亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        擠壓法制備富鈣強(qiáng)化重組大米的工藝優(yōu)化及其結(jié)構(gòu)表征

        2018-11-23 07:47:50于殿宇唐洪琳江連洲韓富江
        關(guān)鍵詞:質(zhì)量

        于殿宇,王 彤,唐洪琳,陳 俊,江連洲,韓富江,吳 非

        ?

        擠壓法制備富鈣強(qiáng)化重組大米的工藝優(yōu)化及其結(jié)構(gòu)表征

        于殿宇1,王 彤1,唐洪琳1,陳 俊1,江連洲1,韓富江2,吳 非1※

        (1.東北農(nóng)業(yè)大學(xué)食品學(xué)院,哈爾濱 150030;2. 黑龍江省寒香玉米業(yè)有限公司,哈爾濱 150030)

        為提高碎粳米的利用率并制備出富含鈣元素的重組強(qiáng)化大米,該文以粳米碎米為原料,添加乙酸鈣作為強(qiáng)化劑,通過(guò)使用擠壓法制備富含鈣元素的重組強(qiáng)化大米。試驗(yàn)以鈣強(qiáng)化大米質(zhì)構(gòu)特性為指標(biāo),對(duì)擠壓工藝參數(shù)進(jìn)行響應(yīng)面優(yōu)化,得到最佳工藝參數(shù)為:機(jī)筒溫度100 ℃,螺桿轉(zhuǎn)速85 r/min,質(zhì)量含水率20.0%。在最佳工藝條件下得到的鈣強(qiáng)化大米硬度為13.38 N,彈性為0.67 mm,黏著性為0.64 mJ,咀嚼性為851.51 mJ,接近普通粳米的質(zhì)構(gòu)特性,其鈣質(zhì)量分?jǐn)?shù)為108.2 mg/(100 g)。經(jīng)X射線(xiàn)衍射表明強(qiáng)化米的結(jié)晶度明顯減少,通過(guò)掃描電鏡表征發(fā)現(xiàn)其外表面粗糙呈現(xiàn)不規(guī)則形狀,并產(chǎn)生聚集現(xiàn)象,糊化溫度降低。將其按1:12的比例添加到粳米中,鈣質(zhì)量分?jǐn)?shù)為18.02 mg/(100 g),可提高人體對(duì)鈣的攝入。

        擠壓法;質(zhì)構(gòu);鈣化合物;特性;大米;強(qiáng)化米;質(zhì)構(gòu)特性;乙酸鈣

        0 引 言

        大米作為人們?nèi)粘I钪凶钪匾闹魇砙1-3],含有豐富的營(yíng)養(yǎng)物質(zhì)[4-5],能為人體提供日常所需的能量[6]。但稻米中蛋白質(zhì)含量較低、氨基酸構(gòu)成比例不合理,且隨著大米加工水平的提高,大米加工精度等級(jí)越來(lái)越高,在碾白和拋光等過(guò)程中,許多有價(jià)值的營(yíng)養(yǎng)物質(zhì)的損失也越來(lái)越嚴(yán)重[7],因此需要對(duì)其進(jìn)行強(qiáng)化。

        鈣是一種對(duì)人體健康、兒童生長(zhǎng)發(fā)育極為重要的元素,需要從體外攝入[8]。鈣具有強(qiáng)化軟組織彈性和韌性、降低神經(jīng)細(xì)胞興奮性、促進(jìn)體內(nèi)多種酶的活動(dòng)、維持酸堿平衡、參與血液凝固等功能,缺鈣會(huì)導(dǎo)致佝僂病、骨質(zhì)疏松等許多疾病。于平等[9]人對(duì)補(bǔ)鈣劑的現(xiàn)狀及營(yíng)養(yǎng)成分進(jìn)行了研究,表明目前中國(guó)人民對(duì)鈣的攝入還遠(yuǎn)遠(yuǎn)不夠。乙酸鈣作為一種新的補(bǔ)鈣強(qiáng)化劑,溶于水立即解離為Ca2+及CH3COO-,易被人體吸收,降低血液黏稠度,有利于新陳代謝,預(yù)防心血管疾病[10-11];與其他鈣強(qiáng)化劑相比,乙酸鈣對(duì)胃無(wú)刺激作用,安全無(wú)污染。

        目前,主要的大米營(yíng)養(yǎng)物質(zhì)強(qiáng)化方法有浸吸法、表面涂膜法以及擠壓法等強(qiáng)化工藝[12-13]。李天真[14]以葡萄糖酸鋅作為鋅強(qiáng)化劑,采用浸吸法得到鋅強(qiáng)化營(yíng)養(yǎng)大米。Kyritsi等[15]采用浸泡和噴淋米粒的方法制備富含維生素B的強(qiáng)化大米,得到較好的維生素保留率。但是該方法存在營(yíng)養(yǎng)素?fù)p失大、不能完全被浸漬、成本高等問(wèn)題,目前很少應(yīng)用于大米營(yíng)養(yǎng)物質(zhì)的強(qiáng)化生產(chǎn)。而擠壓法是一種高溫短時(shí)的處理工藝,為集混合、攪拌、破碎、加熱、殺菌及成型等為一體的高新技術(shù)[16-17],被廣泛應(yīng)用于食品行業(yè)[18-21]。由于擠壓過(guò)程中的高溫、高壓、高剪切力作用,大米中的淀粉、蛋白質(zhì)等大分子物質(zhì)被切斷成小分子物質(zhì)[22-23]。

        本文以碎粳米為原料,粉碎后加入乙酸鈣再進(jìn)行擠壓處理,制備重組富鈣強(qiáng)化大米。擠壓過(guò)程中以鈣強(qiáng)化大米的硬度、彈性、黏著性和咀嚼性為指標(biāo),對(duì)擠壓過(guò)程的主要參數(shù)進(jìn)行優(yōu)化。通過(guò)-射線(xiàn)衍射分析法、掃描電鏡法對(duì)鈣強(qiáng)化大米的晶體結(jié)構(gòu)和外表特征進(jìn)行表征,并對(duì)大米的糊化特性進(jìn)行分析,以期制得質(zhì)構(gòu)特性與粳米相近,達(dá)到人們的口感需求的富鈣強(qiáng)化重組大米,并按一定比列添加到粳米中,以滿(mǎn)足人體日常對(duì)鈣的需求。

