亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        河道淤泥和堆肥蛭石混合發(fā)酵制備基質(zhì)及其育苗效果

        2018-11-23 07:44:56陳立華姚宇闐潘德峰常義軍許有文

        陳立華,姚宇闐,尚 輝,劉 娟,潘德峰,常義軍,許有文

        ?

        河道淤泥和堆肥蛭石混合發(fā)酵制備基質(zhì)及其育苗效果

        陳立華1,2,姚宇闐2,尚 輝3,劉 娟4,潘德峰4,常義軍5,許有文4

        (1. 南方地區(qū)高效灌排與農(nóng)業(yè)水土環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室(河海大學(xué)),南京 210098; 2.江蘇省沿海開發(fā)集團(tuán)有限公司,南京 210013;3. 江蘇沿海開發(fā)(東臺(tái))有限公司,東臺(tái) 224200; 4.江蘇省沿海水利科學(xué)研究所,東臺(tái) 224200; 5. 南京軍輝生物科技有限公司,南京 211155)

        農(nóng)村河道清淤產(chǎn)生的淤泥,體量大、有機(jī)物濃度高,處置不當(dāng)會(huì)造成二次污染?,F(xiàn)代農(nóng)業(yè)的工廠化育苗需求大量的營(yíng)養(yǎng)土,就地取土導(dǎo)致耕地退化。該研究利用功能微生物發(fā)酵淤泥制備育苗基質(zhì),研究不同菌株發(fā)酵基質(zhì)的物理和生物學(xué)性狀,基質(zhì)培育西瓜苗的生長(zhǎng)、生理參數(shù)和抗逆性能。結(jié)果表明:微生物處理均能夠提升淤泥基質(zhì)物理和生物學(xué)性能,同時(shí)能夠提升育苗質(zhì)量。其中T83(T83)、IAE(BIAE)菌株發(fā)酵基質(zhì)性能最好。相較于對(duì)照處理基質(zhì)的最大持水量、總孔隙度、毛管孔隙度、通氣孔隙度,T83處理分別增加了64.25%、52.65%、45.05%、56.11%;BIAE處理分別增加了101.17%、45.43%、61.43%、38.14%。相較于對(duì)照處理西瓜苗的株高、鮮質(zhì)量、干質(zhì)量、葉綠素含量、根系活力、根際真菌、細(xì)菌數(shù)量,T83處理分別增加了66.85%、52.07%、72.16%、43.13%、54.93%、110.62倍、1.63倍;BIAE處理分別增加了80.40%、57.34%、82.37%、54.88%、46.40%、67.26%、2.60倍、2.94倍。T83和BIAE處理西瓜苗葉片過(guò)氧化氫酶和超氧化物歧化酶酶活顯著增加,根系丙二醛含量顯著降低。真菌菌株T83和細(xì)菌菌株IAE發(fā)酵淤泥,能夠顯著提升其農(nóng)用品質(zhì),為淤泥高附加值化農(nóng)用提供一條可行的途徑。

        淤泥處理;基質(zhì);堆肥;發(fā)酵;木霉;芽孢桿菌

        0 引 言

        國(guó)家加強(qiáng)農(nóng)村河道的治理力度,在提高河道防洪、排澇和灌溉能力的同時(shí)減少河道內(nèi)源污染,為河道水質(zhì)改善提供保障。河道清淤過(guò)程產(chǎn)生大量的淤泥堆置于地表,其受到外界物理、生物、化學(xué)等因素影響,會(huì)釋放大量污染物,再次流入環(huán)境水體會(huì)造成嚴(yán)重污染。高效資源化利用農(nóng)村河道清淤淤泥,可以有效減少淤泥造成的二次污染。現(xiàn)階段有報(bào)道增加外源添加劑固化淤泥,形成的固形物可用于堤防工程、道路工程、填方工程和綠化工程[1-3];脫水后的淤泥用于燒磚、燒制陶粒、水泥原料等[1-3]。但是部分農(nóng)村清淤產(chǎn)生的淤泥,不具備以上資源化途徑,開發(fā)新的淤泥資源化利用途徑十分重要。

        隨著現(xiàn)代農(nóng)業(yè)發(fā)展,工廠化育秧育苗已成為主流農(nóng)作方式,由于育秧育苗需要大量的營(yíng)養(yǎng)土,其就地取用大量農(nóng)田耕層土壤,會(huì)導(dǎo)致特定區(qū)域農(nóng)田土壤嚴(yán)重退化,運(yùn)用外源的育秧育苗基質(zhì)可以有效避免這種情況發(fā)生。現(xiàn)階段外源的營(yíng)養(yǎng)土主要是生產(chǎn)企業(yè)利用腐熟的食用菌渣、木薯渣、牛糞等固體廢棄物和購(gòu)置的農(nóng)田土壤復(fù)配制成,生產(chǎn)過(guò)程仍然需要大量的耕作層土壤。有效地開發(fā)新的土壤資源,有利于耕地的保護(hù)。

