任廣旭 袁超
[摘要] 骨骼肌在人類健康以及疾病中發(fā)揮著重要的作用。在很多腫瘤、慢性心臟衰竭以及營養(yǎng)缺乏的狀態(tài)下,會(huì)表現(xiàn)出以肌肉質(zhì)量和力量丟失為特征的肌肉萎縮的癥狀。肌肉萎縮嚴(yán)重影響生存質(zhì)量,甚至?xí){患者生命。雖然目前研究人員已經(jīng)發(fā)現(xiàn)炎癥和營養(yǎng)健康狀態(tài)都會(huì)導(dǎo)致肌肉萎縮,但是具體的調(diào)控網(wǎng)絡(luò)仍然不是很清楚。最近的研究揭示人體中腸道微生物可能也參與調(diào)控肌肉的合成代謝。因此,本文將綜述最近有關(guān)“腸-肌”軸的研究進(jìn)展以及所涉及的分子機(jī)制。
[關(guān)鍵詞] 骨骼??;腸道菌群;膳食;合成代謝
[中圖分類號(hào)] R685 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)11(c)-0021-04
Progress in the new approaches to regulation of muscle synthesis and metabolism
REN Guangxu1 YUAN Chao2
1.Institute of Food and Nutrition Development, Ministry of Agriculture, Beijing 100081, China; 2.China National Food Industry (Group) Corp, Beijing 100062, China
[Abstract] Skeletal muscle plays an important role in human health and disease. In many tumors, chronic heart failure and nutritional deficiency, the symptoms of muscular atrophy are characterized by loss of muscle mass and strength. Muscle atrophy seriously affects the quality of life, and even threatens the lives of patients. Although researchers have found that inflammation and nutritional health state can lead to muscle atrophy, the specific regulatory network is still not clear. Recent studies have revealed that gut microbes in the human body may also participate in the regulation of muscle synthesis. Therefore, we will review the recent progress in the study of the "gut muscle" axis and the molecular mechanisms involved.
[Key words] Skeletal muscle; Gut microbiota; Diet; Anabolism
人體的微生物群落由約100億的微生物組成,數(shù)量至少是人體細(xì)胞的10倍[1],這些微生物與人體細(xì)胞處于一個(gè)共生狀態(tài)[2]。絕大多數(shù)微生物定植在腸道,他們具有許多重要功能。腸道菌群能夠誘導(dǎo)廣泛的宿主反應(yīng),參與調(diào)控腸道屏障、免疫和內(nèi)分泌等諸多生理功能。此外,腸道菌群也可以影響腸道外組織細(xì)胞,調(diào)節(jié)能量平衡和系統(tǒng)性炎性反應(yīng)[3]。人類腸道中的微生物主要由擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes)組成,它們的數(shù)量超過了總體的90%[4]。在人的一生中,腸道菌群的組成始終處于動(dòng)態(tài)的變化中,尤其是從出生到3歲期間變化最為顯著,之后相對(duì)穩(wěn)定性會(huì)逐步地建立起來[5-6]。腸道微生物在維持機(jī)體健康方面一直都是“默默無聞”地貢獻(xiàn)著自己的力量[7],尤其在年齡比較大的人群中,腸道微生物對(duì)健康的影響就會(huì)變得比較突出[8]。
