亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        煤矸石改良膨脹土特性及其最佳摻量條件下的孔隙結(jié)構(gòu)表征

        2018-11-23 07:20:10殷瀟瀟

        張 雁,殷瀟瀟,劉 通

        ?

        煤矸石改良膨脹土特性及其最佳摻量條件下的孔隙結(jié)構(gòu)表征

        張 雁,殷瀟瀟,劉 通

        (內(nèi)蒙古農(nóng)業(yè)大學(xué)能源與交通工程學(xué)院,呼和浩特 010018)

        為減小膨脹土對(duì)土木工程設(shè)施及農(nóng)業(yè)生態(tài)環(huán)境的危害,進(jìn)行摻加煤矸石粉改良膨脹土的試驗(yàn)研究。該文以內(nèi)蒙古興和縣高廟子鄉(xiāng)的膨脹土和煤矸石為研究對(duì)象,通過無荷膨脹試驗(yàn)、有荷膨脹試驗(yàn)和收縮試驗(yàn)確定煤矸石粉的最佳摻量,對(duì)最佳煤矸石粉摻量的膨脹土進(jìn)行干濕循環(huán)試驗(yàn),利用直剪試驗(yàn)測(cè)定每次干濕循環(huán)后試件的抗剪強(qiáng)度指標(biāo);通過壓汞試驗(yàn)測(cè)得孔隙特征值,從微觀角度揭示強(qiáng)度變化機(jī)理。試驗(yàn)結(jié)果表明:煤矸石粉摻量為6%時(shí)抑制膨脹土的脹縮性效果最佳;干濕循環(huán)作用使素膨脹土黏聚力和內(nèi)摩擦角均有所衰減,摻入煤矸石粉后強(qiáng)度衰減得到控制;隨干濕循環(huán)次數(shù)的增加孔徑逐漸向大孔范圍聚集,團(tuán)粒結(jié)構(gòu)增多,使素膨脹土的抗剪強(qiáng)度指標(biāo)降低;經(jīng)過5次干濕循環(huán),摻加煤矸石粉土樣的大孔孔隙密度比素膨脹土降低約35%,煤矸石有效阻止膨脹土的強(qiáng)度劣化。

        抗剪強(qiáng)度;孔隙度;煤矸石;膨脹土;干濕循環(huán);壓汞法

        0 引 言

        膨脹土是一種高塑性、高敏感性黏土,主要礦物成分為蒙脫石和伊利石,具有極強(qiáng)的“吸水膨脹,失水收縮”的特性。由于膨脹土的這種特性,其強(qiáng)度易受干濕循環(huán)作用的影響。國內(nèi)外學(xué)者大量研究發(fā)現(xiàn)膨脹土在干濕循環(huán)條件下往往呈現(xiàn)出一定的軟化特性,抗變形能力以及強(qiáng)度會(huì)逐漸下降,易導(dǎo)致邊坡失穩(wěn)、路基沉陷、農(nóng)田水利設(shè)施損壞,水土流失加重,影響農(nóng)業(yè)生態(tài)環(huán)境,從而引發(fā)嚴(yán)重的安全事故和巨大的經(jīng)濟(jì)損失[1-2],因而對(duì)膨脹土強(qiáng)度特性的研究對(duì)防治膨脹土造成的災(zāi)害有重大意義。目前在干濕循環(huán)條件下膨脹土強(qiáng)度方面的研究有:張大琦[3]研究了干濕循環(huán)下石灰處治膨脹土的強(qiáng)度特性,結(jié)果表明黏聚力不斷降低,內(nèi)摩擦角變化不明顯;沈泰宇等[4]利用化學(xué)復(fù)合改良劑提高膨脹土強(qiáng)度和降低膨脹率;膨脹土在反復(fù)干濕的過程中,土體飽和度不斷變化,反復(fù)膨脹收縮,其強(qiáng)度也在不斷變化[5];楊和平等[6]研究南寧外環(huán)膨脹土在干濕循環(huán)下的抗剪強(qiáng)度,結(jié)果表明黏聚力隨干濕循環(huán)衰減較大,內(nèi)摩擦角衰減較??;呂海波等[7]探究了膨脹土抗剪強(qiáng)度與含水率、干濕循環(huán)次數(shù)的關(guān)系,發(fā)現(xiàn)膨脹土抗剪強(qiáng)度隨干濕循環(huán)次數(shù)的增加而衰減,最終趨于穩(wěn)定。有的研究表明膨脹土的強(qiáng)度、脹縮衰減等工程特征在一定程度上取決于其微觀特征[8];徐丹等[9]研究了干濕循環(huán)對(duì)非飽和膨脹土抗剪強(qiáng)度的影響,結(jié)果發(fā)現(xiàn)膨脹土的抗剪強(qiáng)度的變化與微觀結(jié)構(gòu)有關(guān);曾召田等[10]研究了膨脹土干濕循環(huán)過程中的孔隙結(jié)構(gòu),指出隨著干濕循環(huán)次數(shù)的增加,試樣的孔隙率,總孔體積等均有所增加;其他研究者[11-14]通過壓汞試驗(yàn)研究了膨脹土孔隙微觀結(jié)構(gòu)在脫濕、凍融等條件下的變化。膨脹土利用方面的研究主要有,在煤矸石中摻加或覆蓋煤矸石堆可控制煤矸石中重金屬的溶出量[15-20];孫樹林等[21-23]在膨脹土中摻入堿渣等固體廢棄物改性膨脹土,降低其脹縮能力;牛晨亮等[24]研究利用工業(yè)廢渣固化土;賀建清等[25]研究得到在煤矸石中,摻入一定量黏土,可彌補(bǔ)煤矸石的黏聚力,增加其穩(wěn)定性。從上述分析可知,微觀特征是影響膨脹土強(qiáng)度的因素之一,煤矸石改性膨脹土可起到增強(qiáng)的作用,但是在煤矸石一定摻量條件下,煤矸石改性膨脹土的強(qiáng)度機(jī)理有待于進(jìn)一步探索。