        農(nóng)村河道淤泥主要是粒徑較小的粉砂和沉積的有機(jī)物組成,含有大量的植物營(yíng)養(yǎng)物質(zhì),但是透水性、通氣性較差,脫水之后板結(jié),不適用作植物生長(zhǎng)的基質(zhì)。土壤微生物分解有機(jī)物過(guò)程產(chǎn)熱產(chǎn)氣,可以提升土壤的通透性[4-5],同時(shí)微生物代謝物促進(jìn)土壤團(tuán)聚體形成,增加土壤孔隙率,促進(jìn)土壤發(fā)育;同時(shí)微生物生命活動(dòng)過(guò)程能夠活化土壤或者基質(zhì)中N、P、K、Ca、Mg、Fe等植物營(yíng)養(yǎng)元素,增加土壤或者基質(zhì)植物營(yíng)養(yǎng)元素可利用性[4-7],同時(shí)微生物是土壤植物激素的主要來(lái)源[6],能夠促進(jìn)植物生長(zhǎng)功能[7-9]。本文設(shè)想利用具有促進(jìn)植物生長(zhǎng)功能的PGPR(plant growth promoting rhizobacteria)微生物菌株,發(fā)酵處理農(nóng)村河道清淤淤泥制備農(nóng)用育秧育苗基質(zhì),同時(shí)利用微生物功能提升育秧育苗基質(zhì)質(zhì)量,實(shí)現(xiàn)農(nóng)溝清淤淤泥資源化利用,為農(nóng)村河道清淤淤泥利用新途徑提供理論和實(shí)踐基礎(chǔ)。

        1 材料與方法

        1.1 淤泥性質(zhì)及其制備的農(nóng)用基質(zhì)

        河道淤泥來(lái)源于江蘇東臺(tái)三倉(cāng)鎮(zhèn)河道(32°45′N,120°45′E)清淤,污泥的理化性質(zhì)如表1所示。污泥中砷(As)、汞(Hg)、鉻(Cr)、鎘(Cd)、鉛(Pr)等重金屬含量均低于農(nóng)業(yè)應(yīng)用標(biāo)準(zhǔn)限值[10]。

        采用金針菇菇渣、牛糞、稻殼按照質(zhì)量比5:1:0.5為原料發(fā)酵,形成完全腐熟堆肥,3種原料理化性質(zhì)如表2所示。按照1%(w:w)的比例向腐熟堆肥中接種6株P(guān)GPR菌株(表3),徹底混勻,接種菌劑微生物數(shù)量和發(fā)酵7d后堆肥微生物數(shù)量如表3所示,未添加微生物處理設(shè)置為對(duì)照處理(CK)。

        表1 淤泥的理化性質(zhì)

        注:*為干基;**為濕基。

        Note:*dry substrate;**wet substrate.

        表2 3種堆肥原料理化性質(zhì)

        注:*為干基;**為濕基。Note:*dry substrate;**wet substrate.

        表3 不同菌劑的微生物種類、數(shù)量及其發(fā)酵后堆肥的微生物數(shù)量

        按照生產(chǎn)中基料總體含水量70%~80%,易于通氣的原則,將河道淤泥、接種不同菌株發(fā)酵后的堆肥、甜葉菊渣堆肥、蛭石以質(zhì)量比5:3:2:1的比例徹底混勻,形成基料含水量70.82%。在高5.5 m的陽(yáng)光鋼結(jié)構(gòu)大棚發(fā)酵,棚內(nèi)溫度23~35 ℃,基料采用條垛式發(fā)酵工藝,條垛堆寬250 cm,高度120 cm,長(zhǎng)度75 m,采用YLFP280型號(hào)翻拋機(jī)每6 d翻拋1次。翻拋結(jié)束后在條垛側(cè)面50 cm高度處、每隔10 m水平插入溫度計(jì)1根,總計(jì)插3根溫度計(jì),每日8:00時(shí)記錄溫度計(jì)數(shù)值。發(fā)酵形成的淤泥基質(zhì)容重、持水能力、總孔隙度、毛管孔隙度、通氣孔隙度測(cè)定采用環(huán)刀法[11],同時(shí)測(cè)定基質(zhì)木霉菌數(shù)量[8]、細(xì)菌數(shù)量[8]、腸道菌群數(shù)量[8]、蛔蟲卵死亡率[10]、重金屬含量等指標(biāo)[10]。