骨骼肌是人體最大的器官,其約占身體質(zhì)量的40%[9]。骨骼肌系統(tǒng)較為熟知的功能是維持機(jī)體運(yùn)動(dòng)功能。此外,骨骼肌還具有許多其他功能,如,作為機(jī)體最大的宏量營養(yǎng)素的保存庫,保護(hù)內(nèi)臟器官,維持核心溫度,通過釋放細(xì)胞因子和生長素來與體內(nèi)其他器官進(jìn)行通訊等[10]。肌肉萎縮往往伴隨著持續(xù)性的肌肉以及力量的丟失,這通常是由于蛋白質(zhì)合成降低以及蛋白質(zhì)降解增加[11]。這種肌肉萎縮通常發(fā)生在許多慢性和炎癥疾病中,比如癌癥、慢性心衰、慢性感染及營養(yǎng)缺乏[12]。最近,“腸-肌”軸調(diào)控概念也被提出[13],提示對(duì)于一些少肌癥的患者可以尋找一種新的途徑通過改變腸道菌群的組成模式來改善少肌癥狀。
1 腸道菌群與骨骼肌代謝
由于腸道菌群定植于胃腸道,因此表面上這些細(xì)菌更多的是影響營養(yǎng)吸收和氨基酸的合成等代謝功能[14]。腸道菌群調(diào)節(jié)能量代謝最好的例證是夸希奧科?。↘washiorkor),這種疾病可以通過膳食改善促進(jìn)微生物重建(增加雙歧桿菌和乳酸菌)從而得以暫時(shí)性地緩解[15]。與此同時(shí),營養(yǎng)素的過度攝入和儲(chǔ)藏與腸道菌群多樣性的降低有關(guān)[16]。除此之外,也有證據(jù)表明腸道菌群也能影響骨骼肌組織的代謝反應(yīng)[13,17]。2004年一項(xiàng)開創(chuàng)性研究將自然生長的小鼠盲腸內(nèi)容物移植到無菌(GF)小鼠體內(nèi),導(dǎo)致小鼠增長60%的體脂,與此同時(shí)胰島素敏感性和血糖耐受能力均有所降低[18]。由于肌肉是葡萄糖代謝不可或缺的組織,因此這個(gè)研究間接地表明腸道菌群能夠調(diào)節(jié)肌肉的代謝功能。細(xì)菌定植造成GF小鼠體內(nèi)三羧酸循環(huán)中間體的累積,而高能磷酸的積累并沒有增加,這似乎降低了骨骼肌的代謝效率。同一研究小組又通過比較GF小鼠與正常鼠骨骼肌蛋白活性及基因表達(dá)譜發(fā)現(xiàn),GF小鼠骨骼肌的腺苷酸活化蛋白激酶(AMPK)和肉堿-棕櫚酰-轉(zhuǎn)移酶-1(CPT-1)活性較正常老鼠更強(qiáng)[13]。這些研究表明腸道菌群可以通過調(diào)節(jié)骨骼肌生物能量途徑來影響身體組成。
2 腸道菌群和骨骼肌大小的關(guān)系
年齡相關(guān)的炎癥與肌肉大小和功能的降低有著密切的關(guān)系[19]。肥胖可通過增加炎癥負(fù)擔(dān)來加速少肌癥的發(fā)展,最終發(fā)展成少肌性肥胖[20]。Bindels等[21]在白血病小鼠模型中將靶向菌群作為一種方法來影響瘦肉質(zhì)量。在該白血病模型中,小鼠腸道菌群出現(xiàn)以乳酸桿菌失調(diào)為代表的腸道菌群失衡,通過給白血病小鼠口服含有乳酸桿菌的益生菌,血清中炎性細(xì)胞因子白細(xì)胞介素(IL)-6和人單核細(xì)胞趨化蛋白(MCP)-1的含量顯著降低。有意思的是這種對(duì)細(xì)胞因子的影響是菌群特異的,也說明乳酸菌與骨骼肌大小存在著一定的關(guān)系。Cani等[22]研究了益生菌補(bǔ)充劑對(duì)骨骼肌改變的影響,他們向肥胖的小鼠喂養(yǎng)低聚果糖后,血液中脂多糖(LPS)以及炎性因子明顯減少,同時(shí)小鼠肌肉質(zhì)量也得到了增加。跟蹤性研究確定了益生元補(bǔ)充給腸道微生物后,擬桿菌門/厚壁菌門的比例出現(xiàn)改變,同時(shí)腸道乳酸桿菌和雙歧桿菌的數(shù)量也有所增加[23]。通過飼喂含有低聚果糖以及乳酸菌的合生元,發(fā)現(xiàn)白血病老鼠體內(nèi)埃希桿菌(Escherichia)降低,同時(shí)乳酸菌和雙歧桿菌的增殖增加[24]。上述證據(jù)表明,乳酸桿菌和雙歧桿菌可能參與調(diào)控宿主的肌肉大小,影響“腸-肌”交流。
3 腸道菌群和骨骼肌功能
