[83].在模型方面,部分研究試圖將水資源管理和能源管理的相關(guān)模型進(jìn)行結(jié)合,如以電廠水耗數(shù)據(jù)為基礎(chǔ)的ReEDS模型結(jié)合水資源管理模型WEAP,從流域?qū)用嬖u(píng)估發(fā)電對(duì)當(dāng)?shù)厮Y源的影響[84].考慮到水-能耦合關(guān)系具有較高的區(qū)域性特點(diǎn),因此有必要實(shí)施空間差異化管控[85].

        5 結(jié)語(yǔ)

        對(duì)電力行業(yè)水-能耦合關(guān)系的國(guó)際研究進(jìn)展進(jìn)行了綜述.目前電力行業(yè)水耗分析的研究方法多樣,傳統(tǒng)發(fā)電方式以及可再生能源發(fā)電方式均有關(guān)注.學(xué)者們?cè)诓煌臅r(shí)空尺度下,分別模擬和預(yù)測(cè)了電力生產(chǎn)及其水資源消耗情況,并指出了水資源與發(fā)電量之間的權(quán)衡關(guān)系,量化了電力行業(yè)的節(jié)水潛力.現(xiàn)狀和未來的電力生產(chǎn)和水資源壓力均存在一定的空間不匹配問題,遠(yuǎn)距離輸電更加劇了這種水-能矛盾.此外,電力行業(yè)水-能耦合關(guān)系與溫室氣體排放、大氣污染物排放、生態(tài)系統(tǒng)等有著密切的聯(lián)系.因此,迫切需要綜合評(píng)估水-能耦合關(guān)系與環(huán)境問題,提出空間差異化的水-能耦合系統(tǒng)管控方案.

        對(duì)未來關(guān)于電力行業(yè)水-能耦合系統(tǒng)的研究提出以下幾方面建議:①結(jié)合一手?jǐn)?shù)據(jù),研究水-能耦合關(guān)系的區(qū)域特征;②構(gòu)建可推廣的水-能耦合關(guān)系量化分析方法,提供決策支撐;③將水-能耦合關(guān)系研究?jī)?nèi)容延伸到更廣泛的環(huán)境問題上,如水資源匱乏、大氣污染物排放等.

        [1] Siddiqi A, Anadon L. The water–energy nexus in middle east and north Africa [J]. Energy Policy, 2011,39(8):4529-4540.

        [2] Rulli M, Bellomi D, Cazzoli A, et al. The water-land-food nexus of first-generation biofuels [J]. Scientific Reports, 2016,6:22521.

        [3] Pacetti T, Lombardi L, Federici G. Water–energy nexus: A case of biogas production from energy crops evaluated by water footprint and life cycle assessment (LCA) methods [J]. Journal of Cleaner Production, 2015,101:278-291.

        [4] Spang E, Moomaw W, Gallagher K, et al. The water consumption of energy production: An international comparison [J]. Environmental Research Letters, 2014,9(10):105002.

        [5] Okadera T, Geng Y, Fujita T, et al. Evaluating the water footprint of the energy supply of liaoning province, Cchina: A regional input– output analysis approach [J]. Energy Policy, 2015,78:148-157.

        [6] Ramaswami A, Boyer D, Nagpure A, et al. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India [J]. Environmental Research Letters, 2017,12(2):025008.

        [7] Hussien W, Memon F, Savic D. An integrated model to evaluate water-energy-food nexus at a household scale [J]. Environmental Modelling & Software, 2017,93:366-380.

        [8] Liao X, Hall J, Eyre N. Water use in China’s thermoelectric power sector [J]. Global Environmental Change, 2016,41:142-152.

        [9] Macknick J. Water impacts of the electricity sector. American solar energy society. World Renewable Energy Forum, 2012.

        [10] Statistics Canada. Section 3: The demand for water in Canada.

        [11] Meldrum J, Nettles-Anderson S, Heath G, et al. Life cycle water use for electricity generation: A review and harmonization of literature estimates [J]. Environmental Research Letters, 2013,8(1):015031.

        [12] Dodder S. A review of water use in the U.S. Electric power sector: Insights from systems-level perspectives [J]. Current Opinion in Chemical Engineering, 2014,5:7-14.