        1.2 指標(biāo)農(nóng)作物選用及其生理生化指標(biāo)的測(cè)定

        西瓜采用“早佳8424”品種,種子用0.3%次氯酸鈉消毒20 min,無(wú)菌水沖洗3遍,用35 ℃的無(wú)菌水浸種3 h,用無(wú)菌濕紗布包裹,28 ℃催芽72 h。根據(jù)使用淤泥基質(zhì)的不同,試驗(yàn)設(shè)置7個(gè)處理,分別為:1)CK處理,使用CK處理基質(zhì)育苗;2)T83處理,使用T83菌株發(fā)酵的基質(zhì)育苗;3)T12處理,使用T12菌株發(fā)酵的基質(zhì)育苗;4)BIAE處理,使用BIAE菌株發(fā)酵的基質(zhì)育苗;5)B1582處理,使用B1582菌株發(fā)酵的基質(zhì)育苗;6)BA11處理,使用BA11菌株發(fā)酵的基質(zhì)育苗;7)BD9處理,使用BD9菌株發(fā)酵的基質(zhì)育苗。育苗盤穴添加80%體積淤泥基質(zhì),選取發(fā)芽一致西瓜種子放置育苗盤穴內(nèi),每穴一粒,苗盤覆蓋育苗基質(zhì),確保盤穴充滿淤泥基質(zhì),用自來(lái)水徹底澆濕苗盤,每處理5個(gè)重復(fù),放置于溫室培養(yǎng),溫室溫度18~30 ℃。西瓜苗生長(zhǎng)40 d后,每個(gè)處理取生長(zhǎng)一致苗20株,測(cè)定干苗和鮮苗的質(zhì)量、株高、莖基部直徑、葉片葉綠素含量、根系活力、酶活力、根系微生物數(shù)量。將苗放置于8~10 ℃的環(huán)境中12 h,測(cè)定葉片過(guò)氧化氫酶、超氧化物氣化酶活力,測(cè)定根系丙二醛含量[7-8]。葉綠素含量(SPAD)采用SPAD-502 手持式葉綠素儀測(cè)定,根系活力采用氯化三苯基四氮唑(TTC)法測(cè)定[7-8],微生物數(shù)量采用稀釋涂布法[8]。

        1.3 數(shù)據(jù)分析

        試驗(yàn)數(shù)據(jù)用SPSS 18.0(Chicago,USA)統(tǒng)計(jì)軟件進(jìn)行方差分析,差異顯著性比較采用Duncan’s 測(cè)驗(yàn),繪圖使用Excel 軟件。

        2 結(jié)果與分析

        2.1 淤泥基質(zhì)發(fā)酵過(guò)程溫度和含水量變化

        淤泥基質(zhì)發(fā)酵過(guò)程中溫度變化如圖1所示,CK處理升溫緩慢,接種的6株菌株均能夠加速基料升溫。這與添加外源微生物加速有機(jī)物的分解轉(zhuǎn)化,其發(fā)酵過(guò)程產(chǎn)生熱有關(guān)。發(fā)酵過(guò)程中,最高溫度低于60 ℃,而且維持50 ℃以上時(shí)間較短,表明淤泥中有機(jī)物得到充分分解利用,基本處于穩(wěn)定狀態(tài)。發(fā)酵后期基質(zhì)溫度接近室溫30 ℃,表明基質(zhì)已經(jīng)完全腐熟。發(fā)酵21d后測(cè)定的基質(zhì)含水量結(jié)果如圖2所示,相較于CK處理,增加外源微生物進(jìn)行發(fā)酵均顯著降低基質(zhì)的含水量(<0.05),表明添加的6株外源微生物產(chǎn)熱均能夠加速水分蒸發(fā)。添加外源微生物的處理間基質(zhì)含水量沒有表現(xiàn)出顯著差異(0.05),試驗(yàn)使用菌株的發(fā)酵效率差別不顯著。

        圖1 不同處理基質(zhì)發(fā)酵過(guò)程溫度變化

        注:圖中不同小寫字母表示處理間差異顯著(P<0.05)。

        2.2 淤泥基質(zhì)的物理性質(zhì)和微生物數(shù)量

        微生物發(fā)酵對(duì)淤泥基質(zhì)的物理性質(zhì)影響如表4所示。BA11處理淤泥基質(zhì)容重沒有顯著變化(>0.05),其他微生物處理容重降低了15.57%~25.52%;微生物處理最大持水量均顯著增加(<0.05),其中BIAE處理最大持水量最高,相較于CK處理增加了101.17%;微生物處理總孔隙度顯著增加,增幅為22.65%~52.65%,其中T83處理的增幅最大,增加了52.65%,BIAE為45.43%;微生物處理毛管孔隙度增幅為17.03%~61.43%,其中BIAE處理的毛管孔隙度值最大(61.43%);T12處理的通氣孔隙度無(wú)顯著變化,其他處理均顯著增加,增幅為40.47%~56.11%。T83和BIAE的通氣孔隙度相較于CK處理分別增加了56.11%、38.16%。微生物處理顯著改變淤泥基質(zhì)的物理性質(zhì)。

        表4 不同處理淤泥基質(zhì)的物理性質(zhì)

        注:同列不同小寫字母表示差異顯著(<0.05),下同。

        Note: Different lowercase letters in the same column represented significant difference (<0.05), same as follow.