        本文從改良膨脹土的宏觀和微觀方面進(jìn)行研究,通過膨脹試驗(yàn)和收縮試驗(yàn)確定煤矸石粉的最佳摻量,利用剪切試驗(yàn)和壓汞試驗(yàn)測(cè)定改良膨脹土的強(qiáng)度特性和孔徑分布變化,從微觀角度解釋干濕循環(huán)作用下煤矸石粉對(duì)膨脹土抗剪強(qiáng)度的影響機(jī)理,對(duì)摻入煤矸石解決膨脹土的工程問題和合理利用煤矸石減少環(huán)境污染具有指導(dǎo)意義。

        1 試驗(yàn)材料及方法

        1.1 試驗(yàn)材料基本性質(zhì)

        試驗(yàn)用膨脹土取自內(nèi)蒙古興和縣高廟子鄉(xiāng)(40°47′55.87″N,114°0′55.05″E),氣候?qū)俅箨懶约撅L(fēng)氣候,年降水量350~400 mm,年平均蒸發(fā)量為2 036.8 mm。取樣深度為地表以下50 cm范圍,顏色為灰白色,粉粒狀結(jié)構(gòu),有滑感。膨脹土過0.5 mm篩,測(cè)得膨脹土基本指標(biāo):液限為57.2%,塑限為28.7%,塑性指數(shù)為28.5,天然含水率為4.25%,自由膨脹率為46%,根據(jù)膨脹土的膨脹率和塑限判斷土樣為弱膨脹土,液限大于50%為高塑性土。膨脹土的顆粒分析試驗(yàn)結(jié)果如圖1所示。

        圖1 土的顆粒分析試驗(yàn)結(jié)果

        從圖1可知,土粒粒徑10=0.01mm,30=0.02mm,60=0.06mm,膨脹土不均勻系數(shù)C=60/10>5,曲率系數(shù)C=302/(6010)=0.7≠1~3,故土顆粒級(jí)配不良。煤矸石取自烏海市神五煤礦公烏素煤礦4號(hào)采區(qū),較堅(jiān)硬,呈固體片狀,表面油脂光澤,屬于炭質(zhì)頁巖?;净瘜W(xué)指標(biāo)[26]見表1所示。

        表1 煤矸石的化學(xué)成分

        由表1可知,煤矸石中SiO2、Al2O3含量占主要部分,其他成分含量較小。SiO2、Al2O3、Fe2O3的總含量為91.2%。經(jīng)測(cè)定得到煤矸石的物理指標(biāo):吸水率為0.5%,燒失率為14.4%,壓碎值為20.6%,不均勻系數(shù)為3.3,曲率系數(shù)為2。因此煤矸石的吸水率較小,其壓碎值均小于30%,燒失量小于20%,滿足路基設(shè)計(jì)規(guī)范要求[27]。由各煤矸石摻量的混合料的擊實(shí)試驗(yàn)可得混合料的最佳含水率和最大干密度(如表2),隨著煤矸石粉摻量的增大,最佳含水率增大而最大干密度隨之減小。

        表2 混合料的最佳含水率

        1.2 試驗(yàn)設(shè)計(jì)

        借鑒涂義亮等[28]研究干濕循環(huán)對(duì)黏土的影響,設(shè)計(jì)干濕最大含水率為飽和含水率,最小含水率為干燥過程中質(zhì)量不再變化時(shí)的含水率;吳珺華等[29]研究干濕循環(huán)下膨脹土的基質(zhì)吸力,設(shè)計(jì)增濕過程是在試樣表面噴水至其質(zhì)量不再發(fā)生變化為止,并結(jié)合當(dāng)前極端氣候?qū)θ虻挠绊?,各地的極端暴雨、干旱、高溫等氣候現(xiàn)象頻發(fā),且通過試驗(yàn)測(cè)得膨脹土樣增濕至質(zhì)量不再變化時(shí)的含水率為80%,設(shè)計(jì)本試驗(yàn)研究的增濕含水率為80%和完全干燥的含水率為0%。根據(jù)文獻(xiàn)[30]設(shè)計(jì)本次試驗(yàn)的干濕循環(huán)為5次,每次干濕循環(huán)結(jié)束后取2組試件,每組試件12個(gè)樣。環(huán)刀試件用于直接剪切試驗(yàn),盛土盒試件用于壓汞試驗(yàn)。將試件放置在保濕罐,用滴管每隔30 min對(duì)土樣表面加水直至土樣達(dá)到預(yù)設(shè)含水率后停止加濕,將土樣在保濕罐中養(yǎng)護(hù)24 h使水分均勻分布。采用自然風(fēng)干方式干燥土樣,每隔1 h稱質(zhì)量,當(dāng)土樣達(dá)到預(yù)設(shè)含水率后即認(rèn)為試樣完全干燥,如此為1次干濕循環(huán)。

        將煤矸石磨細(xì),并過0.5 mm篩[31]。參照規(guī)范[27]中石灰改良膨脹土的摻量在3%~10%,故設(shè)計(jì)煤矸石摻量分別為3%、6%、9%、12%。按照混合料的最佳含水率拌合土樣,悶料24 h。按照輕型擊實(shí)標(biāo)準(zhǔn),擊實(shí)土樣,選用直徑為61.8 mm、高為20 mm的鋼環(huán)刀,切出土樣試件。使用WZ-2型膨脹儀和WG型單杠桿固結(jié)儀,對(duì)不同煤矸石摻量下的試樣按照《公路土工試驗(yàn)規(guī)程》[32],進(jìn)行無荷膨脹率試驗(yàn),壓力50kPa有荷膨脹率試驗(yàn)和收縮試驗(yàn),從試樣的脹縮性能方面選取煤矸石粉的最佳摻量。對(duì)干濕循環(huán)后的環(huán)刀土樣使用南京土壤儀器廠生產(chǎn)的ZJ型應(yīng)變控制式直剪儀,按照J(rèn)TG E40-2007法[32]進(jìn)行快剪試驗(yàn)測(cè)定干濕循環(huán)作用下土樣的黏聚力和內(nèi)摩擦角。壓汞試驗(yàn)采用美國麥克公司生產(chǎn)的Auto Pore IV 9500全自動(dòng)壓汞儀,粒徑測(cè)量范圍為0.005~360m。從土樣中間部位切出5 mm×5 mm×15 mm的長方體壓汞試樣,經(jīng)過冷凍干燥處理以保證土中孔隙不因脫水發(fā)生膨脹和收縮。通過壓汞試驗(yàn)得到試樣的孔隙特征值,孔隙率、孔隙體積、孔隙密度,從微觀角度分析干濕循環(huán)作用下試樣的孔隙變化特征及煤矸石粉摻量對(duì)試樣強(qiáng)度的影響機(jī)理。