相關(guān)研究發(fā)現(xiàn)給年輕大鼠飼喂高脂、高糖的飲食后,大鼠體內(nèi)腸桿菌比例增加,而乳酸菌的數(shù)量則顯著降低[25-26],這些改變跟老年人體內(nèi)的變化相似。與之相對(duì)應(yīng)的是體內(nèi)炎性細(xì)胞因子(IL-6、TNF-α和MCP-1)的數(shù)量也顯著升高,更值得注意的是3 d后骨骼肌中脂肪含量也出現(xiàn)顯著的增加[27]。腸道菌群調(diào)節(jié)肌肉組成的另一證據(jù)是研究發(fā)現(xiàn)腸道菌群參與能量代謝以及調(diào)節(jié)豬肌肉內(nèi)脂肪含量[28],年齡相關(guān)的腸道菌群的改變促使了脂肪向骨頭浸潤[29]。然而這些研究都有一個(gè)問題,沒有闡明究竟腸道菌群的改變是肌肉組成改變的發(fā)起者還是其改變的一個(gè)結(jié)果。益生菌營救肌肉丟失的小鼠的研究表明腸道微生物可能是這種關(guān)系的啟動(dòng)者[21,24]。
Tongeren等[26]最早研究腸道菌群與肌肉功能之間的關(guān)系,這項(xiàng)研究在23例高齡人群中進(jìn)行,他們發(fā)現(xiàn)出現(xiàn)骨脆的老人體內(nèi)乳酸桿菌比例顯著降低,而腸桿菌的含量卻有明顯的增加。而且,肌肉功能較好的患者由于體內(nèi)存在能夠產(chǎn)生丁酸鹽的細(xì)菌,包括柔嫩梭菌群(Faecalibacterium prausnitzii)、梭菌目(Clostridiales)、羅氏菌屬(Roseburia)、毛螺菌科(Lachnospiraceae)、韋榮球菌科(Erysipelotrichaceae),從而防止了腸道菌群的失功能性改變。實(shí)際上,丁酸鹽被證明能夠通過重塑緊密連接來增強(qiáng)腸道屏障功能[30]。這在理論上應(yīng)該能夠減少內(nèi)毒素的轉(zhuǎn)移并且降低循環(huán)的炎性細(xì)胞因子。
4 腸道菌群調(diào)控骨骼肌功能的分子機(jī)制
GF小鼠肌肉中AMPK活性是增高的。AMPK的功能是作為“燃料表”檢測細(xì)胞內(nèi)能量的狀態(tài)。AMPK激活伴隨著CPT-1升高,CPT-1在線粒體上主要負(fù)責(zé)催化限速步驟,即長鏈脂肪酸脂肪酰輔酶A(acylCoA)的進(jìn)入,從而增加肌肉活力[13]。而且,GF小鼠腸道空腹誘導(dǎo)脂肪細(xì)胞因子(Fiaf)的水平顯著升高,這伴隨著過氧化物酶體增殖物激活受體γ輔激活因子1α(PGC-1α)的高表達(dá)[13]。腸道菌群能夠產(chǎn)生各種代謝物,比如共軛亞油酸,醋酸、膽汁酸等,這些產(chǎn)物能夠進(jìn)入肌肉中[3]。腸道菌群能夠提供各種膽汁酸,它們能通過G蛋白偶聯(lián)膽汁酸受體Gpbar 1(TGR5)激活甲狀腺激素,從而增加骨骼肌細(xì)胞能量支出[31]。核轉(zhuǎn)錄因子(NF)-κB在肌肉中特異性的激活能夠造成肌肉的萎縮[32]。肌肉細(xì)胞有Toll樣受體(TLR)-2、TLR-4和TLR-5,能夠識(shí)別革蘭陽性細(xì)菌、脂多糖和鞭毛蛋白,從而激活肌肉細(xì)胞內(nèi)NF-κB細(xì)胞通路[33]。有研究發(fā)現(xiàn),急性白血病模型小鼠口服特異的乳酸菌后,肌肉萎縮的現(xiàn)象被明顯地削弱,這可能與腸道菌群參與調(diào)控氨基酸代謝有關(guān)[21]。肌肉蛋白代謝是蛋白質(zhì)合成和降解的共同作用的結(jié)果。肌肉蛋白合成是由許多因素刺激誘導(dǎo)的,比如抗阻運(yùn)動(dòng)、食物攝入等[34]。膳食蛋白的氨基酸組成(必需氨基酸如亮氨酸)和他們的吸收效率(蛋白質(zhì)的降解速率和氨基酸的吸收速率)通過直接或者間接的方式調(diào)控著骨骼肌的合成代謝反應(yīng)[35]。在胃腸道,膳食和內(nèi)源性蛋白被人體或細(xì)菌的蛋白酶水解成肽段和氨基酸[36],所產(chǎn)生的多肽隨后被釋放到腸道維持細(xì)菌的生長[37]。氨基酸是細(xì)菌合成短鏈脂肪酸(丙酸、丁酸鹽和醋酸)的前體物質(zhì)[38],腸道微生物活性與宿主氨基酸和短鏈脂肪酸穩(wěn)態(tài)之間有著一定的聯(lián)系。
5 小結(jié)
目前已經(jīng)有大量的線索提示腸道菌群可能參與調(diào)控肌肉萎縮相關(guān)的代謝通路,這將為臨床治療相關(guān)肌肉萎縮提供一個(gè)嶄新的思路。已有研究發(fā)現(xiàn)腸道菌群的組成可以通過飲食、益生菌以及腸道菌群移植等相關(guān)手段加以改變,所以將來可以通過改變腸道菌群的方法改善肌肉萎縮。但是,在實(shí)現(xiàn)這個(gè)目標(biāo)之前仍然需要在很多方面進(jìn)行突破,比如需要明確腸道菌群調(diào)控肌肉萎縮的具體分子機(jī)制,明確具體哪些菌群參與調(diào)控肌肉萎縮。
[參考文獻(xiàn)]