        發(fā)酵后淤泥基質(zhì)微生物數(shù)量如表5所示。微生物發(fā)酵的淤泥基質(zhì),其細(xì)菌數(shù)量顯著高于CK處理(<0.05);接種真菌型微生物菌劑顯著提高基質(zhì)真菌和木霉菌數(shù)量(<0.05),接種細(xì)菌型微生物對(duì)基質(zhì)中真菌和木霉菌數(shù)量影響不顯著(>0.05);接種微生物菌劑處理,其鐮刀菌和腸道菌群數(shù)量顯著降低(<0.05)。

        表5 不同處理淤泥基質(zhì)的微生物數(shù)量

        2.3 淤泥基質(zhì)對(duì)瓜苗生物學(xué)性狀影響

        不同處理瓜苗生物學(xué)性狀如表6所示。相較于CK處理,除了BA11處理外,其他處理株高均顯著增加(<0.05);各處理鮮苗質(zhì)量均顯著增加(<0.05);除T12處理外,其他處理苗烘干地上部質(zhì)量顯著增加(<0.05);BD9處理地下部烘干質(zhì)量和CK處理沒有顯著差異(>0.05),其他處理地下部烘干質(zhì)量均顯著高于CK處理(<0.05);BA11和T12處理莖粗與CK處理沒有顯著差異(>0.05),其他處理莖粗均顯著高于CK處理(<0.05)。不同處理均表現(xiàn)出促生效果,微生物處理株高比CK處理增加了17.78%~80.51%。不同處理促生效果差別較大,不同基質(zhì)對(duì)于瓜苗生長(zhǎng)發(fā)育的影響部位不同。在瓜苗生物學(xué)性狀總體表現(xiàn)上,BIAE和T83處理表現(xiàn)最好(<0.05),相較于對(duì)照處理西瓜苗的株高、鮮質(zhì)量、干質(zhì)量,T83處理分別增加了66.85%、52.07%、70.77%;BIAE處理分別增加了80.40%、40.84%、80.00%。

        表6 不同處理西瓜苗的生物學(xué)性狀

        2.4 淤泥基質(zhì)對(duì)瓜苗生理生化性狀的影響

        淤泥基質(zhì)對(duì)瓜苗生理生化性狀的影響如表7所示。相較于CK處理,T12、T83、BIAE和B1582處理超氧化物歧化酶酶活顯著增加(<0.05),T12、T83、BIAE和BD9處理過(guò)氧化氫酶酶活顯著增加(<0.05)。除了B1582和BA11處理外,相較于CK處理,其他處理根系丙二醛量均顯著降低(<0.05),其中T83、T12、BIAE、BD9處理相較于對(duì)照處理分別降低了70.62%、50.00%、61.86%和38.66%。T12和BA11處理的根系活力和葉綠素含量和CK處理之間沒有顯著差異(>0.05),但是T83、BIAE、B1582和DB9處理根系活力分別比CK處理高54.93%、67.26%、35.07%和35.01%(<0.05),葉綠素含量分別比CK處理高43.13%、46.40%、31.71%、32.62%(<0.05)。T83、T12和BIAE基質(zhì)顯著增加西瓜苗抗逆性。

        表7 不同處理西瓜苗生理生化性狀

        2.5 淤泥基質(zhì)對(duì)瓜苗根表微生物數(shù)量影響

        表8為不同處理西瓜苗根表微生物數(shù)量,不同處理對(duì)瓜苗根表微生物數(shù)量影響顯著(<0.05)。相較于CK處理,T83、T12和BIAE處理真菌數(shù)量顯著增加,分別增加111.62、119.01和1.59倍,其他處理真菌數(shù)量增加了1.30~2.00倍(<0.05)。相較于CK處理,T83和BIAE處理細(xì)菌數(shù)量分別增加1.63、2.94倍。T12和BD9處理放線菌數(shù)量和CK處理沒有顯著差異(>0.05),而T83、BIAE、B1582和BA11處理放線菌數(shù)量分別增加了4.38、5.66、5.15和2.22倍。根際微生物具有促生作用,能夠提升作物抗逆性,淤泥基質(zhì)顯著增加瓜苗根表微生物數(shù)量,有利于提升淤泥基質(zhì)產(chǎn)品的附加值。

        表8 不同處理西瓜苗根表微生物數(shù)量

        3 討 論

        農(nóng)村河道清淤產(chǎn)生的淤泥含有大量的有機(jī)物、粘結(jié)性大、通透性差,很難有效農(nóng)業(yè)利用。微生物可分解有機(jī)固體廢棄物中纖維素、蛋白質(zhì)等大分子物質(zhì)[12-16],活化有機(jī)固體廢棄物氮、磷、鉀等大量元素以及硼、鉬、鐵等微量元素[13,16],同時(shí)鈍化具生物毒性的鉛、鎘、汞等重金屬元素[13],改變淤泥的理化性質(zhì),使其適于作物生長(zhǎng)。同時(shí)微生物分泌植物激素、合成植物所需的營(yíng)養(yǎng)物質(zhì)、抑制土壤病原菌侵染,提高植物抗逆境能力[5,7-9],提升淤泥基質(zhì)促生功能。