        [13] Sanders K. Uncharted waters? The future of the electricity-water nexus [J]. Environmental Science & Technology, 2015,49(1):51-66.

        [14] Fthenakis V, Kim H. Life-cycle uses of water in U.S. Electricity generation [J]. Renewable & Sustainable Energy Reviews, 2010, 14(7):2039-2048.

        [15] Li X, Feng K, Siu Y, et al. Energy-water nexus of wind power in China: The balancing act between CO2emissions and water consumption [J]. Energy Policy, 2012,45:440-448.

        [16] Feng K, Hubacek K, Siu Y, et al. The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis [J]. Renewable and Sustainable Energy Reviews, 2014,39:342-355.

        [17] Lubega W, Farid A. Quantitative engineering systems modeling and analysis of the energy-water nexus [J]. Applied Energy, 2014,135: 142-157.

        [18] Lubega W, Farid A. A meta-system architecture for the energy-water nexus [C]. 8th International Conference on System of Systems Engineering, 2013:76-81.

        [19] Wang C, Li Y, Liu Y. Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China [J]. Energy Policy, 2018, 115(291-301).

        [20] Jiang D, Ramaswami A. The ‘thirsty’ water-electricity nexus: Field data on the scale and seasonality of thermoelectric power generation’s water intensity in China [J]. Environmental Research Letters, 2015, 10(2):024015.

        [21] Averyt K, Macknick J, Rogers J, et al. Water use for electricity in the United States: An analysis of reported and calculated water use information for 2008 [J]. Environmental Research Letters, 2013, 8(1):015001.

        [22] Sesma D, Rubiovaras M. Freshwater for cooling needs: A long-run approach to the nuclear water footprint in Spain [J]. Ecological Economics, 2017,140:146-156.

        [23] Mekonnen M, Hoekstra A. The blue water footprint of electricity from hydropower [J]. Hydrology and Earth System Science, 2012,16(1): 179-187.

        [24] Grubert E. Water consumption from hydroelectricity in the United States [J]. Advance in Water Resource, 2016,96:88-94.

        [25] Bakken T, Modahl I, Raadal H, et al. Allocation of water consumption in multipurpose reservoirs [J]. Water Policy, 2016,18(4):932-947.

        [26] Zhang X, Liu J, Tang Y, et al. China’s coal-fired power plants impose pressure on water resources [J]. Journal of Cleaner Production, 2017, 161:1171-1179.

        [27] Macknick J, Newmark R, Heath G, et al. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature [J]. Environmental Research Letters, 2012,7(4):045802.

        [28] Murrant D, Quinn A, Chapman L, et al. Water use of the UK thermal electricity generation fleet by 2050: Part 1identifying the problem [J]. Energy Policy, 2017,108:844-858.

        [29] Brierley M. Re : UK power stations water consumption data. 2014. Type to MURRANT, D.

        [30] Woldeyesus T. Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities [D]. 2012, Denvor: University of Colorado.

        [31] Byers E, Hall J, Amezaga J. Electricity generation and cooling water use: UK pathways to 2050 [J]. Global Environmental Change, 2014,25: 16-30.

        [32] Mekonnen M, Gerbens-Leenes P, Hoekstra A. The consumptive water footprint of electricity and heat: A global assessment [J]. Environmental Science-Water Research & Technology, 2015,1(3): 285-297.

        [33] Pfister S, Saner D, Koehler A. The environmental relevance of freshwater consumption in global power production [J]. International Journal of Life Cycle Assessment, 2011,16(6):580-591.

        [34] Carrillo A, Frei C. Water: A key resource in energy production [J]. Energy Policy, 2009,37(11):4303-4312.

        [35] Koulouri A, Moccia J. Saving water with wind energy [R]. Belgium: The European Wind Energy Association, 2014.

        [36] Torcellini P, Long N, Judkoff R. Consumptive water use for U.S. Power production [R]. 2010.

        [37] DOE. Concentrating solar power commercial application study. [EB/OL]. https://www.osti.gov/biblio/1218186.

        [38] Smart A, Aspinall A. Water and the electricity generation industry [R]. Colorado: NREL2009.