        2 結(jié)果與分析

        2.1 膨脹率和收縮試驗(yàn)

        由無荷膨脹率試驗(yàn)和50 kPa壓力作用下的有荷膨脹率試驗(yàn)得到不同膨脹時(shí)間下的土樣膨脹率以及收縮系數(shù)與煤矸石摻量間的關(guān)系如圖2所示。

        由圖2a可知,在0~500 min,煤矸石粉摻量越多土樣無荷膨脹率越大,當(dāng)膨脹時(shí)間在500~950 min之間時(shí),素膨脹土樣膨脹率急劇增大,950min后,素膨脹土的膨脹率開始趨于穩(wěn)定,且超過所有煤矸石摻量的膨脹土樣曲線,2 200 min后,各摻量下的膨脹土膨脹率趨于穩(wěn)定。0%煤矸石摻量下的膨脹土的膨脹率達(dá)到約11%,當(dāng)煤矸石粉摻入6%時(shí)比素膨脹土的膨脹率降低7.7%。因此,煤矸石粉的摻入對(duì)膨脹土的無荷膨脹率具有一定的改良效果。圖2b看出,在膨脹時(shí)間0~15 h內(nèi),摻入煤矸石粉的土樣比素膨脹土的有荷膨脹率更高;當(dāng)膨脹時(shí)間達(dá)到15~20 h時(shí),摻入煤矸石粉的土樣的膨脹率逐漸趨于穩(wěn)定,素膨脹土則繼續(xù)膨脹;當(dāng)大于24 h后,摻煤矸石的膨脹土樣膨脹率低于素膨脹土并逐漸趨于穩(wěn)定。由穩(wěn)定后各土樣的有荷膨脹率可見,0%煤矸石摻量下的膨脹土的膨脹率僅為2.8%,比無荷膨脹率減小了75%,摻量為6%時(shí)有荷膨脹率最小,比未摻煤矸石的膨脹土樣膨脹率降低36%。由無荷膨脹率試驗(yàn)和有荷膨脹率試驗(yàn)的結(jié)果得到煤矸石粉摻量為6%時(shí)對(duì)膨脹土膨脹率的抑制作用最佳,且荷載的增加會(huì)顯著抑制膨脹變形[33-35]。粗顆粒材料的摻入,使混合料的最佳含水率增加,最大干密度減小,膨脹率受到抑制[36]。由圖2c可知,曲線在煤矸石粉摻量為6%時(shí)有一個(gè)明顯的轉(zhuǎn)折點(diǎn),即煤矸石粉摻量小于6%時(shí),收縮系數(shù)比未摻煤矸石膨脹土試樣的收縮系數(shù)減小了約40%,摻量大于6%,收縮系數(shù)減小量逐漸減緩。以上結(jié)果說明煤矸石粉對(duì)膨脹土收縮性能的改善效果較為明顯。

        圖2 無荷膨脹率、有荷膨脹率和收縮系數(shù)與煤矸石摻量的關(guān)系

        由上述膨脹試驗(yàn)和收縮試驗(yàn)結(jié)果分析,煤矸石粉摻量為6%對(duì)膨脹土的脹縮性能的改良效果是最佳的。

        2.2 剪切試驗(yàn)

        選取素膨脹土和6%煤矸石摻量的土樣進(jìn)行干濕循環(huán)試驗(yàn),干濕循環(huán)5次后,通過直接剪切試驗(yàn)測(cè)定每次干濕循環(huán)后土樣的黏聚力和內(nèi)摩擦角,可得到不同干濕循環(huán)次數(shù)下土樣的黏聚力和內(nèi)摩擦角如圖3所示。

        圖3 黏聚力、內(nèi)摩擦角與干濕循環(huán)次數(shù)的關(guān)系

        從圖3a得出,摻入6%的煤矸石粉后膨脹土的黏聚力提高近1.2倍。1次干濕循環(huán)后,摻入煤矸石的土樣黏聚力減小8.20%,而素膨脹土則降低19.66%。表明干濕循環(huán)作用對(duì)土樣的黏聚力具有明顯的破壞作用,而摻入煤矸石粉的土樣黏聚力衰減較小,說明煤矸石粉的摻入能夠抵抗干濕循環(huán)對(duì)土樣的破壞。隨著干濕循環(huán)次數(shù)的增加,土樣的黏聚力繼續(xù)減小,但減小幅度不斷降低,干濕循環(huán)3次后土樣黏聚力逐漸趨于穩(wěn)定,摻煤矸石粉土樣的黏聚力減小17.43%,素膨脹土樣減少26.37%。由此可知干濕循環(huán)1次時(shí)土樣衰減幅度最大,摻入煤矸石和未摻煤矸石的土樣1次干濕循環(huán)后的衰減量占總衰減量分別為47.05%和74.10%。不同次數(shù)干濕循環(huán)后,摻煤矸石粉土樣黏聚力的降低幅度均小于素膨脹土樣,煤矸石粉的摻入提高土樣的黏聚力,增強(qiáng)了土樣抵抗干濕循環(huán)對(duì)黏聚力的弱化作用。從圖3b可以看出,土樣的內(nèi)摩擦角隨著干濕循環(huán)次數(shù)增加而降低。干濕循環(huán)1次后,土樣的內(nèi)摩擦角有微小增加,摻煤矸石粉的土樣增大幅度為0.17%,素膨脹土的增大幅度為0.33%,即素膨脹土對(duì)干濕循環(huán)作用更加敏感。干濕循環(huán)2~4次后,土樣的內(nèi)摩擦角逐漸減??;4~5次后平緩,最終摻煤矸石粉6%的土樣內(nèi)摩擦角衰減幅度為3.13%,素膨脹土的衰減幅度為3.92%。