        農(nóng)溝淤泥長(zhǎng)時(shí)間處于土著微生物的厭氧發(fā)酵過(guò)程,淤泥基本處于穩(wěn)定狀態(tài),只要其病原微生物、有害化學(xué)物質(zhì)、重金屬等因子不超標(biāo),可以滿足農(nóng)業(yè)應(yīng)用[7,10,16];不會(huì)存在畜禽糞便、秸稈等物質(zhì)沒有充分腐熟導(dǎo)致其在土壤中分解,耗氧、產(chǎn)熱導(dǎo)致植物爛根現(xiàn)象。與常規(guī)堆肥過(guò)程中70 ℃以上維持20 d現(xiàn)象不同,試驗(yàn)中添加腐熟的堆肥和外源微生物,整體基料溫度仍然沒有超過(guò)60 ℃,而且只維持6~9 d時(shí)長(zhǎng),表明淤泥中有機(jī)物基本處于穩(wěn)定態(tài);沒有外源能源的情況下,堆置的清淤淤泥不會(huì)劇烈產(chǎn)熱和產(chǎn)氣,短時(shí)間內(nèi)很難改變其結(jié)構(gòu)。試驗(yàn)所用的菌株為本單位專利菌株,具有高效利用固體廢棄物功能和促進(jìn)植物生長(zhǎng)的功能。.T83菌株能夠促進(jìn)灘涂鹽堿土壤中堿蓬的生長(zhǎng)[8],.T12菌株能夠通過(guò)抑制水稻土傳病害立枯絲核菌促進(jìn)水稻的生長(zhǎng)[17],.IAE菌株能夠通過(guò)增加土壤的保水和保肥的能力,提升鹽土植物的成活率和促進(jìn)植物的生長(zhǎng),D9菌株抑制土壤病原真菌的生長(zhǎng)促進(jìn)植物生長(zhǎng)[18]。本文所用的菌株均提升了淤泥基質(zhì)性能,有效緩解了其作為農(nóng)用育苗育秧基質(zhì)過(guò)程中,由于透氣透水性較差導(dǎo)致缺氧和澇漬損傷秧苗的根系的情況。其容重減小,孔隙度增加,這與菌株能夠快速利用小分子有機(jī)物產(chǎn)酸產(chǎn)氣,增加基質(zhì)孔隙性有一定相關(guān)性。其中T83和BIAE菌株表現(xiàn)最好,可能與T83菌株生物量較大,菌絲橋聯(lián)粉砂質(zhì)顆粒形成大團(tuán)聚體有關(guān);BIAE能夠產(chǎn)生高聚物-多聚谷氨酸,有利于團(tuán)聚體形成;具體原理將開展進(jìn)一步研究。

        試驗(yàn)中所有處理蛔蟲卵死亡率均高于95%,達(dá)到安全標(biāo)準(zhǔn),可能源于發(fā)酵產(chǎn)生高溫對(duì)蛔蟲卵殺滅作用,也有可能源于發(fā)酵過(guò)程微生物代謝幾丁質(zhì)酶等胞外酶對(duì)蛔蟲卵的裂解作用,具體原因需要進(jìn)一步研究。鐮刀菌是重要植物病原菌,淤泥是其重要傳染源[19-22],淤泥基質(zhì)鐮刀菌數(shù)量涉及到農(nóng)用安全性,試驗(yàn)中微生物處理,鐮刀菌數(shù)量均顯著降低。微生物分泌的胞外纖維素分解酶、幾丁質(zhì)分解酶、聚糖分解酶能夠分解真菌細(xì)胞壁,導(dǎo)致真菌失活[20-21],試驗(yàn)中使用木霉屬真菌和芽孢桿菌均屬高產(chǎn)胞外酶類型的微生物[9,15,21],發(fā)酵過(guò)程該類功能微生物的活動(dòng)對(duì)病原微生物殺滅具有重要的作用。腸道菌群數(shù)量是涉及到食品安全的重要指標(biāo)[20-25],微生物處理腸道菌群數(shù)量顯著降低,遠(yuǎn)低于農(nóng)用肥料行業(yè)標(biāo)準(zhǔn)限值[10],發(fā)酵過(guò)程高溫對(duì)腸道菌群滅活作用[26-27],同時(shí)與功能微生物能夠產(chǎn)生大量的抗生類物質(zhì)[9,22-23],對(duì)腸道菌群也有殺滅作用也具有相關(guān)性。接種T83、T12、BIAE菌株顯著提升基質(zhì)細(xì)菌數(shù)量,可能源于T83、T12菌株分解有機(jī)物促進(jìn)土著細(xì)菌增長(zhǎng)。