[1] Bindels LB,Delzenne NM. Muscle wasting:the gut microbiota as a new therapeutic target?[J]. Int J Biochem Cell Biol,2013,45(10):2186-2190.
[2] Sender R,F(xiàn)uchs S,Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body [J]. PLoS Biol,2016,14(8):e1002533.
[3] Delzenne NM,Cani PD. Interaction between obesity and the gut microbiota:relevance in nutrition [J]. Annu Rev Nutr,2011,31:15-31.
[4] Eckburg PB,Bik EM,Bernstein CN,et al. Diversity of the human intestinal microbial flora [J]. Science,2005,308(5728):1635-1638.
[5] Yatsunenko T,Rey FE,Manary MJ,et al. Human gut microbiome viewed across age and geography [J]. Nature,2012, 486(7402):222-227.
[6] Hill CJ,Lynch DB,Murphy K,et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort [J]. Microbiome,2017,5(1):4.
[7] Shreiner AB,Kao JY,Young VB. The gut microbiome in health and in disease [J]. Curr Opin Gastroenterol,2015, 31(1):69-75.
[8] Lustgarten MS. Classifying Aging As a Disease:The Role of Microbes [J]. Front Genet,2016,7:212.
[9] Guridi M,Tintignac LA,Lin S,et al. Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21 [J]. Sci Signal,2015,8(402):ra113.
[10] Pedersen BK,F(xiàn)ebbraio MA. Muscle as an endocrine organ:focus on muscle-derived interleukin-6 [J]. Physiol Rev,2008,88(4):1379-1406.
[11] Fearon KC,Glass DJ,Guttridge DC. Cancer cachexia:mediators,signaling,and metabolic pathways [J]. Cell Metab,2012,16(2):153-166.
[12] Evans WJ,Morley JE,Argiles J,et al. Cachexia:a new definition [J]. Clin Nutr,2008,27(6):793-799.
[13] Backhed F,Manchester JK,Semenkovich CF,et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice [J]. Proc Natl Acad Sci U S A,2007, 104(3):979-984.
[14] Jumpertz R,Le DS,Turnbaugh PJ,et al. Energy-balance studies reveal associations between gut microbes,caloric load,and nutrient absorption in humans [J]. Am J Clin Nutr,2011,94(1):58-65.
[15] Smith MI,Yatsunenko T,Manary MJ,et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor [J]. Science,2013,339(6119):548-554.