        綜上所述,干濕循環(huán)作用使土樣的黏聚力減小,摻煤矸石的土樣黏聚力增大,衰減幅度較小。而土樣的內(nèi)摩擦角隨干濕循環(huán)次數(shù)先少量增大后逐漸減小,素膨脹土內(nèi)摩擦角隨干濕循環(huán)次數(shù)增加而降低的幅度較大,表現(xiàn)出較大的敏感性。以50 kPa壓力作用下對(duì)干濕循環(huán)5次后的試樣進(jìn)行直剪試驗(yàn),計(jì)算得到0%和6%煤矸石摻量的抗剪強(qiáng)度值分別為50和105 kPa,因此摻加煤矸石,膨脹土樣經(jīng)歷了反復(fù)干濕循環(huán)抗剪強(qiáng)度提高一倍。6%摻量煤矸石粉能夠較好的抵抗干濕循環(huán)對(duì)土樣的劣化作用。

        3 脹縮變形及強(qiáng)度影響分析

        3.1 孔隙率

        土樣的孔隙率及孔隙體積隨干濕循環(huán)次數(shù)的變化如圖4。在圖4a中,隨著干濕循環(huán)次數(shù)的增多,2種土樣的孔隙率均逐漸增大。第1次干濕循環(huán)后,土樣的孔隙率增大幅度最大,素膨脹土增大11.6%,改良土樣增大6.19%。干濕循環(huán)在1~3次,素膨脹土的孔隙率增大1.28%,而改良土樣的變化幅度較大,達(dá)到5.43%。當(dāng)干濕循環(huán)達(dá)到4次后,改良土的孔隙率逐漸趨于穩(wěn)定,而素膨脹土的孔隙率則繼續(xù)增大。最終,素膨脹土的孔隙率增加23.06%,改良土則增大12.84%,因此改良土可抑制孔隙率的增加。由圖4b可以看出,干濕循環(huán)次數(shù)越多,土樣的總孔隙體積越大,循環(huán)5次后,素膨脹土總孔隙體積增加0.070 cm3/g,改良土樣增大0.082 cm3/g。每次干濕循環(huán)后,改良土樣的總孔隙體積均小于素膨脹土的總孔隙體積,干濕循環(huán)初始,二者差值為0.012 cm3/g,當(dāng)干濕循環(huán)5次后,二者差距僅為0.003 cm3/g。

        圖4 孔隙率及孔隙體積隨干濕循環(huán)次數(shù)的變化

        總之,干濕循環(huán)作用使土樣的總孔隙體積和孔隙率均有所增加,而摻入煤矸石粉的土樣,在每次干濕循環(huán)作用后,總孔隙體積和孔隙率均小于素膨脹土樣。

        3.2 累積孔隙體積

        根據(jù)Shear等[37]的孔徑劃分理論,可將膨脹土的微觀結(jié)構(gòu)孔徑劃分為如表3所示的5類。膨脹土樣的累積孔隙體積曲線如圖5所示。由圖5a可知,在干濕循環(huán)過程中,由于其孔隙結(jié)構(gòu)的變化,隨著干濕循環(huán)次數(shù)的增加,累積孔隙體積曲線向上移動(dòng),在微孔和小孔范圍內(nèi)移動(dòng)距離最大,在超微孔范圍內(nèi)移動(dòng)范圍較??;干濕循環(huán)0到3次的曲線變化可分為2個(gè)階段:在小于0.1m時(shí)曲線較陡,大于0.1m后曲線趨于平緩。干濕循環(huán)次數(shù)增加后,曲線變化情況分為3個(gè)階段,在<0.1m和>20m范圍內(nèi),曲線斜率較大,而在0.1m<<20m范圍內(nèi)干濕循環(huán)次數(shù)多的曲線較平緩。這表明干濕循環(huán)作用對(duì)孔徑的變化主要集中在超微孔和大孔范圍內(nèi)。

        表3 孔隙類型劃分

        圖5 累積孔隙體積-孔徑曲線

        從圖5b可以看出,干濕循環(huán)0和1次的曲線變化可分為兩部分,小于0.1m時(shí)曲線陡,大于0.1m后曲線趨于平緩;干濕循環(huán)3次后,曲線開始向上移動(dòng),至4次后曲線在>20m范圍內(nèi)斜率增大。

        比較累積孔隙體積與孔徑曲線,可以看出摻入煤矸石粉的土樣曲線隨干濕循環(huán)次數(shù)的增加較為平緩,有明顯的過渡階段,說明煤矸石粉可抵抗干濕循環(huán)的破壞作用。

        3.3 累積孔隙密度

        對(duì)圖5中累積孔隙體積求導(dǎo)即可得孔隙分布密度曲線如圖6所示。

        圖6 孔隙密度-孔徑曲線

        由圖6a可看出,在干濕循環(huán)開始階段素膨脹土樣呈現(xiàn)出單峰值,當(dāng)干濕循環(huán)次數(shù)達(dá)到3次后,曲線開始呈現(xiàn)雙峰值特征,第一個(gè)峰值出現(xiàn)在超微孔范圍內(nèi),第二個(gè)峰值出現(xiàn)在大孔范圍內(nèi)。在0.1~20m范圍內(nèi)不同干濕循環(huán)次數(shù)下的土樣曲線基本相同,在大于20m范圍第3、4、5次干濕循環(huán)后的土樣曲線出現(xiàn)峰值,且干濕次數(shù)越多峰值越大,越沿橫坐標(biāo)往右移動(dòng),這表明隨著干濕循環(huán)次數(shù)的增加大孔逐漸增多且孔徑也越來越大,孔隙類型逐漸從顆粒間孔徑和顆粒內(nèi)孔徑向團(tuán)粒間孔隙轉(zhuǎn)移。

        對(duì)于摻煤矸石粉的土樣,圖6b中各曲線均在小于0.1m的范圍內(nèi)出現(xiàn)峰值,干濕循環(huán)0次和1次的土樣曲線僅有一個(gè)峰值,當(dāng)干濕循環(huán)進(jìn)行到2次時(shí)曲線出現(xiàn)第二個(gè)峰值。在0.1~2m范圍內(nèi),隨著干濕循環(huán)的深入,第二個(gè)峰值開始右移,第3、4、5次干濕循環(huán)的曲線第二峰值均出現(xiàn)在大于20m范圍內(nèi),且干濕循環(huán)次數(shù)越多,第二峰值越靠右。