        1 材料與方法

        1.1 材料及設(shè)備

        粳米、碎粳米(黑龍江省寒香玉米業(yè)有限公司);乙酸鈣(純度99%,常州蘇杭精細(xì)化工有限公司);Sigma-A0512 直鏈淀粉及Sigma-10120 支鏈淀粉標(biāo)準(zhǔn)品(北京普天同創(chuàng)生物科技有限公司)。

        DP-70型雙螺桿擠壓機(jī)(濟(jì)南大鵬機(jī)械設(shè)備有限公司);TPA質(zhì)構(gòu)儀(英國(guó)Stable Micro System公司);S-3400N型掃描電子顯微鏡(日本Hitachi公司);密封型手提式高速粉碎機(jī)(廣州市旭朗機(jī)械設(shè)備有限公司);101-2A電熱恒溫鼓風(fēng)干燥箱(上海五久自動(dòng)化設(shè)備有限公司);RVA 快速黏度分析儀(瑞聯(lián)科技有限公司);島津X射線(xiàn)衍射儀XRD-6000(深圳瑞盛科技有限公司)。

        1.2 試驗(yàn)方法

        富鈣強(qiáng)化大米制備的工藝流程如下:

        碎米→粉碎→過(guò)篩→混合→調(diào)質(zhì)→擠壓→老化→干燥→冷卻→包裝

        將粳米碎米進(jìn)行粉碎、過(guò)100目篩,與鈣強(qiáng)化劑混合,再通過(guò)蒸汽和水的作用,按照一定質(zhì)量含水率進(jìn)行調(diào)質(zhì)后進(jìn)入擠壓機(jī)重新制粒。研究擠壓過(guò)程中含水率、機(jī)筒溫度及螺桿轉(zhuǎn)速對(duì)鈣強(qiáng)化大米的硬度、彈性、黏著性和咀嚼性的影響,以期得到較好口感的鈣強(qiáng)化大米。然后將產(chǎn)品強(qiáng)化米在35 ℃,相對(duì)濕度70%的條件下老化3 h左右。老化后的強(qiáng)化米送入熱風(fēng)干燥箱中,45 ℃下干燥40 min,冷卻包裝[24]。

        1.3 試驗(yàn)設(shè)計(jì)

        在預(yù)試驗(yàn)的基礎(chǔ)上,確定乙酸鈣的添加質(zhì)量分?jǐn)?shù)為2.0%,本試驗(yàn)采用 Box-Benhnken 中心組合設(shè)計(jì)[25],以機(jī)筒溫度()、螺桿轉(zhuǎn)速()、質(zhì)量含水率()為自變量,分別以硬度(1)、彈性(2)、黏著性(3)、咀嚼性(4)為響應(yīng)值設(shè)計(jì)3因素3水平響應(yīng)面試驗(yàn),因素水平編碼見(jiàn)表1。

        表1 因素水平編碼表

        1.4 主要指標(biāo)的測(cè)定

        1.4.1 質(zhì)構(gòu)特性的測(cè)定

        選取40 g鈣強(qiáng)化大米,置于鐵罐中按照質(zhì)量比1∶1加入40 mL蒸餾水,電飯煲蒸煮15 min后保溫18 min。以市售粳米質(zhì)構(gòu)作為對(duì)照,使用TPA質(zhì)構(gòu)分析儀,TA36探頭,測(cè)前行進(jìn)速度:2 mm/s;力:0.196 N,測(cè)后行進(jìn)速度:1 mm/s;測(cè)試速度:1 mm/s;停留時(shí)間:2 s;壓縮程度:70%。從樣品中隨機(jī)選取3粒大小基本一致的完整強(qiáng)化米,以中心對(duì)稱(chēng)的形式擺放在載物臺(tái)中心,保持表面平整,平行測(cè)定10次,剔除差異很大的曲線(xiàn),取平均值[26],測(cè)試指標(biāo)為硬度(Y)、彈性(Y)、黏著性(Y)、咀嚼性(Y)。

        1.4.2 掃描電鏡觀測(cè)

        通過(guò)掃描電子顯微鏡對(duì)大米形態(tài)結(jié)構(gòu)的變化進(jìn)行檢測(cè)。分別稱(chēng)取5 mg大米于1 mL 50% 乙醇溶液中,超聲勻化成懸濁液,從中分別取少量樣品直接鋪在載玻片的表面,在紅外燈下烘干液體后鍍金90 s。處理后的大米裝入S-3400N掃描電鏡觀察室,在加速電壓為5.00 kV,放大倍數(shù)為500的條件下進(jìn)行檢測(cè)觀察。

        1.4.3 鈣質(zhì)量分?jǐn)?shù)的測(cè)定

        鈣強(qiáng)化大米和對(duì)照組市售粳米電飯煲蒸煮后凍干,粉碎后測(cè)定鈣質(zhì)量分?jǐn)?shù)。測(cè)定方法參考GB 5009.92-2016《食品安全國(guó)家標(biāo)準(zhǔn)食品中鈣的測(cè)定》。

        1.4.4 晶體結(jié)構(gòu)的測(cè)定

        通過(guò)X-射線(xiàn)衍射儀器獲得大米的衍射圖譜,掃描的衍射區(qū)域衍射角2角度變化范圍為5°~40°,目標(biāo)電壓為40 kV,電流為30 mA,掃描速度為8°/min。通過(guò)衍射圖譜觀察結(jié)晶區(qū)與非結(jié)晶區(qū)的變化。

        1.4.5 大米糊化特性的測(cè)定

        根據(jù)李玥[27]的方法,準(zhǔn)確稱(chēng)取2.4 g大米,加入25 mL蒸餾水,混合后使用快速黏度測(cè)定儀(RVA)進(jìn)行測(cè)定。測(cè)定條件:50 ℃下保持1 min,以12 ℃/min的速度上升到95 ℃(耗時(shí)3.75 min),95 ℃下保持2.5 min,以12 ℃/min下降到50 ℃(耗時(shí)3.75 min),50 ℃下保持1 min,過(guò)程中攪拌器速度為160 r/min。

        1.5 數(shù)據(jù)統(tǒng)計(jì)分析方法

        所有指標(biāo)的測(cè)定都重復(fù)3次,試驗(yàn)結(jié)果取平均值和標(biāo)準(zhǔn)誤差值,數(shù)據(jù)采用Origin 8.5與Design Expert 8.0.6進(jìn)行分析和繪制。