        [39] Zhu X, Guo R, Chen B, et al. Embodiment of virtual water of power generation in the electric power system in China [J]. Applied Energy, 2015,151:345-354.

        [40] Innovation for Energy. Water for electricity [EB/OL]. www. ifpenergiesnouvelles. com/Publications/Availablestudies/Panorama- technical-reports/Panorama-2011.

        [41] Marsh D. The water-energy nexus: A comprehensive analysis in the context of New South Wales. 2008. Sydney: University of Technology.

        [42] Grubert E, Beach F, Webber M. Can switching fuels save water? A life cycle quantification of freshwater consumption for texas coal- and natural gas-fired electricity [J]. Environmental Research Letters, 2012, 7(4):045801.

        [43] Ali B, Kumar A. Development of water demand coefficients for power generation from renewable energy technologies [J]. Energy Conversion and Management, 2017,143:470-481.

        [44] DOE. Energy demands on water resources: Report to congress on the interdependency of energy and water [R]. Washington: 2006.

        [45] Whitaker M, Heath G, Burkhardt J, et al. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives [J]. Environmental science & technology, 2013,47(11): 5896-5903.

        [46] DOE. Renewable energy technology characterizations [R]. Washington: 1997.

        [47] NREL. Fuel from the sky: Solar power's potential for western energy supply [R]. Colorado: 2002.

        [48] NREL. Assessment of parabolic trough and power tower solar technology cost and performance forecasts [R] Colorado: 2003.

        [49] Wu X, Chen G. Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China [J]. Applied Energy, 2017,195:125-136.

        [50] Li X, Feng K, Siu Y, et al. Energy-water nexus of wind power in China: The balancing act between CO2emissions and water consumption [J]. Energy Policy, 2012,45:440-448.

        [51] Behrens P, Vliet M, Nanninga T, et al. Climate change and the vulnerability of electricity generation to water stress in the European Union [J]. Nature Energy, 2017,2(8):17114.

        [52] Murrant D, Quinn A, Chapman L, et al. Water use of the UK thermal electricity generation fleet by 2050: Part 2 quantifying the problem [J]. Energy Policy, 2017,108:859-874.

        [53] Li M, Dai H, Xie Y, et al. Water conservation from power generation in China: A provincial level scenario towards 2030 [J]. Applied Energy, 2017,208:580-591.

        [54] Macknick J, Sattler S, Averyt K, et al. The water implications of generating electricity: Water use across the United States based on different electricity pathways through 2050 [J]. Environmental Research Letters, 2012,7(4):045803.

        [55] Liu L, Hejazi M, Patel P, et al. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water– energy nexus [J]. Technological Forecasting and Social Change, 2015, 94:318-334.

        [56] Antipova E, Zyryanov A, McKinney D, et al. Optimization of Syr Darya water and energy uses [J]. Water International, 2002,27(4): 504-516.

        [57] Dhaubanjar S, Davidsen C, Bauer-Gottwein P. Multi-objective optimization for analysis of changing trade-offs in the Nepalese water–energy–food nexus with hydropower development [J]. Water, 2017,9(12):162.

        [58] Hadian S, Madani K. The water demand of energy: Implications for sustainable energy policy development [J]. Sustainability, 2013, 5(12):4674-4687.

        [59] Parkinson S, Makowski M, Krey V, et al. A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways [J]. Applied Energy, 2018,210:477-486.

        [60] Perrone D, Murphy J, Hornberger G. Gaining perspective on the water-energy nexus at the community scale [J]. Environmental Science & Technology, 2011,45(10):4228-4234.

        [61] Gu A, Teng F, Wang Y. China energy-water nexus: Assessing the water-saving synergy effects of energy-saving policies during the eleventh five-year plan [J]. Energy Conversion Management, 2014,85: 630-637.

        [62] Jin Y, Tang X, Feng C, et al. Energy and water conservation synergy in China: 2007~2012 [J]. Resources, Conservation and Recycling, 2017, 127:206-215.

        [63] Bartos M, Chester M. The conservation nexus: Valuing interdependent water and energy savings in Arizona [J]. Environmental Science & Technology, 2014,48(4):2139-2149.