[16] Grosicki GJ,F(xiàn)ielding RA,Lustgarten MS. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size,Composition,and Function:Biological Basis for a Gut-Muscle Axis [J]. Calcif Tissue Int,2018,102(4):433-442.
[17] Choi Y,Kwon Y,Kim DK,et al. Gut microbe-derived extracellular vesicles induce insulin resistance,thereby impairing glucose metabolism in skeletal muscle [J]. Sci Rep,2015,5:15878.
[18] Backhed F,Ding H,Wang T,et al. The gut microbiota as an environmental factor that regulates fat storage [J]. Proc Natl Acad Sci U S A,2004,101(44):15718-15723.
[19] Jensen GL. Inflammation:roles in aging and sarcopenia [J]. JPEN J Parenter Enteral Nutr,2008,32(6):656-659.
[20] Cesari M,Kritchevsky SB,Baumgartner RN,et al. Sarcopenia,obesity,and inflammation-results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study [J]. Am J Clin Nutr,2005,82(2):428-434.
[21] Bindels LB,Beck R,Schakman O,et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model [J]. PLoS One,2012,7(6):e37971.
[22] Cani PD,Possemiers S,Van de Wiele T,et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability [J]. Gut,2009,58(8):1091-1103.
[23] Everard A, Lazarevic V,Derrien M,et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice [J]. Diabetes,2011,60(11):2775-2786.
[24] Bindels LB,Neyrinck AM,Claus SP,et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia [J]. ISME J,2016, 10(6):1456-1470.
[25] Biagi E,Nylund L,Candela M,et al. Through ageing,and beyond:gut microbiota and inflammatory status in seniors and centenarians [J]. PLoS One,2010,5(5):e10667.
[26] van Tongeren SP,Slaets JP,Harmsen HJ,et al. Fecal microbiota composition and frailty [J]. Appl Environ Microbiol,2005,71(10):6438-6442.
[27] Collins KH,Paul HA,Hart DA,et al. A High-Fat High-Sucrose Diet Rapidly Alters Muscle Integrity,Inflammation and Gut Microbiota in Male Rats [J]. Sci Rep,2016, 6:37278.
[28] Fang S,Xiong X,Su Y,et al. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen [J]. BMC Microbiol,2017,17(1):162.
[29] Liu Y,Tang GY,Tang RB,et al. Assessment of bone marrow changes in postmenopausal women with varying bone densities:magnetic resonance spectroscopy and diffusion magnetic resonance imaging [J]. Chin Med J(Engl),2010, 123(12):1524-1527.
[30] Peng L,Li ZR,Green RS,et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers [J]. J Nutr,2009,139(9):1619-1625.
[31] Watanabe M,Houten SM,Mataki C,et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation [J]. Nature,2006,439(7075):484-489.
[32] Cai D,F(xiàn)rantz JD,Tawa NE Jr,et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice [J]. Cell,2004,119(2):285-298.
[33] Boyd JH,Divangahi M,Yahiaoui L,et al. Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-kappaB and calcineurin [J]. Infect Immun,2006,74(12):6829-6838.
[34] Picca A,F(xiàn)anelli F,Calvani R,et al. Gut Dysbiosis and Muscle Aging:Searching for Novel Targets against Sarcopenia [J]. Mediators Inflamm,2018,2018:7026198.
[35] Martone AM,Marzetti E,Calvani R,et al. Exercise and Protein Intake:A Synergistic Approach against Sarcopenia [J]. Biomed Res Int,2017,2017:2672435.
[36] Macfarlane GT,Allison C,Gibson SA,et al. Cummings JH. Contribution of the microflora to proteolysis in the human large intestine [J]. J Appl Bacteriol,1988,64(1):37-46.
[37] Morowitz MJ,Carlisle EM,Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill [J]. Surg Clin North Am,2011,91(4):771-785, viii.
[38] Davila AM,Blachier F,Gotteland M,et al. Re-print of "Intestinal luminal nitrogen metabolism:role of the gut microbiota and consequences for the host"[J]. Pharmacol Res,2013,69(1):114-126.
(收稿日期:2018-06-01 本文編輯:羅喬荔)