        各微生物處理均表現(xiàn)顯著的促生效果,是微生物改變基質(zhì)物理性質(zhì)以及微生物菌株自身的促生效果疊加效應(yīng)[27-28],其中T83和BIAE處理表現(xiàn)最好,可以依托該菌株進(jìn)一步優(yōu)化淤泥基質(zhì)的生產(chǎn)工藝?;|(zhì)通氣性和持水能力不滿足農(nóng)用標(biāo)準(zhǔn),會(huì)導(dǎo)致作物根系產(chǎn)生脅迫效應(yīng)[30-31],導(dǎo)致根系受損,植株活力下降。丙二醛是細(xì)胞膜受損分解產(chǎn)物[8],相較于對(duì)照處理,微生物處理丙二醛含量均較低,表明微生物處理西瓜苗根系受損程度低于對(duì)照處理,微生物處理降低了瓜苗根系脅迫性。微生物處理酶活、根系活力、葉綠素含量均高于對(duì)照,表明植株活力、光合能力、吸收能力顯著高于對(duì)照。微生物技術(shù)能夠提升淤泥基質(zhì)培育西瓜苗質(zhì)量。有益微生物在植物根表定植,能夠提升植株吸收營(yíng)養(yǎng)元素能力[28-29]、抑制土壤病原菌侵染根系[25, 29-31]、分泌植物所需物質(zhì)[29-31],有利于提升植物抗逆性和抗病性。本試驗(yàn)的菌株均能夠在西瓜苗根表定植,有利于提升淤泥育苗基質(zhì)附加值,對(duì)擴(kuò)大淤泥農(nóng)用量具有重要的意義。

        4 結(jié) 論

        1)功能微生物發(fā)酵以農(nóng)村河道清淤淤泥為主要原料的基質(zhì),能夠顯著改變基質(zhì)的物理性質(zhì),提高其持水能力、透氣和透水性。

        2)不同功能微生物菌株發(fā)酵的基質(zhì)對(duì)育苗生長(zhǎng)指標(biāo)、生理生化性狀的影響差異較大,試驗(yàn)中T83和IAE菌株發(fā)酵的基質(zhì)培育的西瓜苗質(zhì)量最好。

        3)微生物發(fā)酵處理淤泥基質(zhì),有利于有益微生物在所培育作物的根表定植,提升所育苗的抗逆性和抗病性,有利于提升淤泥資源化利用產(chǎn)品的附加值。

        [1] Dohnálková B, Drochytka R, Hodul J. New possibilities of neutralisation sludge solidification technology [J]. Journal of Cleaner Production, 2018, 204: 1097-1107.

        [2] ?wierczek L, Cie?lik B, Konieczka P. The potential of raw sewage sludge in construction industry:A review[J]. Journal of Cleaner Production, 2018, 200: 342-356.

        [3] Liu M, Liu X, Wang W, et al. Effect of SiO2and Al2O3on characteristics of lightweight aggregate made from sewage sludge and river sediment[J]. Ceramics International, 2018, 44: 4313-4319.

        [4] Yang X, Geng B, Zhu C, et al. Fermentation performance optimization in an ectopic fermentation system[J]. Bioresource Technology, 2018, 260: 329-337.

        [5] Wei Y, Zhao Y, Fan Y, et al. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting[J]. Bioresource Technology, 2017, 241: 134-141.

        [6] Etesami H, Maheshwari D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018, 156: 225-246.

        [7] Chen L, Huang X, Zhang F, et al. Application ofSQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber [J]. Journal of the Science of Food and Agriculture, 2012, 92: 2465-2470.

        [8] Chen L, Zheng J, Shao X, et al. Effects ofT83 onL. in coastal saline soil[J]. Ecological Engineering, 2016, 91: 58-64.

        [9] Harman G E, Howell C R, Viterbo A et al.species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2: 43-56.

        [10] NY525-2012,有機(jī)肥料[S].

        [11] 楊丹,熊東紅,劉守江,等. 土壤理化及力學(xué)性質(zhì)對(duì)干熱河谷臺(tái)地邊坡溝蝕發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):170-176.

        Yang Dan, Xiong Donghong, Liu Shoujiang, et al. Impacts of soil physical-chemical and mechanical properties on gully erosion development on terrace slopes in dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 170-176. (in Chinese with English abstract)

        [12] 趙晨浩,張民,劉之廣,等. 控釋復(fù)合肥配施保水劑的盆栽月季節(jié)水保肥效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(13):175-182.

        Zhao Chenhao, Zhang Min, Liu Zhiguang, et al. Effects of saving water and fertilizer conservation for potted Chinese rose using controlled-release compound fertilizers combined with water retention agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 175-182. (in Chinese with English abstract)

        [13] Liu S, Zeng G, Niu Q, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review[J]. Bioresource Technology, 2017, 224: 25-33.

        [14] 范富,張慶國(guó),馬玉露,等. 蘇打鹽堿地圍堤養(yǎng)魚改良土壤的生物性狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34:142-146.

        Fan Fu, Zhang Qingguo, Ma Yulu, et al. Improving biological traits by soda alkali-saline land diking for fish[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 142—146. (in Chinese with English abstract)

        [15] 趙肖玲,鄭澤慧,蔡亞凡,等. 哈茨木霉和黑曲霉粗酶液預(yù)處理改善秸稈產(chǎn)甲烷性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):219-226.