        [64] Ali B. The cost of conserved water for power generation from renewable energy technologies in Alberta, Canada [J]. Energy Conversion and Management, 2017,150:201-213.

        [65] Tidwell V, Kobos P, Malczynski L, et al. Exploring the water- thermoelectric power nexus [J]. Journal of Water Resources Planning & Management, 2012,138(5):491-501.

        [66] Tidwell V, Moreland B. Mapping water consumption for energy production around the Pacific Rim [J]. Environmental Research Letters, 2016,11(9):094008.

        [67] Wang R, Zimmerman J, Wang C, et al. Freshwater vulnerability beyond local water stress: Heterogeneous effects of water-electricity nexus across the continental United States [J]. Environmental Science & Technology, 2017,51(17):9899-9910.

        [68] Zhang C, Zhong L, Liang S, et al. Virtual scarce water embodied in inter-provincial electricity transmission in China [J]. Applied Energy, 2017,187:438-448.

        [69] Dale A, Bilec M. The regional energy & water supply scenarios (REWSS) model, part II: Case studies in Pennsylvania and Arizona [J]. Sustainable Energy Technologies & Assessments, 2014,7:237-246.

        [70] Fargione J, Hill J, Tilman D, et al. Land clearing and the biofuel carbon debt [J]. Science, 2008,319(5867):1235-1238.

        [71] Feng K, Hubacek K, Siu Y, et al. The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis [J]. Renewable & Sustainable Energy Reviews, 2014,39:342-355.

        [72] Nanduri V, Saavedra-Antolinez I. A competitive markov decision process model for the energy-water-climate change nexus [J]. Applied Energy, 2013,111:186-198.

        [73] Akpinar A, Kaygusuz K. Regional sustainable water and energy development projects: A case of southeastern Anatolia project (GAP) in Turkey [J]. Renewable & Sustainable Energy Reviews, 2012,16(2): 1146-1156.

        [74] Pang M, Zhang L, Ulgiati S, et al. Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant [J]. Energy Policy, 2015,76:112-122.

        [75] Kumar P, Saroj D. Water–energy–pollution nexus for growing cities [J]. Urban Climate, 2014,10:846-853.

        [76] Hellegers P, Zilberman D, Steduto P, et al. Interactions between water, energy, food and environment: Evolving perspectives and policy issues [J]. Water Policy, 2008,10:1-10.

        [77] McCornick P, Awulachew S, Abebe M. Water-food-energy- environment synergies and tradeoffs: Major issues and case studies [J]. Water Policy, 2008,10:23-36.

        [78] Schornagel J, Niele F, Worrell E, et al. Water accounting for (agro)industrial operations and its application to energy pathways [J]. Resources, Conservation and Recycling, 2012,61:1-15.

        [79] Fraiture C, Giordano M, Liao Y. Biofuels and implications for agricultural water use: Blue impacts of green energy [J]. Water Policy, 2008,10:67-81.

        [80] Fthenakis V, Kim H. Land use and electricity generation: A life-cycle analysis [J]. Renewable & Sustainable Energy Reviews, 2009,13(6/7): 1465-1474.

        [81] Lofman D, Petersen M, Bower A. Water, energy and environment nexus: The California experience [J]. International Journal of Water Resources Development, 2002,18(1):73-85.

        [82] Sovacool B, Sovacool K. Identifying future electricity-water tradeoffs in the United States [J]. Energy Policy, 2009,37(7):2763-2773.

        [83] Hussey K, Pittock J. The energy–water nexus: Managing the links between energy and water for a sustainable future [J]. Ecology and Society, 2012,17(1).

        [84] Sattler S, Macknick J, Yates D, et al. Linking electricity and water models to assess electricity choices at water-relevant scales [J]. Environmental Research Letters, 2012,7(4):045804.

        [85] Scott C, Pierce S, Pasqualetti M, et al. Policy and institutional dimensions of the water-energy nexus [J]. Energy Policy, 2011, 39(10):6622-6630.

        Review of the studies on the water-energy nexus of the electricity sector.