        2 結(jié)果與分析

        2.1 響應(yīng)面數(shù)據(jù)分析

        試驗(yàn)設(shè)計(jì)方案及結(jié)果見(jiàn)表2。

        將試驗(yàn)數(shù)據(jù)進(jìn)行多元回歸擬合,得到硬度(1)、彈性(2)、黏著性(3)以及咀嚼性(4)對(duì)機(jī)筒溫度()、螺桿轉(zhuǎn)速()、質(zhì)量含水率()的回歸方程如表3所示。

        表2 響應(yīng)面設(shè)計(jì)方案及試驗(yàn)結(jié)果

        表3 根據(jù)編碼值確定的回歸方程

        利用 Design Expert 8.0.6 軟件對(duì)試驗(yàn)結(jié)果進(jìn)行方差分析,結(jié)果見(jiàn)表4。由表4可知,回歸方程的因變量與自變量之間存在的線(xiàn)性關(guān)系明顯,4組模型回歸均極顯著,<0.000 1,表明通過(guò)回歸方程可以看出,因變量與所有自變量之間具有顯著的線(xiàn)性關(guān)系,即這種試驗(yàn)方法是可靠的。失擬項(xiàng)均不顯著,表明該模型選擇正確,且各組模型中的相關(guān)系數(shù)2、調(diào)整系數(shù)2Adj均在0.9以上,說(shuō)明該模型與試驗(yàn)擬合良好??梢杂么四P蛠?lái)分析和預(yù)測(cè)大米的質(zhì)構(gòu)特性。

        表4 方差分析結(jié)果

        注:*差異顯著(<0.05);**差異極顯著(<0.01)。

        Note: * significant difference (<0.05); ** extremely significant difference (<0.01).

        通過(guò)Design Expert 8.0.6軟件對(duì)響應(yīng)值進(jìn)行分析計(jì)算,選擇Optimization下的Numerical選項(xiàng),將影響強(qiáng)化米質(zhì)構(gòu)特性的4個(gè)主要指標(biāo)全部選中,再將其范圍分別選擇為硬度7.595~13.504 N、彈性0.44~0.79 mm、黏著性0.40~0.74 mJ、咀嚼性658~860 mJ,通過(guò)軟件將響應(yīng)值綜合計(jì)算分析得到富鈣強(qiáng)化大米擠壓過(guò)程的最佳工藝參數(shù)為機(jī)筒溫度100.00 ℃、螺桿轉(zhuǎn)速84.44 r/min、質(zhì)量含水率20.12%,該條件下質(zhì)構(gòu)特性的預(yù)測(cè)值為硬度13.38N、彈性0.6697mm、黏著性0.6423mJ、咀嚼性851.507mJ。根據(jù)實(shí)際情況將工藝參數(shù)進(jìn)行整理,得出整理值為機(jī)筒溫度100 ℃、螺桿轉(zhuǎn)速85 r/min、質(zhì)量含水率20%。

        為檢驗(yàn)在響應(yīng)面優(yōu)化出的條件下所得結(jié)果的可靠性,進(jìn)行平行試驗(yàn)驗(yàn)證得到的硬度為13.24 N,彈性為0.65 mm,黏著性為0.63 mJ,咀嚼性為855.21 mJ,且響應(yīng)面優(yōu)化的預(yù)測(cè)值與試驗(yàn)值之間的擬合性良好,從而也就證實(shí)了模型的有效性。通過(guò)對(duì)市售粳米進(jìn)行質(zhì)構(gòu)測(cè)定,得到硬度為11.90 N,彈性為0.78 mm,黏著性為0.72 mJ,咀嚼性為798.50 mJ,與粳米的質(zhì)構(gòu)特性相接近。

        2.1.1 機(jī)筒溫度、螺桿轉(zhuǎn)速和質(zhì)量含水率對(duì)鈣強(qiáng)化大米硬度的影響

        如圖1所示,機(jī)筒溫度和含水率對(duì)鈣強(qiáng)化大米的硬度的影響極為顯著,螺桿轉(zhuǎn)速和含水率對(duì)鈣強(qiáng)化大米的硬度的影響較為顯著。當(dāng)螺桿轉(zhuǎn)速一定時(shí),鈣強(qiáng)化大米的硬度隨著機(jī)筒溫度的升高呈先上升后逐漸下降的趨勢(shì),硬度隨著含水率的增加呈先上升后下降的趨勢(shì)。這主要是因?yàn)闇囟容^低時(shí),物料受到的擠壓作用不充分,而溫度過(guò)高時(shí),大米中水分蒸發(fā)程度高,大米膨脹率較高,因而硬度較低;當(dāng)機(jī)筒溫度一定時(shí),鈣強(qiáng)化大米的硬度隨著螺桿轉(zhuǎn)速和含水率的增加呈先上升后下降的趨勢(shì),螺桿轉(zhuǎn)速較低時(shí),物料在機(jī)筒內(nèi)停留時(shí)間較長(zhǎng),受熱時(shí)間較長(zhǎng),因此硬度較低,當(dāng)螺桿轉(zhuǎn)速過(guò)大時(shí),物料停留時(shí)間較短,擠壓作用不充分,導(dǎo)致硬度降低。

        注:考察2個(gè)因素對(duì)指標(biāo)的影響時(shí),第3個(gè)因素固定在0水平,下同。

        2.1.2 機(jī)筒溫度、螺桿轉(zhuǎn)速和質(zhì)量含水率對(duì)鈣強(qiáng)化大米彈性的影響

        如圖2所示,螺桿轉(zhuǎn)速和含水率、機(jī)筒溫度和螺桿轉(zhuǎn)速對(duì)鈣強(qiáng)化大米的彈性的影響均極為顯著,當(dāng)機(jī)筒溫度一定時(shí),鈣強(qiáng)化大米的彈性隨著螺桿轉(zhuǎn)速的升高而略微升高,隨著含水率的增加而逐漸上升。這是因?yàn)楹实纳?,增加了大米的膨脹率,使其彈性增大;?dāng)含水率一定時(shí),隨著機(jī)筒溫度和螺桿轉(zhuǎn)速的升高,物料受到高溫高剪切力的作用,糊化程度較高,彈性增大,其變化趨勢(shì)與劉云飛等[24]研究得出的趨勢(shì)相似。