        Zhao Xiaoling, Zheng Zehui, Cai Yafan, et al. Pretreatment by crude enzymatic liquid fromandsp improving methane production performance during anaerobic digestion of straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 219—226. (in Chinese with English abstract)

        [16] Bünemann E K, Bongiorno G, Bai Z, et al. Soil quality-A critical review[J]. Soil Biology and Biochemistry, 2018, 120: 105-125.

        [17] Chen L, Zhang J, Shao X, et al. Development and evaluation ofpreparation for control of sheath blight of rice (L.)[J]. Biocontrol Science and Technology, 2015, 25: 316-328.

        [18] Chen L, Han R, Zhang H, et al. Irrigating-continuous cropping withD9 fortified waste water could control the Fusarium wilt of[J]. Applied Soil Ecology, 2017, 113: 127-134.

        [19] Huang X, Liu L, Wen T, et al. Illumina MiSeq investigations on the changes of microbial community in thef. sp.infected soil during and after reductive soil disinfestation[J]. Microbiological Research, 2015, 181: 33-42.

        [20] Wen T, Huang X, Zhang J, et al. Effects of water regime, crop residues, and application rates on control off. sp.e[J]. Journal of Environmental Sciences, 2015, 31: 30-37.

        [21] Yang X, Chen L, Yong X, et al. Formulations can affect rhizosphere colonization and biocontrol efficiency ofSQR-T037 against Fusarium wilt of cucumbers[J]. Biology and fertility of soils, 2011, 47(3): 239-248.

        [22] Slimene I B, Tabbene O, Gharbi D, et al. Isolation of a ChitinolyticS213 Strain Exerting a Biological Control AgainstInfection [J]. Applied Biochemistry and Biotechnology, 2015, 175(7): 3494-3506.

        [23] Rishad KS, Rebello S, Shabanamol P S, et al. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novelMCB-7 autochthonous to mangrove ecosystem[J]. Pesticide Biochemistry and Physiology, 2017, 137: 36-41.

        [24] Lynch S V, Pedersen O. The human intestinal microbiome in health and disease[J]. New England Journal of Medicine, 2016, 375(24): 2369-2379.

        [25] Albenberg L G, Wu G D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease[J]. Gastroenterology, 2014, 146(6): 1564-1572.

        [26] Chen L, Yang X, Raza W, et al. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil[J]. Bioresource technology, 2011, 102(4): 3900-3910.

        [27] Bernal M P, Sommer S G, Chadwick D, et al. Chapter three- current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits[J]. Advances in Agronomy, 2017,144: 143-233.

        [28] Tabassum B, Khan A, Tariq M, et al. Bottlenecks in commercialisation and future prospects of PGPR[J]. Applied Soil Ecology, 2017, 121: 102-117.

        [29] Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018(147): 175-191.

        [30] Huang X F, Chaparro J M, Reardon K F, et al. Rhizosphere interactions: root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4): 267-275.

        [31] 曲萍,趙永富,宋婧,等. 改性脲醛樹脂粘合基質(zhì)塊性能及其對(duì)黃瓜幼苗生長(zhǎng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):253-259.

        Qu Ping, Zhao Yongfu, Song Jing, et al. Performance of substrate blocks glued by modified urea formaldehyde resins and its effecton cucumber seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 253-259. (in Chinese with English abstract)

        Producing substrate by fermentation of rural river sludge mixed with compost and roseite and its seedling effect

        Chen Lihua1,2, Yao Yutian2, Shang Hui3, Liu Juan4, Pan Defeng4, Chang Yijun5, Xu Youwen4

        (1.-(),210098,; 2.210013,; 3.()224200,; 4.224200,; 5.211155,)