        比較圖6a和圖6b中的曲線,5次干濕循環(huán)后,摻入煤矸石土樣的第二峰值小于素膨脹土的第二峰值,減小約35%。這表明煤矸石粉的摻入減少了大孔比例,素膨脹土在3次干濕循環(huán)后第二峰值就集中在大孔范圍內(nèi),而改良膨脹土的第二峰值是逐漸向右移動(dòng)的,即干濕循環(huán)作用對(duì)素膨脹土的影響較為明顯,煤矸石粉的摻入可有效的改善膨脹土對(duì)干濕循環(huán)作用的敏感性,抵抗干濕循環(huán)對(duì)土的破壞。

        關(guān)于膨脹土的脹縮機(jī)理,有學(xué)者認(rèn)為在水的作用下黏土礦物顆粒表面的親水性與水分子的極性結(jié)構(gòu)特征,水分子在電場(chǎng)力作用下會(huì)吸附在礦物顆粒表面,形成一層水膜,膨脹土吸水而膨脹,本質(zhì)上是水膜形成并且逐漸加厚,使顆粒間距增加,孔隙變大的過程,受到孔隙溶液成分、環(huán)境溫度、外部荷載和微觀結(jié)構(gòu)等因素的影響[33,38]。土體因干燥而失水,土顆粒周圍的水膜變薄,孔徑減小,在毛細(xì)水壓力和表面張力的共同作用下,土顆粒會(huì)隨蒸發(fā)而逐漸靠攏,宏觀表現(xiàn)為收縮變形[39]。試樣的初始干密度越大,初始含水率越小,膨脹率越大[34]。

        煤矸石粉的摻入使膨脹土樣中的粗顆粒含量增大,改變了膨脹土的顆粒組成,最佳含水率增大而最大干密度減小,因而通過物理改良膨脹土的膨脹率得到抑制。土中的孔隙分布與膨脹性的強(qiáng)弱有著直接關(guān)系[40]。鮑碩超等[41]通過試驗(yàn)發(fā)現(xiàn)對(duì)土的膨脹性產(chǎn)生影響主要是土中較小的孔隙,并確定對(duì)膨脹土性質(zhì)起決定性作用的“小-超微”孔隙的影響界限。從以上試驗(yàn)測(cè)得的微觀指標(biāo)孔隙率、孔隙體積、孔隙密度的變化情況看,經(jīng)過干濕循環(huán)后,孔隙率和孔徑逐漸增大,這一結(jié)論與其他學(xué)者的研究結(jié)果一致[42-43]。大孔隙含量增加,土體的團(tuán)粒結(jié)構(gòu)間距增大,因而煤矸石粉對(duì)膨脹土的物理改良過程中,混合料的密度和孔隙結(jié)構(gòu)發(fā)生變化,促使膨脹土的脹縮性也因此發(fā)生改變。

        從以上分析得出,孔隙分布密度的情況與直接剪切試驗(yàn)結(jié)果相吻合,因?yàn)橥翗又写罂紫兜脑龆啾砻鲌F(tuán)粒結(jié)構(gòu)間隙增多,團(tuán)粒結(jié)構(gòu)所占的比例增加,土顆粒的比表面積減小,顆粒間接觸面減小,導(dǎo)致內(nèi)摩擦角減小。而孔徑增大,使團(tuán)粒間的距離增大,團(tuán)粒之間的連接更為松散,黏聚力逐漸減小。摻加煤矸石后,限制大孔密度,團(tuán)粒間孔隙增多,黏聚力增加,內(nèi)摩擦角降低,因而阻止強(qiáng)度的衰減。

        4 結(jié) 論

        以煤矸石改良膨脹土為研究對(duì)象,通過膨脹率試驗(yàn)、收縮試驗(yàn)、直剪試驗(yàn)、壓汞試驗(yàn)等研究干濕循環(huán)作用對(duì)煤矸石改良膨脹土強(qiáng)度及孔徑分布的影響,得到以下主要結(jié)論:

        1)煤矸石粉改良膨脹土的最佳摻量為6%,改良土樣比未摻煤矸石土樣的無荷膨脹率降低7.7%,有荷膨脹率降低36%,收縮率降低約40%。

        2)干濕循環(huán)作用降低土樣的黏聚力和內(nèi)摩擦角,且隨著干濕循環(huán)次數(shù)增加而逐漸減小。摻入煤矸石粉土樣黏聚力和內(nèi)摩擦角的衰減幅度均小于素膨脹土,在最佳煤矸石粉摻量下,最終循環(huán)作用后抗剪強(qiáng)度增加一倍。

        3)孔隙分布隨干濕循環(huán)次數(shù)的增加,孔隙率、總孔隙體積增大,大孔逐漸增多。摻煤矸石粉的土樣限制大孔生成,抑制干濕循環(huán)對(duì)膨脹土孔隙的破壞作用,因而減少對(duì)土樣的強(qiáng)度影響。

        [1] 王兵,張光輝,劉國彬,等. 黃土高原丘陵區(qū)水土流失綜合治理生態(tài)環(huán)境效應(yīng)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):150-161.

        Wang Bing, Zhang Guanghui, Liu Guobin, et al. Ecological and environmental evaluation for water and soil loss comprehensive harness in Loess hilly region [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 150-161. (in Chinese with English abstract)

        [2] 高奇,師學(xué)義,張琛,等. 縣域農(nóng)業(yè)生態(tài)環(huán)境質(zhì)量動(dòng)態(tài)評(píng)價(jià)與預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):228-237.

        Gao Qi, Shi Xueyi, Zhang Chen, et al. Dynamic assessment and prediction on quality of agricultural eco-environment in county area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 228-237. (in Chinese with English abstract)

        [3] 張大琦. 干濕循環(huán)作用下石灰處治土強(qiáng)度特性試驗(yàn)研究[J]. 上海交通大學(xué)學(xué)報(bào),2011,45(S1):128-132.

        Zhang Daqi. Experimental study of strength characteristics of lime stabilized soil in drying and wetting cycles[J]. Journal of Shanghai Jiaotong University, 2011, 45(S1): 128-132. (in Chinese with English abstract)

        [4] 沈泰宇,邢書香,汪時(shí)機(jī),等. 降低強(qiáng)膨脹土膨脹率提高抗剪強(qiáng)度的復(fù)合改良劑篩選[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):109-115.