        圖2 機(jī)筒溫度、螺桿轉(zhuǎn)速和質(zhì)量含水率對(duì)彈性的影響

        2.1.3 機(jī)筒溫度、螺桿轉(zhuǎn)速和質(zhì)量含水率對(duì)鈣強(qiáng)化大米黏著性的影響

        如圖3所示,機(jī)筒溫度和螺桿轉(zhuǎn)速對(duì)鈣強(qiáng)化大米的黏著性的影響極為顯著,機(jī)筒溫度和含水率、螺桿轉(zhuǎn)速和含水率對(duì)鈣強(qiáng)化大米的黏著性的影響均較為為顯著。當(dāng)含水率一定時(shí),鈣強(qiáng)化大米的黏著性隨著螺桿轉(zhuǎn)速的升高而降低。這主要是因?yàn)楫?dāng)螺桿轉(zhuǎn)速較高時(shí),物料在擠壓機(jī)內(nèi)停留時(shí)間較短,機(jī)筒內(nèi)溫度較高,使大米處于熔融狀態(tài),因而黏著性降低[28];當(dāng)螺桿轉(zhuǎn)速一定時(shí),較高的機(jī)筒溫度使大米的糊化程度升高,黏著性降低;而當(dāng)機(jī)筒溫度一定時(shí),水分含量較低時(shí),機(jī)筒內(nèi)物料較干,不利于螺桿向前輸送,大米在機(jī)筒內(nèi)滯留時(shí)間較長(zhǎng)糊化程度較高;而螺桿轉(zhuǎn)速升高時(shí),大米受到較強(qiáng)的剪切力,使得黏著性降低。

        圖3 機(jī)筒溫度、螺桿轉(zhuǎn)速和質(zhì)量含水率對(duì)黏著性的影響

        2.1.4 機(jī)筒溫度、螺桿轉(zhuǎn)速和質(zhì)量含水率對(duì)鈣強(qiáng)化大米咀嚼性的影響

        如圖4所示,機(jī)筒溫度和含水率對(duì)鈣強(qiáng)化大米的咀嚼性的影響極為顯著,機(jī)筒溫度和螺桿轉(zhuǎn)速對(duì)鈣強(qiáng)化大米的咀嚼性的影響較為顯著。當(dāng)螺桿轉(zhuǎn)速一定時(shí),鈣強(qiáng)化大米的咀嚼性隨著含水率的升高呈先上升后下降的趨勢(shì),隨著機(jī)筒溫度的增加呈先上升后逐漸下降的趨勢(shì)。這是因?yàn)楫?dāng)機(jī)筒溫度和含水率較低時(shí),物料較干,??谔帀毫^高,不易通過(guò)[29],因此大米在機(jī)筒內(nèi)停留時(shí)間較長(zhǎng),淀粉結(jié)構(gòu)被破壞,咀嚼性較低;當(dāng)機(jī)筒溫度和含水率較大時(shí),物料處于流體狀態(tài),??谔帀毫^小,能順利通過(guò),咀嚼性提高;而當(dāng)溫度繼續(xù)升高時(shí),大米處于熔融狀態(tài),咀嚼性降低;當(dāng)含水率一定時(shí),機(jī)筒溫度和螺桿轉(zhuǎn)速較低,大米糊化程度較低,結(jié)構(gòu)松散,咀嚼性較低,當(dāng)機(jī)筒溫度和螺桿轉(zhuǎn)速過(guò)高時(shí),大米受到高溫高剪切作用,出現(xiàn)輕微膨化現(xiàn)象,結(jié)構(gòu)開(kāi)始松散,因此咀嚼性降低。

        2.2 強(qiáng)化大米掃描電鏡觀察

        試驗(yàn)采用S-3400N型掃描電子顯微鏡觀察碎粳米和在最優(yōu)擠壓工藝條件下制備的鈣強(qiáng)化米外觀放大500倍下的變化,如圖5所示,可以看出擠壓處理對(duì)大米的表面結(jié)構(gòu)的影響較為明顯。

        圖4 機(jī)筒溫度、螺桿轉(zhuǎn)速和質(zhì)量含水率對(duì)咀嚼性的影響

        由圖5可見(jiàn),圖5 a為碎粳米,具有規(guī)則的外表,表面較為平滑,且分布較為松散;圖5 b為最優(yōu)擠壓工藝條件下制備的鈣強(qiáng)化米,其表面較為粗糙呈不規(guī)則形狀,且顆粒不完整[30]。這可能是由于在擠壓過(guò)程高溫高剪切力的作用下,大米中淀粉糊化,大分子的支鏈淀粉降解成為直鏈淀粉和麥芽糊精等小分子物質(zhì),而直鏈淀粉具有良好的成型性、成模性及凝膠性,直鏈淀粉含量的增多,使得樣品的質(zhì)構(gòu)更加緊密,呈現(xiàn)較不規(guī)則形狀。

        圖5 電子顯微鏡掃描圖(×500)

        2.3 擠壓處理對(duì)大米晶體結(jié)構(gòu)影響

        通過(guò)-衍射分析法測(cè)定大米的晶體結(jié)構(gòu)變化如圖6所示,可以看出擠壓處理對(duì)大米的晶體結(jié)構(gòu)影響較為明顯。

        由圖6 a可見(jiàn),原粳米分別在衍射角2為15°、17°、18°、23°附近有較強(qiáng)的衍射峰,說(shuō)明粳米淀粉是典型的A-型晶體結(jié)構(gòu)[31];由圖6可見(jiàn),經(jīng)過(guò)擠壓處理后,大米的特征峰被明顯破壞,且結(jié)晶度較原碎米有所下降,說(shuō)明經(jīng)過(guò)擠壓處理后,結(jié)晶區(qū)受到了嚴(yán)重的破壞,這主要是因?yàn)樵诘矸垲w粒內(nèi)部,支鏈淀粉是形成結(jié)晶的主要結(jié)構(gòu),而擠壓過(guò)程中有較高的剪切力的作用,使淀粉顆粒破壞,支鏈淀粉降解,含量下降。此外,圖譜中強(qiáng)化米在衍射角2為29°附近有較強(qiáng)的衍射峰,表明強(qiáng)化米中鈣質(zhì)量分?jǐn)?shù)有所提高[32]。

        圖6 大米的X-射線(xiàn)衍射圖譜

        2.4 擠壓處理對(duì)大米糊化性質(zhì)的影響

        通過(guò)RVA快速黏度分析儀得出擠壓處理前后大米的糊化特性曲線(xiàn)如圖7所示。

        圖7 擠壓前后大米糊化特性曲線(xiàn)