        WANG Chun-yan1, TIAN Lei2, YU Min3, LIU Yi1*

        (1.School of Environment, Tsinghua University, Beijing 100084, China;2.Energy Research Institute, National Development and Reform Commission, Beijing 100038, China;3.Institute for Resources and Environmental Policies, Development Research Center of the State council, Beijing 100010, China)., 2018,38(12):4742~4748

        The electricity generation consumes around 8% of global water use. The water use for the electricity generation and transmission is defined as “the water for energy” or “the water-energy nexus of the electricity sector”. This study went through the literatures that are relevant to this topic from the following aspects: the quantification of the water consumption and withdrawal by various electricity generation types; the analysis of the mismatch between electricity generation/transmission and water resources; and other related environmental issues. This study concluded that: the cooling technologies would have significant influence on the water consumption and withdrawal for the electricity generation; there are tremendous spatial disparities of local water resources and electricity generation; comprehensive management of the water and energy is still lacking and urgently needed.

        electricity generation;water-energy nexus;water consumption prediction;environmental issues;integrate management

        X703.5

        A

        1000-6923(2018)12-4742-07

        王春艷(1991-),女,河南濮陽(yáng)人,博士后,主要研究方向?yàn)樗?能耦合系統(tǒng)分析、環(huán)境系統(tǒng)分析、產(chǎn)業(yè)生態(tài)學(xué).發(fā)表論文3篇.

        2018-05-24

        國(guó)家自然科學(xué)基金資助項(xiàng)目(71774096);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0404602)

        * 責(zé)任作者, 教授, yi.liu@mail.tsinghua.edu.cn

        猜你喜歡
        水耗耗水量電力行業(yè)
        神東礦區(qū)動(dòng)力煤選煤廠降低水耗的實(shí)踐
        滴灌對(duì)蘋果和梨樹周年耗水規(guī)律的影響
        北方果樹(2020年6期)2020-11-14 01:35:40
        基于煙氣余熱回收某600MW機(jī)組FGD水平衡問題分析
        不同灌水模式下玉米耗水量和節(jié)水效益分析研究
        淺談電力行業(yè)知識(shí)管理的集成信息化
        電力行業(yè)的減排救贖
        能源(2016年1期)2016-12-01 05:10:18
        200 MW供熱機(jī)組雙機(jī)單塔運(yùn)行的節(jié)能分析
        科技資訊(2016年19期)2016-11-15 08:22:11
        蒸發(fā)冷卻空調(diào)機(jī)組耗水量計(jì)算公式的推導(dǎo)與分析
        吉朗德露天煤礦高耗水量計(jì)算
        電力行業(yè)的碳市大考
        能源(2016年10期)2016-02-28 11:33:32
        国产一区二区三区不卡在线观看 | 国产精品久久久久久妇女6080| 99久久国产综合精品女乱人伦| 亚洲精品成人久久av| 精品久久av一区二区| 国产国拍亚洲精品mv在线观看| 午夜一级成人| 国产特黄1区2区3区4区| 99久久婷婷国产亚洲终合精品 | 成av人片一区二区久久| 国内精品久久久久久久97牛牛| 玩两个丰满老熟女| 亚洲AV成人无码天堂| 日本熟妇中出高潮视频| 色偷偷av一区二区三区| 欧美成人形色生活片| 亚洲一区二区三在线播放| 男女啪啪视频高清视频| 欧美一区二区三区久久综| 99国产超薄丝袜足j在线观看| 久久久婷婷综合亚洲av| 看女人毛茸茸下面视频| 国产办公室沙发系列高清| 亚州精品无码人妻久久| 青青草视频在线观看9| 国产suv精品一区二区四| 又色又污又爽又黄的网站 | 国产成人自拍视频视频| 亚洲精品无码不卡在线播he| 亚洲日韩精品欧美一区二区| 亚州毛色毛片免费观看| 天堂免费av在线播放| 正在播放国产多p交换视频| 一本一本久久a久久精品| 亚洲中文字幕高清乱码毛片| 国产一区二区三区中文在线| 成人妇女免费播放久久久| 中日韩欧美成人免费播放| 亚洲中文字幕第15页| 国产精品久久久国产盗摄| 亚洲视频1区|