        Shen Taiyu, Xing Shuxiang, Wang Shiji, et al. Complex ameliorants screening for reducing swelling ratio and improving shear strength of strong expansive soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 109-115. (in Chinese with English abstract)

        [5] 孔令偉,陳正漢. 特殊土與邊坡技術(shù)發(fā)展綜述[J]. 土木工程學(xué)報(bào),2012,45(5):141-161.

        Kong Lingwei, Chen Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese with English abstract)

        [6] 楊和平,王興正,肖杰. 干濕循環(huán)效應(yīng)對(duì)南寧外環(huán)膨脹土抗剪強(qiáng)度的影響[J]. 巖土工程學(xué)報(bào),2014,36(5):949-954.

        Yang Heping, Wang Xingzheng, Xiao Jie. Influence of wetting-drying cycles on strength characteristics of nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 949-954. (in Chinese with English abstract)

        [7] 呂海波,曾召田,趙艷林,等. 膨脹土強(qiáng)度干濕循環(huán)試驗(yàn)研究[J]. 巖土力學(xué),2009,30(12):3797-3802.

        Lǚ Haibo, Zeng Zhaotian, Zhao Yanlin, et al. Experimental studies of strength of expansive soil in drying and wetting cycle[J]. Rock and Soil Mechanics, 2009, 30(12): 3797-3802. (in Chinese with English abstract)

        [8] 戴張俊,陳善雄,羅紅明,等. 南水北調(diào)中線膨脹土/巖微觀特征及其性質(zhì)研究[J]. 巖土工程學(xué)報(bào),2013,35(5):948-954.

        Dai Zhangjun, Chen Shanxiong, Luo Hongming, et al. Microstructure and characteristics of expansive soil and rock of middle route of South-to-North Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 948-954. (in Chinese with English abstract)

        [9] 徐丹,唐朝生,冷挺,等. 干濕循環(huán)對(duì)非飽和膨脹土抗剪強(qiáng)度影響的試驗(yàn)研究[J]. 地學(xué)前緣,2018,25(1):286-296.

        Xu Dan, Tang Chaosheng, Leng Ting, et al. Shear strength of unsaturated expansive soil during wetting-drying cycles[J]. Earth Science Frontiers, 2018, 25(1): 286-296. (in Chinese with English abstract)

        [10] 曾召田,呂海波,趙艷林,等. 膨脹土干濕循環(huán)過程孔徑分布試驗(yàn)研究及其應(yīng)用[J]. 巖土力學(xué),2013,34(2):322-328.

        Zeng Zhaotian, Lǚ Haibo, Zhao Yanlin, et al. Study of pore size distribution of expansive soil during wetting-drying cycle and its application[J]. Rock and Soil Mechanics, 2013, 34(2): 322-328. (in Chinese with English abstract)

        [11] 汪為巍,王榮,臧濛,等. 膨脹土裂隙三維空間分布特征試驗(yàn)研究[J]. 科學(xué)技術(shù)與工程,2017,17(6):245-251.

        Wang Weiwei, Wang Rong, Zang Meng, et al. Experimental research on three-dimensional space distribution characteristics of the expansive soil cracks[J]. Science Technology and Engineering, 2017, 17(6): 245-251. (in Chinese with English abstract)

        [12] Ye W M, Wan M, Chen B, et al. An unsaturated hydraulic conductivity model for compacted GMZ01 bentonite with consideration of temperature[J]. Environmental Earth Sciences, 2014(71): 1937-1944.

        [13] Kong Lingwei, Wang Min, Guo Aiguo, et al. Effect of drying environment on engineering properties of an expansive soil and its microstructure[J]. Journal of Mountain Science, 2017, 14(6): 1194-1201.

        [14] 馬曉寧,王選倉,孫進(jìn)玲,等. 隴南地區(qū)膨脹土微觀結(jié)構(gòu)與膨脹性[J]. 南水北調(diào)與水利科技,2016,14(3):111-114.

        Ma Xiaoning, Wang Xuancang, Sun Jinling, et al. Microstructure and expansion properties of expansive soil in longnan district[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(3): 111-114. (in Chinese with English abstract)

        [15] Liu H B, Liu Z L. Recycling utilization patterns of coal mining waste in China.[J]. Resources Conservation & Recycling, 2010, 54(12):1331-1340.

        [16] Querol X, Zhuang X, Font O, et al. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data[J]. International Journal of Coal Geology, 2011, 85(1):2-22.

        [17] Liu B, Tang Z, Dong S, et al. Vegetation recovery and groundwater pollution control of coal gangue field in a semi-arid area for a field application[J]. International Biodeterioration & Biodegradation, 2017.DOI: 10.1016/j.ibiod.2017.01.032.

        [18] Yao Y, Li Y, Liu X, et al. Characterization on a cementitious material composed of red mud and coal industry byproducts[J]. Construction & Building Materials, 2013, 47(5):496-501.

        [19] Zhang N, Li H, Liu X. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials[J]. Journal of Hazardous Materials, 2016, 314:172-180.

        [20] Geng J, Zhou M, Zhang T, et al. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation[J]. Materials & Structures, 2017, 50(2):109.

        [21] 孫樹林,鄭青海,唐俊,等. 堿渣改良膨脹土室內(nèi)試驗(yàn)研究[J]. 巖土力學(xué),2012,33(6):1608-1612.

        Sun Shulin, Zheng Qinghai, Tang Jun, et al. Experimental research on expansive soil improved by soda residue[J]. Rock and Soil Mechanics, 2012, 33(6): 1608-1612. (in Chinese with English abstract)

        [22] 孫樹林,唐俊,鄭青海,等. 摻高爐水渣膨脹土的室內(nèi)改良試驗(yàn)研究[J]. 巖土力學(xué),2012,33(7):1940-1944.

        Sun Shulin, Tang Jun, Zheng Qinghai, et al. Experimental study of expansive soil improved with granulated blast furnace slag (GBFS) [J].Rock and Soil Mechanics, 2012, 33(7): 1940-1944. (in Chinese with English abstract)

        [23] 張德恒,孫樹林,徐奮強(qiáng),等. 秸稈灰渣一大理石石灰改良膨脹土試驗(yàn)[J]. 遼寧工程技術(shù)大學(xué)學(xué)報(bào):自然科學(xué)版,2014,33(2):193-197.