        由圖7可知,原粳米的糊化特征曲線(xiàn)總體呈上升趨勢(shì),其峰值黏度為1.504 91±0.024 23 Pa·s,最低黏度為1.113 06 Pa·s,終值黏度為2.214 08 Pa·s。而擠壓處理后的曲線(xiàn)基本為一條直線(xiàn),這說(shuō)明擠壓工藝對(duì)大米糊化特性影響較為顯著。擠壓后大米黏度隨時(shí)間變化不顯著,表明其淀粉穩(wěn)定性較好[33]。這主要是因?yàn)榈矸壑芯з|(zhì)與非晶質(zhì)態(tài)的淀粉分子間的氫鍵斷開(kāi),微晶束分離,使淀粉顆粒中原有的微晶結(jié)構(gòu)被破壞[34-35],擠壓后淀粉結(jié)晶區(qū)減少,使得糊化過(guò)程溫度降低,有利于酶解作用,且較低的黏度可以使酶與淀粉的接觸更加充分,有利于消化吸收。

        2.5 粳米與鈣強(qiáng)化大米鈣質(zhì)量分?jǐn)?shù)測(cè)定

        原粳米與鈣強(qiáng)化大米中鈣質(zhì)量分?jǐn)?shù)如表5所示,可以看出通過(guò)擠壓處理得到的鈣強(qiáng)化大米,其鈣質(zhì)量分?jǐn)?shù)明顯高于原粳米。

        表5 原粳米與鈣強(qiáng)化大米鈣質(zhì)量分?jǐn)?shù)

        由表5可知,通過(guò)擠壓法制得的鈣強(qiáng)化大米其鈣質(zhì)量分?jǐn)?shù)為108.2 mg/(100 g),而普通粳米的鈣質(zhì)量分?jǐn)?shù)僅為10.5 mg/(100 g)。通過(guò)對(duì)比可以得出擠壓法可以較好的增加大米中鈣質(zhì)量分?jǐn)?shù)。通過(guò)上述對(duì)質(zhì)構(gòu)特性的分析,得到強(qiáng)化米質(zhì)構(gòu)特性和粳米相接近,結(jié)合居民膳食營(yíng)養(yǎng)素參考攝入量(DRI)給出的鈣推薦攝入量,人體平均攝入鈣含量在800~1 200 mg[36],但目前人體每日均衡膳食攝入的鈣量大約只為標(biāo)準(zhǔn)攝入量的一半左右,另一半應(yīng)從強(qiáng)化鈣的食品中獲得,但考慮到不同階段人群對(duì)鈣的需求不同,攝入的強(qiáng)化米鈣含量不宜過(guò)高,因此將強(qiáng)化米與粳米按照1:12的比例進(jìn)行復(fù)配,復(fù)配后鈣質(zhì)量分?jǐn)?shù)為18.02 mg/(100 g)。

        3 討 論

        本文以碎粳米為原料,通過(guò)擠壓法加入鈣強(qiáng)化劑,將大米進(jìn)行重組,制得鈣強(qiáng)化大米。試驗(yàn)以鈣強(qiáng)化米的質(zhì)構(gòu)特性為指標(biāo),通過(guò)響應(yīng)面法對(duì)擠壓參數(shù)進(jìn)行優(yōu)化,最終得到強(qiáng)化米的最佳工藝條件。

        嚴(yán)松等[37]對(duì)碎米在食品工業(yè)中的綜合利用進(jìn)行了闡述,表明通過(guò)碎米與強(qiáng)化劑混合制備人造米,具有較好的發(fā)展前景。劉麗等[38]研究了擠壓處理對(duì)碎米結(jié)構(gòu)及特性的影響,得到經(jīng)過(guò)擠壓處理后的大米淀粉顆粒結(jié)晶度降低,對(duì)-淀粉酶的敏感性提高,更加有利于酶解作用。劉云飛等[24]向碎米中加入鐵營(yíng)養(yǎng)強(qiáng)化劑,并對(duì)其質(zhì)構(gòu)特性進(jìn)行了研究,結(jié)果表明通過(guò)擠壓法生產(chǎn)的營(yíng)養(yǎng)強(qiáng)化大米增加了鐵含量而質(zhì)構(gòu)特性與原大米相似,具有較好的口感。但目前關(guān)于擠壓法制得的營(yíng)養(yǎng)強(qiáng)化米的結(jié)構(gòu)及特性的研究還較為少見(jiàn)。

        本文在前人研究基礎(chǔ)上向碎米中加入乙酸鈣強(qiáng)化劑,制備重組富鈣強(qiáng)化大米,不僅對(duì)重組強(qiáng)化大米的質(zhì)構(gòu)特性進(jìn)行了分析,還對(duì)強(qiáng)化大米的表觀結(jié)構(gòu),晶體結(jié)構(gòu)及大米糊化度等特性進(jìn)行了研究。結(jié)果表明通過(guò)擠壓處理得到的強(qiáng)化大米其質(zhì)構(gòu)特性與原粳米接近,結(jié)晶度減少,糊化溫度降低,穩(wěn)定性較好。

        4 結(jié) 論

        本文以碎粳米為原料,乙酸鈣為強(qiáng)化劑,通過(guò)擠壓法將大米進(jìn)行重組。試驗(yàn)采用響應(yīng)面法研究擠壓工藝參數(shù)對(duì)鈣強(qiáng)化大米質(zhì)構(gòu)的影響,得到最佳工藝參數(shù)為:機(jī)筒溫度100 ℃,螺桿轉(zhuǎn)速85 r/min,質(zhì)量含水率20.0%。在最佳工藝條件下得到的鈣強(qiáng)化大米硬度為13.38 N,彈性為0.67 mm,黏著性為0.64 mJ,咀嚼性為851.51 mJ,其質(zhì)構(gòu)特性和粳米相接近,鈣含量為108.2 mg/(100 g)。擠壓處理后強(qiáng)化米結(jié)晶度明顯減少,呈現(xiàn)出不規(guī)則形狀。大米的糊化溫度和黏度降低,穩(wěn)定性較好。將其按一定比例添加到粳米中,既使碎米得到了充分的利用,又可增加人體對(duì)鈣的攝入。

        [1] 劉敏,譚書(shū)明,張洪禮,等. 不同品種大米口感品質(zhì)分析[J]. 食品科學(xué),2018,39(15):88-92.