        The sludge produced by rural rivers desilting is large in volume and high in organic matter content, which causes significant pollution if not well disposed. Industrialized agricultural seedling raising requires a large amount of nutritional soil, which leads to the degradation of cultivated land if those soil are from the farmland. In this study, the microorganisms were used for fermenting sludge to produce the seedling raising substrate, instead of using nutritional farm soil. By changing temperature and water content in the fermentation process of the sludge, physical and biological features of the substrate produced by fermentation, and the biological characters, physiological feature and resistance of the watermelon seedlings raised by the substrate were assayed for determine best microbial strains for fermenting substrate. The results showed that, compared to control treatment, the microbial treatments increased the fermentation temperature and decreased water content of the substrate (<0.05), but no statistical difference was found between microbial treatments. The highest temperatures assayed in the piles in fermentation process all were lower than 60℃, and the duration when temperature higher than 50℃ all were shorter than 9 days. The substrates were well fermented while the piles temperature decreased to room temperature. Assaying the physical features of the substrates demonstrated that the microbial fermentation improved the physical and biological properties of the substrate. Among the microorganisms, Trichoderma harzianum T83 (T83) and Bacillus amyloliquefaciens IAE (BIAE) showed the best performance. Compared to the control treatment, bulk density, maximum water holding capacity, total porosity, capillary porosity and aeration porosity of the T83 treatment decreased by 25.52% and increased by 95.50%, 52.65%, 45.05% and 56.11%, respectively, while in BIAE treatment decreased by 27.78% and increased by 101.17%, 45.43%, 61.43% and 38.14%, respectively (<0.05). Populations of total bacteria and fungi were found 1.94 times and 4.55 times respectively higher than control treatment in T83 treatment (<0.05), and populations of total bacteria was 2.33 times higher than control treatment in BIAE treatment (<0.05). Populations of Fusarium spp. and intestinal flora, compared to control treatment, were decreased by 70.97% and 82.31%, respectively in T83 treatment, and decreased by 81.29% and 77.70% in BIAE treatment (<0.05). Compared to the control treatment, the height, ground fresh weight, root fresh weight, ground dry weight, root dry weight, stem diameter, chlorophyll content, root activity, population of the rhizospheric fungi, bacteria and actinomycetes of watermelon seedlings of the T83 treatment increased by 66.85%, 38.12%, 65.38%, 69.64%, 77.78%, 34.23%, 43.13%, 54.93%, 110.62 times, 1.63 times and 4.38 times, respectively and for BIAE treatment, the increases were by 80.40%, 38.49%, 64.74%, 76.19%, 100.00%, 54.88%, 46.40%, 67.26%, 67.26%, 1.59 times, 2.94 times and 5.66 times, respectively (<0.05). Contents of malondialdehyde in roots were significantly decreased (<0.05), and decreased of 70.62% and 61.86% were respectively found in T83 and BIAE treatments as compared to control treatment. The activities of catalase and superoxide dismutase in watermelon seedlings leaves were significantly increased (<0.05) as compared to control treatment. The sludge could be fermented with the fungus T. harzianum T83 and bacteria B. amyloliquefaciens IAE to produce watermelon seedling raising substrate. The two microbial strains can significantly increase properties and the quality of sludge substrate, improve physiological features and resistance of raised seedling, and promote growth of watermelon seedlings, which provide a high added value way for the sludge agricultural utilization.

        sludge disposal; substrate; composting; fermentation;spp.;spp.

        陳立華,姚宇闐,尚 輝,劉 娟,潘德峰,常義軍,許有文.河道淤泥和堆肥蛭石混合發(fā)酵制備基質(zhì)及其育苗效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):228-234. doi:10.11975/j.issn.1002-6819.2018.22.029 http://www.tcsae.org

        Chen Lihua, Yao Yutian, Shang Hui, Liu Juan, Pan Defeng, Chang Yijun, Xu Youwen. Producing substrate by fermentation of rural river sludge mixed with compost and roseite and its seedling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 228-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.029 http://www.tcsae.org

        2018-05-29

        2018-09-22

        江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2018736);國(guó)家自然科學(xué)基金項(xiàng)目(51309079);江蘇省水利科技項(xiàng)目(2013053);江寧農(nóng)業(yè)與農(nóng)村科技發(fā)展計(jì)劃(2017Cc01)

        陳立華,博士,副教授,主要研究方向?yàn)閼?yīng)用環(huán)境微生物技術(shù)、海涂鹽土生態(tài)改良技術(shù)。Email:chenlihua@hhu.edu.cn.

        10.11975/j.issn.1002-6819.2018.22.029

        S15

        A

        1002-6819(2018)-22-0228-07

        成人做爰高潮尖叫声免费观看| 激情文学婷婷六月开心久久| 日韩国产人妻一区二区三区| 国产熟女露脸大叫高潮| 麻豆婷婷狠狠色18禁久久 | 国产在线观看自拍av| 午夜理论片yy44880影院| 亚洲av乱码中文一区二区三区| av无码特黄一级| 蜜桃在线一区二区三区| 大量漂亮人妻被中出中文字幕| 久久无码专区国产精品| 精品三级久久久久久久电影| 国产优质女主播在线观看| 国产一区二区三区我不卡| 日日噜噜夜夜狠狠va视频| 久久国产精品不只是精品 | 女人18毛片aa毛片免费| 精品国产精品国产偷麻豆| 韩国三级中文字幕hd久久精品| 久久久99久久久国产自输拍| 亚洲在线精品一区二区三区| 午夜福利理论片在线观看 | 久久福利青草精品免费| 国产一区二区三区观看视频| 亚洲熟女少妇精品综合| 日日碰狠狠添天天爽| 日韩AV无码一区二区三| 日本av第一区第二区| av无码国产精品色午夜| 7777精品伊人久久久大香线蕉| 国产强伦姧在线观看| 久久丝袜熟女av一区二区| 97精品一区二区视频在线观看| 亚洲 欧美 影音先锋| 日韩成人无码v清免费| 日本不卡一区二区三区在线观看| 伊人久久大香线蕉av色婷婷色| 免费国精产品自偷自偷免费看| 亚洲高清一区二区三区在线观看 | 久久久久久亚洲av无码蜜芽|