        Zhang Deheng, Sun Shulin, Xu Fenqiang, et al. Experiment improvement of expansive soil with straw ash-marble dust[J]. Journal of Liaoning Technical University(Natural Science), 2014, 33(2): 193-197. (in Chinese with English abstract)

        [24] 牛晨亮,黃新,李戰(zhàn)國,等. 利用工業(yè)廢渣固化軟土的試驗(yàn)研究[J]. 環(huán)境工程學(xué)報(bào),2009,3(10):1871-1874.

        Niu Chenliang, Huang Xin, Li Zhanguo, et al. Experimental research on utilization of industrial wastes t stabilize soft soil[J]. Chinese Journal of Environmental Engineering, 2009, 3(10): 1871-1874. (in Chinese with English abstract)

        [25] 賀建清,靳明,陽軍生. 摻土煤矸石路用工程力學(xué)特性及其填筑技術(shù)研究[J]. 土木工程學(xué)報(bào),2008,41(5):87-93.

        He Jianqing, Jin Ming, Yang Junsheng. A study on the road engineering mechanical properties of coal gangue mixed with clay and the filling techniques[J]. China Civil Engineering Journal, 2008, 41(5): 87-93. (in Chinese with English abstract)

        [26] 張雁,張宇,郭利勇,等. 非飽和壓實(shí)膨脹土摻煤矸石的特性研究[J]. 環(huán)境工程學(xué)報(bào),2016,10(9):5115-5120.

        Zhang Yan, Zhang Yu, Guo Liyong, et al. Research on properties of unsaturated compacted expansive soil added with coal gangue[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 5115-5120. (in Chinese with English abstract)

        [27] 公路路基設(shè)計(jì)規(guī)范(JTG D30-2015)[S].

        [28] 涂義亮,劉新榮,鐘祖良,等. 干濕循環(huán)下粉質(zhì)黏土強(qiáng)度及變形特性試驗(yàn)研究[J]. 巖土力學(xué),2017,38(12):3581-3589.

        Tu Yiliang, Liu Xinrong, Zhong Zuliang,et al. Experimental study on strength and deformation characteristics of silty clay during wetting-drying cycles[J]. Rock and Soil Mechanics, 2017, 38(12): 3581-3589. (in Chinese with English abstract)

        [29] 吳珺華,楊松. 干濕循環(huán)下膨脹土基質(zhì)吸力測(cè)定及其對(duì)抗剪強(qiáng)度影響試驗(yàn)研究[J]. 巖土力學(xué),2017,38(3):678-684.

        Wu Junhua, Yang Song. Experimental study of matric suction measurement and its impact on shear strength under drying-wetting cycles for expansive soils[J]. Rock and Soil Mechanics, 2017, 38(3): 678-684. (in Chinese with English abstract)

        [30] Daniel Rosenbalm, Claudia E Zapata. Effect of wetting and drying cycles on the behavior of compacted expansive soils[J]. Journal of Materials in Civil Engineering, 2017, 29(1): DOI:10.1061/(ASCE) MT.1943-5533.0001689.

        [31] Zhang C, Yang X, Li Y. Mechanism and structural analysis of the thermal activation of coal-gangue[J]. Advanced Materials Research, 2011(356-360): 1807-1812.

        [32] 公路土工試驗(yàn)規(guī)程(JTG E40-2007)[S].

        [33] 陳亮,盧亮. 土體干濕循環(huán)過程中的體積變形特性研究[J].地下科學(xué)與工程學(xué)報(bào),2013,9(2):229-235.

        Chen Liang, Lu Liang. Investigation on the characteristics of volumetric change during the wet-dry cycle of the soil[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(2): 229-235. (in Chinese with English abstract)

        [34] 吳珺華,袁俊平,楊松,等. 干濕循環(huán)下膨脹土脹縮性能試驗(yàn)[J]. 水利水電科技進(jìn)展,2013,33(1):62-65.

        Wu Junhua, Yuan Junping, Yang Song, et al. Experimental study on swell-shrinking performance of expansive soil under wetting-drying cycles[J]. Advances in Science and Technology of Water Resources, 2013, 33(1): 62-65. (in Chinese with English abstract)

        [35] 楊和平,張銳,鄭健龍. 有荷條件下膨脹土的干濕循環(huán)脹縮變形及強(qiáng)度變化規(guī)律[J]. 巖土工程學(xué),2006,28(11):1936-1941.

        Yang Heping, Zhang Rui, Zheng Jianlong. Variation of deformation and strength of expansive soil during cyclic wetting and drying under loading condition[J]. Chinese Journal of Geotechnical Engineering,2006,28(11): 1936-1941. (in Chinese with English abstract)

        [36] Guney Y, Sari D, Cetin, et al. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil[J]. Building and Environment, 2007, 42: 681-688.

        [37] Shear D L, Olsen H W, Nelson K R. Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay[R]. Washington D C: Transportation research record, NRC National academy press. 1993: 1365-1370.

        [38] 冷挺,唐朝生,徐丹,等. 膨脹土工程地質(zhì)特性研究進(jìn)展[J]. 工程地質(zhì)學(xué)報(bào),2018,26(1):112-128.

        Leng Ting, Tang Chaosheng, Xu Dan, et al. Advance on the engineering geological characteristics of expansive soil[J]. Journal of Engineering Geology, 2018, 26(1): 112-128. (in Chinese with English abstract)

        [39] 唐朝生,崔玉軍,Anh-Minh Tang,等. 土體干燥過程中的體積收縮變形特征[J]. 巖土工程學(xué)報(bào),2011,33(8):1271-1279. Tang Chaosheng, Cui Yujun, Anh-Minh Tang, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese with English abstract)

        [40] Lin B T, Cerato A B. Prediction of expansive soil swelling based on four micro-scale properties[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(1): 71-78.

        [41] 鮑碩超,王清,陳劍平,等. 吉林省延邊地區(qū)路基邊坡膨脹土孔隙分布特性[J]. 東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,38(1):132-137.