        Liu Min, Tan Shuming, Zhang Hongli, et al. Taste quality of different rice varieties[J]. Food Science, 2018, 39(15): 88-92. (in Chinese with English abstract)

        [2] 董惠忠,趙黎明,蔣麗華,等. 酶法提取功能性大米蛋白的工藝研究[J]. 中國(guó)食品學(xué)報(bào),2013,13(4):87-93.

        Dong Huizhong, Zhao Liming, Jiang Lihua, et al. Study on extraction of functional rice protein by enzymatic method[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(4): 87-93.(in Chinese with English abstract)

        [3] 錢(qián)麗麗,宋雪健,張東杰,等. 近紅外光譜技術(shù)快速鑒別查哈陽(yáng)大米[J]. 食品科學(xué),2017,38(16):222-227.

        Qian Lili, Song Xuejian, Zhang Dongjie, et al. Rapid identification of Chahayang rice using near infrared spectroscopy[J]. Food Science, 2017, 38(16): 222-227. (in Chinese with English abstract)

        [4] 袁江蘭,常靜,李傳雯,等. 大米谷蛋白的堿致變性和結(jié)構(gòu)表征[J]. 食品科學(xué),2017,38(21):43-48.

        Yuan Jianglan, Chang Jing, Li Chuanwen, et al. Alkalidenaturation and structural characterizations of rice glutelin[J]. Food Science, 2017, 38(21): 43-48. (in Chinese with English abstract)

        [5] 張慧娟,夏雪芬,王靜,等. 大米蛋白及其酶解產(chǎn)物的功能性質(zhì)[J]. 中國(guó)食品學(xué)報(bào),2015,15(8):63-70.

        Zhang Huijuan, Xia Xuefen, Wang Jing, et al. Functional properties of rice protein and its enzymatic hydrolysates[J]. Journal of Chinese Institute Of Food Science and Technology, 2015, 15(8): 63-70. (in Chinese with English abstract)

        [6] 羅舜菁,李燕,楊榕,等. 氨基酸對(duì)大米淀粉糊化和流變性質(zhì)的影響[J]. 食品科學(xué),2017,38(15):178-182.Luo Shunjing, Li Yan, Yang Rong, et al. Effects of amino acids on pasting and rheological properties of rice starch[J]. Food Science, 2017, 38(15): 178-182. (in Chinese with English abstract)

        [7] 王凡,胡秋輝,方勇,等. 納米包裝延緩淮稻5號(hào)大米高溫高濕環(huán)境下的品質(zhì)劣變[J]. 食品科學(xué),2017,38(5):267-273.

        Wang Fan, Hu Qiuhui, Fang Yong, et al. Nanocomposite packaging delays quality deterioration of the rice cultivar Huaidao 5 at high temperature and humidity[J]. Food Science, 2017, 38(5): 267-273. (in Chinese with English abstract)

        [8] 黃廣民,姚伯元. 高鈣強(qiáng)化劑中痕量汞的測(cè)定[J]. 食品科學(xué),2003,24(8):112-114.

        [9] 于平,勵(lì)建榮. 補(bǔ)鈣劑的現(xiàn)狀及營(yíng)養(yǎng)評(píng)價(jià)方法[J]. 中國(guó)食品學(xué)報(bào),2002,2(1):57-61.

        Yu Ping, Li Jianrong. Present situation and nutritional evaluation methods of calcium-supplemental agents[J]. Journal of Chinese Institute of Food Science and Technology, 2002, 2(1): 57-61. (in Chinese with English abstract)

        [10] Matias P J, Jorge C, Azevedo A, et al. Calcium acetate/magnesium carbonate and cardiovascular risk factors in chronic hemodialysis patients[J]. Nephron, 2016, 132(4): 317-326.

        [11] Yusuf A A, Weinhandl E D, Peter W L S. Comparative effectiveness of calcium acetate and sevelamer on clinical outcomes in elderly hemodialysis patients enrolled in medicare part D[J]. American Journal of Kidney Diseases the Official Journal of the National Kidney Foundation, 2014, 64(1): 95-103.

        [12] 馬文,李喜宏,劉霞,等. 支鏈淀粉與直鏈淀粉比例對(duì)重組營(yíng)養(yǎng)強(qiáng)化米品質(zhì)的影響[J]. 中國(guó)食品學(xué)報(bào),2014,14(11):42-48.

        Ma Wen, Li Xihong, Liu Xia, et al. Effects of amylopectin/amylose ratio on quality of reformed nutrition rice[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(11): 42-48. (in Chinese with English abstract)

        [13] Liu C, Zhang Y, Liu W, et al. Preparation, physicochemical and texture properties of texturized rice produce by improved extrusion cooking technology[J]. Journal of Cereal Science, 2011, 54(3): 473-480.

        [14] 李天真. 強(qiáng)化工藝條件對(duì)鋅強(qiáng)化營(yíng)養(yǎng)米蒸煮食味品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(7):222-225.

        Li Tianzhen. Effects of technological parameters of Zn enrichment on eating-and-cooking quality of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(7): 222-225. (in Chinese with English abstract)

        [15] Kyritsi A, Tzia C, Karathanos V T. Vitamin fortified rice grain using spraying and soaking methods[J]. LWT - Food Science and Technology, 2011, 44(1): 312-320.

        [16] 高福成. 現(xiàn)代食品工程高新技術(shù)[M]. 北京:中國(guó)輕工業(yè)出版社,2000:35-36.

        [17] 冉新炎,董海洲,劉傳富,等. 玉米擠壓工藝條件的優(yōu)化及其理化特性的研究[J]. 中國(guó)食品學(xué)報(bào),2011,11(7):140-147.

        Ran Xinyan, Dong Haizhou, Liu Chuanfu, et al. Research on the extrusion technology conditions and physical and chemical properties of corn[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(7): 140-147. (in Chinese with English abstract)

        [18] Wolf B. Polysaccharide functionality through extrusion processing[J]. Current Opinion in Colloid & Interface Science, 2010, 15(1): 50-54.

        [19] 關(guān)正軍,申德超. 擠壓膨化工藝參數(shù)對(duì)玉米淀粉出酒率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009(增刊1):118-121.

        Guan Zhengjun, Shen Dechao. Effect of parameters for extrusion and expansion process on the alcohol yield of maize starch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009(Supp.1): 118-121. (in Chinese with English abstract)

        [20] 張勛,張麗霞,蘆鑫,等. 混料試驗(yàn)與模糊評(píng)價(jià)結(jié)合優(yōu)化擠壓膨化芝麻制品工藝[J]. 食品科學(xué),2018(4):248-253.

        Zhang Xun, Zhang Lixia, Lu Xin, et al. Formulation optimization of extruded sesame-based food products using mixture design and fuzzy evaluation[J]. Food Science, 2018(4): 248-253. (in Chinese with English abstract)

        [21] Philipp C, Buckow R, Silcock P, et al. Instrumental and sensory properties of pea protein-fortified extruded rice snacks[J]. Food Research International, 2017, 102: 658-665.

        [22] Ding Q B, Paul A, Gregory T, et al. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks[J]. Journal of Food Engineering, 2005, 66(3): 283-289.

        [23] Rafiq A, Sharma S, Singh B. Invitro, starch digestibility, degree of gelatinization and functional properties of twin screw prepared cereal-legume pasta[J]. Journal of Cereal Science, 2017, 74: 279-287.

        [24] 劉云飛,劉成梅,羅舜菁,等. 改良擠壓法制備鐵營(yíng)養(yǎng)強(qiáng)化大米的研究[J]. 食品工業(yè)科技,2012,33(23):244-248.

        Liu Yunfei, Liu Chengmei, Luo Shunjing, et al. Preparation of nutritional rice fortified with Na Fe EDTA by improved extrusion cooking technology[J]. Science and Technology of Food Industry, 2012, 33(23): 244-248. (in Chinese with English abstract)

        [25] 吳有煒. 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 蘇州:蘇州大學(xué)出版社,2002.

        [26] Rewthong O, Soponronnarit S, Taechapairoj C, et al. Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice[J]. Journal of Food Engineering, 2011, 103(3): 258-264.

        [27] 李玥. 大米淀粉的制備方法及物理化學(xué)特性研究[D]. 無(wú)錫:江南大學(xué),2008.

        Li Yue. Studies on Isolation Process and Physicochemical Properties of Rice Starch[D]. Wuxi: Jiangnan University, 2008. (in Chinese with English abstract)

        [28] 張彥軍,劉成梅,劉偉,等. 熱壓凝膠法制備營(yíng)養(yǎng)質(zhì)構(gòu)米及其營(yíng)養(yǎng)性質(zhì)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):282-287.

        Zhang Yanjun, Liu Chengmei, Liu Wei, et al. Preparation and nutrient properties of texturized rice by hotpressing gelatinization technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 282-287. (in Chinese with English abstract)

        [29] 于殿宇,王彤,王旭,等. 擠壓膨化預(yù)處理工藝優(yōu)化提高大豆蛋白粉品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):285-292.

        Yu Dianyu, Wang Tong, Wang Xu, et al. Optimal extrusion pretreatment process improving quality of soybean protein powder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 285-292. (in Chinese with English abstract)

        [30] Zavareze E D R, Storck C R, Castro L A S D, et al. Effect of heat-moisture treatment on rice starch of varying amylose content[J]. Food Chemistry, 2010, 121(2): 358-365.

        [31] Hung P V, Morita N. Physicochemical properties of hydroxypropylated and cross-linked starches from A-type and B-type wheat starch granules[J]. Carbohydrate Polymers, 2005, 59(2): 239-246.

        [32] 王向麗. 紅外光譜法和X射線(xiàn)衍射技術(shù)在中藥配方顆粒定性鑒別方面的應(yīng)用[D]. 石家莊:河北師范大學(xué),2015.

        Wang Xiangli. Application of Infrared Spectroscopy and X-ray Diffraction Technique in Qualitative Identification of Traditional Chinese Medicine Formula Particles[D]. Shijiazhuang: Hebei Normal University, 2015. (in Chinese with English abstract)

        [33] 李娜,張英華. 用RVA儀分析玉米淀粉的糊化特性[J]. 中國(guó)糧油學(xué)報(bào),2011,26(6):20-24.

        Li Na, Zhang Yinghua. Analysis on pasting properties of maize starch by RVA[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(6): 20-24. (in Chinese with English abstract)

        [34] Varavinit S, Shobsngob S, Varanyanond W, et al. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice[J]. Starch-St?rke, 2003, 55(9): 410-415. (in Chinese with English abstract)

        [35] 楊曉蓉,李歆,凌家煜. 不同類(lèi)別大米糊化特性和直鏈淀粉含量的差異研究[J]. 中國(guó)糧油學(xué)報(bào),2001,16(6):37-42.

        Yang Xiaorong, Li Xin, Ling Jiayu. Differences among rice categories in pasting characteristics and amylose content[J]. Journal of the Chinese Cereals and Oils Association, 2001, 16(6): 37-42. (in Chinese with English abstract)

        [36] Yates A A, Schlicker S A, Suitor C W. Dietary reference intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline[J]. Journal of the American Dietetic Association, 1998, 98(6): 699-706.

        [37] 嚴(yán)松,任傳英,孟慶虹,等. 碎米及米糠在食品工業(yè)中的綜合利用[J]. 食品科學(xué),2011(增刊1):132-134.

        [38] 劉麗,程建軍,楊文鑫,等. 擠壓處理對(duì)碎米結(jié)構(gòu)及特性的影響[J]. 食品工業(yè)科技,2013,34(1):92-96.

        Liu Li, Cheng Jianjun, Yang Wenxin, et al. Effect of the extrusion on the structure and properties of broken rice starch[J]. Journal of the Chinese Cereals and Oils Association, 2013, 34(1): 92-96. (in Chinese with English abstract)

        Process optimization and structure characterization of calcium-fortified recombinant rice prepared by extrusion

        Yu Dianyu1, Wang Tong1, Tang Honglin1, Chen Jun1, Jiang Lianzhou1, Han Fujiang2, Wu Fei1※

        (1.,,150030,;2.150030,)