        Bao Shuochao, Wang Qing, Chen Jianping, et al. Pore size distribution of expansive soil of the subgrade slope in Yanbian Region, Jilin Province[J]. Journal of Northeastern University (Natural Science), 2017, 38(1): 132-137. (in Chinese with English abstract)

        [42] Zemenu G, Martine A, Roger C. Analysis of the behavior of a natural expansive soil under cyclic drying and wetting[J]. Bull Eng Geol Environ, 2009, 68: 421-436.

        [43] 唐朝生,施斌. 干濕循環(huán)過程中膨脹土的脹縮變形特征[J]. 巖土工程學(xué)報(bào),2011,33(9):1376-1384.

        Tang Chaosheng, Shi Bin. Swelling and shrinkage behavior of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1376-1384. (in Chinese with English abstract)

        Strength properties of solidified expansive soil with coal gangue and its pore structure characterization under condition of optimum dosage

        Zhang Yan, Yin Xiaoxiao, Liu Tong

        (,010018)

        Expansive soil is a kind of clay with high plasticity and sensitivity. It has strong characteristics of water-absorbing expansion and water-losing contraction, so its strength is easily affected by dry and wet circulation. Under the condition of dry-wet cycle, expansive soil tends to show certain softening characteristics, and its deformation resistance and strength will gradually decline, which will easily lead to the instability of slope, subsidence of roadbed, damage of irrigation and water conservancy facilities, aggravation of soil erosion, and impact on the agricultural ecological environment. In order to weaken damages to civil engineering facilities and ecological environment induced by expansive soils, the experimental study on the expansive soil mixed with coal gangue powder was carried out. The purpose of this paper was to study strength properties of solidified expansive soil with coal gangue powder and microscopic pore characteristics. Expansive soil and coal gangue used for testing were collected fromGao miaozi township, Xinghe county, Inner Mongolia, China. The combination of different ratios of coal gangue was used to treat expansive soil. The optimum dosage of coal gangue powder was determined according to the no-load swelling test, the loaded swelling test, and the contraction test. And then, we conducted the drying and wetting cycle test on expansive soil with the optimum dosage of coal gangue. In addition, the index of shear strength, including cohesion and internal friction angle, obtained from the shear strength test, and pore characteristic values, consisting of porosity, total pore volume, cumulative pore volume and pore density, achieved from the mercury intrusion test. We revealed the strength change mechanism in the view of microcosmic level. The test results showed that the expansion and contraction decreased after mixing coal gangue powder. The optimal dosage of coal gangue powder was 6%. Compared with unmixed soil sample, the no-load expansion rate, loaded expansion rate and shrinkage rate of improved soil sample were reduced by 7.7%, 36% and 40%, respectively. The dry-wet cycle reduced the cohesion and the angle of internal friction of expansive soil and decreases with the increase of dry-wet cycles. The cohesive force and the attenuation of internal friction angle of coal gangue powder soil were all smaller than that of plain expansive soil. While shear strength attenuation restrained by adding coal gangue powder. The pore density-aperture curves were bimodal distribution. With the increase of dry-wet cycle, pore diameters gathered to big pore of diameter, and granular structure emerged, which depressed the strength indexes. The pore density of big pore in samples with coal gangue powder decreased by about 35% compared with expansive soil without coal gangue, after the fifth dry-wet cycle. As the number of dry-wet cycle increased, the porosity and total pore volume increased, and the big pores also gradually increased. The expansive soil sample mixed with coal gangue powder restricts the formation of large pores, inhibits the damage of dry-wet cycle to the pore of expansive soil, and thus reduces the effect on the strength of expansive soil sample. In conclusion, coal gangue powder can prevent strength of expansive soil from reducing via restraining pores in samples.

        shear strength; porosity; coal gangue; expansive soil; dry-wet cycle; mercury intrusion method

        張 雁,殷瀟瀟,劉 通. 煤矸石改良膨脹土特性及其最佳摻量條件下孔隙結(jié)構(gòu)表征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):267-274. doi:10.11975/j.issn.1002-6819.2018.22.033 http://www.tcsae.org

        Zhang Yan, Yin Xiaoxiao, Liu Tong. Strength properties of solidified expansive soil with coal gangue and its pore structure characterization under condition of optimum dosage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 267-274. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.033 http://www.tcsae.org

        2018-05-12

        2018-10-20

        國家自然科學(xué)基金項(xiàng)目(No.51669025)

        張雁,教授,博士,主要從事路基材料性能方面的研究。Email:zhangyanli@imau.edu.cn

        10.11975/j.issn.1002-6819.2018.22.033

        TU 411

        A

        1002-6819(2018)-22-0267-08

        米奇亚洲国产精品思久久| 欧美video性欧美熟妇| 特黄特色的大片观看免费视频 | 久久精品免费中文字幕| 成人av鲁丝片一区二区免费| 少妇内射高潮福利炮| 中文字幕avdvd| 国产免费99久久精品| 极品人妻少妇av免费久久| 亚洲熟女乱综合一区二区| 亚洲 欧美 综合 另类 中字| 亚洲中文字幕精品久久久久久直播| 偷偷夜夜精品一区二区三区蜜桃| 久久久久久夜精品精品免费啦| 亚洲国产精品va在线看黑人| 日韩高清亚洲日韩精品一区| 久久精品国产亚洲av热九九热| 按摩师玩弄少妇到高潮av| 久久亚洲欧美国产精品| 亚洲一本大道无码av天堂| 色yeye在线观看| 日本精品中文字幕人妻| 国产精品成人无码久久久久久| 久久夜色精品国产| 免费无码中文字幕A级毛片| 久久网站在线免费观看| 国产激情视频免费在线观看| 国产一极内射視颍一| 国产成人乱色伦区小说| 国产精品人成在线765| 日韩精品久久中文字幕| 精品人妻一区二区三区蜜臀在线| 六月婷婷亚洲性色av蜜桃| 亚洲精品乱码久久久久久中文字幕 | 日产一区二区三区免费看| 国产精品无码一本二本三本色| 亚洲VA不卡一区| 亚洲av男人的天堂在线| 男人女人做爽爽18禁网站| 男女边吃奶边做边爱视频 | 亚洲av高清一区二区三|