        Calcium is the most abundant element in the human body?s inorganic elements. It is an important component of human bones and teeth that has important physiological functions. Calcium has the functions of strengthening the soft tissue springness and toughness, reducing the excitability of nerve cells, promoting the activities of various enzymes in the body, maintaining the acid-base balance, and participating in blood coagulation. The calcium deficiency can cause rickets, osteoporosis and many other diseases. However, at present, our people’s intake of calcium is still far from enough. Rice is the most important staple food in people's daily life. It is rich in nutrients and can provide the body with the daily energy needed. However, the protein content in rice is low, and the proportion of amino acids is unreasonable. With the improvement of rice processing, many valuable nutrients are lost during the grinding and polishing process. At present, the main methods of rice nutrition enhancement include soaking, surface coating and extrusion. Due to large losses of nutrients, incomplete impregnation, and high cost, soaking and surface coating methods are rarely used for nutrition enhanced rice production. Extrusion is a high-temperature, short-term treatment process that combines mixing, stirring, crushing, heating, sterilizing, extrusion, and forming as a whole. It is widely used in the food industry. Due to the high temperature, high pressure, and high shear forces during the extrusion process, macromolecular substances such as starch and proteins in rice are cut into small molecules. The broken glutinous rice was used as raw material, calcium acetate was added as a nutritional enhancer, and the extrusion method was used to prepare a recombinant nutrient-fortified rice rich in calcium. In the experiment, the texture of calcium fortified rice was used as an index to optimize the process parameters of the extrusion process. The optimum process parameters were as follows: barrel temperature 100 ℃, screw speed 85 r/min, and water content 20.0%. Under the optimum process conditions, the calcium-fortified rice had a hardness of 13.38 N, an springness of 0.67 mm, an adhesiveness of 0.64 mJ, and a chewiness of 851.51 mJ, which was close to the texture characteristics of ordinary glutinous rice. In order to test the reliability of the results obtained under the optimized conditions of the response surface, the hardness obtained by parallel test was 13.24 N, the springness was 0.65 mm, the adhesiveness was 0.63 mJ, the chewiness was 855.21 mJ. the fit between the predicted value of the response surface and the experimental value was good, which confirmed the validity of the model. By measuring the texture of commercially available glutinous rice, the hardness was 11.90 N, the springness was 0.78 mm, the adhesiveness was 0.72 mJ, and the chewiness was 798.50 mJ. The texture characteristics of calcium-fortified recombinant rice were close to that of glutinous rice. The calcium content of the fortified rice was 108.2 mg/(100 g), which is much higher than 10.5 mg/(100 g) of common glutinous rice. Studies have shown that the calcium content of calcium fortified rice prepared by the extrusion method was much more than that of normal glutinous rice, and its hardness, springness, chewiness and adhesiveness were superior to those of normal rice. The X-ray diffraction showed that the crystallinity of the fortified rice was significantly reduced and the fortified rice had a strong diffraction peak near the diffraction angle 2of 29°, indicating that the calcium content in the fortified rice was improved. It was found by scanning electron microscopy that the outer surface of the fortified rice was rough and irregular, the aggregation phenomenon occurred, and the gelatinization temperature decreased. The extrusion process had a significant effect on the gelatinization characteristics of rice and the viscosity of rice after extrusion was not significantly changed with time, indicating that its starch stability was better. Adding it to glutinous rice with a ratio of 1:12, the rice had a good appearance with a calcium content of 18.02 mg/100g, which was favorable for industrial production and solving the problem of insufficient calcium intake.

        extrusion; textures; calcium compounds; characterization; rice; fortified rice; texture characteristics; calcium acetate

        于殿宇,王 彤,唐洪琳,陳 俊,江連洲,韓富江,吳 非. 擠壓法制備富鈣強(qiáng)化重組大米的工藝優(yōu)化及其結(jié)構(gòu)表征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):291-298. doi:10.11975/j.issn.1002-6819.2018.22.036 http://www.tcsae.org

        Yu Dianyu, Wang Tong, Tang Honglin, Chen Jun, Jiang Lianzhou, Han Fujiang, Wu Fei. Process optimization and structure characterization of calcium-fortified recombinant rice prepared by extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 291-298. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.036 http://www.tcsae.org

        10.11975/j.issn.1002-6819.2018.22.036

        TS213.3

        A

        1002-6819(2018)-22-0291-08

        2018-05-10

        2018-10-25

        “十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專(zhuān)項(xiàng):米糠高值化穩(wěn)態(tài)加工技 術(shù)及智能裝備研發(fā)與示范(2018YFD0401101);國(guó)家自然科學(xué)基金面上項(xiàng)目 (31571880)

        于殿宇,博士,教授,主要從事糧油精深加工技術(shù)研究。 Email:dyyu2000@126.com

        吳非,博士,教授,主要從事農(nóng)產(chǎn)品精深加工研究。 Email:wfneau@163.com

        猜你喜歡
        質(zhì)量
        聚焦質(zhì)量守恒定律
        “質(zhì)量”知識(shí)鞏固
        “質(zhì)量”知識(shí)鞏固
        質(zhì)量守恒定律考什么
        做夢(mèng)導(dǎo)致睡眠質(zhì)量差嗎
        焊接質(zhì)量的控制
        關(guān)于質(zhì)量的快速Q(mào)&A
        初中『質(zhì)量』點(diǎn)擊
        質(zhì)量投訴超六成
        你睡得香嗎?
        民生周刊(2014年7期)2014-03-28 01:30:54
        午夜久久精品国产亚洲av| 国产精品久久久久久久| 欧洲女人性开放免费网站| 香蕉视频毛片| 女优视频一区二区三区在线观看| 国产在线一区二区av| 一本色道久久88亚洲精品综合| 亚洲av无码成人精品区在线观看| 精品欧洲AV无码一区二区免费| 色婷婷亚洲精品综合影院| 亚洲一区二区三区小说| 日韩在线一区二区三区免费视频 | 亚洲国产成人精品无码区在线观看| h动漫尤物视频| av在线天堂国产一区| 制服丝袜中文字幕在线| 久久久窝窝午夜精品| 国产成人自拍小视频在线| 久久一区二区三区少妇人妻| 毛片免费视频在线观看| 日韩中文字幕欧美亚洲第一区| 青青草视频原手机在线观看| 国产女同va一区二区三区| 欧美 国产 综合 欧美 视频| 国品精品一区二区在线观看| av天堂在线免费播放| 最新国产精品拍自在线观看| 丰满人妻被黑人中出849 | 国产亚洲美女精品久久久| 免费观看视频在线播放| 视频在线观看国产自拍| 国产精品成人久久电影| 亚洲AV无码永久在线观看| 亚洲日本中文字幕乱码| 日本大乳高潮视频在线观看| 久久精品国产亚洲av电影| 日韩精品中文字幕人妻中出| 免费观看91色国产熟女| 精品欧洲av无码一区二区三区 | 性久久久久久久| 久久久久国产精品四虎|