楊春曦,劉 華,謝可心,楊啟良
?
便攜式土壤濕度檢測裝置用于精準灌溉決策系統(tǒng)
楊春曦1,劉華1,謝可心1,楊啟良2
(1. 昆明理工大學(xué)化學(xué)工程學(xué)院,昆明 650500;2. 昆明理工大學(xué)現(xiàn)代農(nóng)業(yè)工程學(xué)院,昆明 650500)
采用最先進的技術(shù)進行精準灌溉是現(xiàn)代農(nóng)業(yè)發(fā)展的必然趨勢,但在準確預(yù)測被監(jiān)測區(qū)域的土壤濕度時,面臨一個兩難的處境:少量土壤濕度固定檢測點不能良好地反映作物區(qū)域土壤墑情信息,而大量布置傳感器檢測點又使得投資成本較大。因此該文設(shè)計了一種便攜式土壤檢測裝置,同時基于該裝置構(gòu)建了一個精準灌溉決策系統(tǒng),并把該系統(tǒng)應(yīng)用于田間的精準灌溉決策。該系統(tǒng)由便攜式土壤濕度檢測裝置和上位機決策軟件2部分組成,其中便攜式土壤濕度檢測裝置由FDR原理土壤水分傳感器MS-10、低功耗單片機C8051F410、藍牙無線傳輸模塊、數(shù)據(jù)顯示模塊以及部分外圍電路組成,可以獨立實現(xiàn)時間記錄、數(shù)據(jù)存儲和實時顯示。經(jīng)過試驗標定,裝置的允許最大誤差為2.2%,設(shè)計精度為95%;上位機決策軟件分為數(shù)據(jù)接收模塊、分布式二進制一致性算法模塊和系統(tǒng)操作界面3個子模塊,分別采用Visual Basic、Matlab和Matlab GUI設(shè)計而成,實現(xiàn)對便攜式裝置所采集數(shù)據(jù)的無線傳輸、歸一化處理和數(shù)據(jù)融合處理,能夠根據(jù)不同區(qū)域劃分和不同作物灌水下限進行相應(yīng)的運算,從而得到估計精度較高、區(qū)域大小可調(diào)的多尺度精準灌溉決策信息。最后通過30 m×30 m草坪的土壤濕度為檢測參數(shù)的田間驗證,該系統(tǒng)的平均決策準確率大于90%,且可以根據(jù)需要增減檢測點個數(shù)。因此既可以獨立應(yīng)用,也可以作為固定檢測方式的有效補充,實現(xiàn)作物區(qū)域土壤濕度信息的精確采集,有效提高水資源利用率。
灌溉;土壤水分;溫度;精準灌溉;便攜式;檢測裝置;決策系統(tǒng)
隨著精準農(nóng)業(yè)的推廣與深化,轉(zhuǎn)變農(nóng)田的粗放型灌溉方式,實現(xiàn)農(nóng)業(yè)用水的精細化管理,是農(nóng)業(yè)可持續(xù)發(fā)展的必然選擇[1-2]。中國農(nóng)田灌溉總體有效利用系數(shù)約為0.516,節(jié)水潛力巨大[3]。目前的節(jié)水灌溉技術(shù)中,主要從灌溉方式和土壤濕度控制2個方向進行研究。常見的節(jié)水灌溉方式有微潤灌溉[4]、虧缺灌溉[5]、痕量灌溉[6]、控制性根系分區(qū)交替灌溉[7]和膜下滴灌[8]等;采用精準灌溉的常見農(nóng)作物有水稻[9]、土豆[5]與棉花[10]等;自動化灌溉技術(shù)有基于地理信息系統(tǒng)[11]、單片機[12-14]、無線傳感器網(wǎng)絡(luò)[15-16]等硬件系統(tǒng)的電磁閥開關(guān)控制[12-15]、PID控制、模糊智能控制[17]等方式。農(nóng)業(yè)自動化節(jié)水灌溉技術(shù)研究對促進農(nóng)業(yè)發(fā)展具有現(xiàn)實性意義。
土壤水分含量對作物的生長有著重要影響,合適的水分含量是作物良好生長的重要條件,因此以土壤濕度為被測參數(shù)的節(jié)水灌溉系統(tǒng)一直是研究熱點。張增林等[12]基于MSP430單片機和CC2530射頻模塊設(shè)計了節(jié)水灌溉系統(tǒng),采用10個無線傳感器節(jié)點和10個閥門節(jié)點對系統(tǒng)進行了測試,驗證了通信距離13 m以內(nèi)具有較好的控制效果。郭英芳[13]基于AT89S51單片機設(shè)計了自動化節(jié)水灌溉系統(tǒng),根據(jù)作物對土壤濕度的需求設(shè)定閾值,當土壤濕度低于設(shè)定值時即進行澆水灌溉。趙斌等[14]基于STC12C5A08S2D單片機設(shè)計一種自動化節(jié)水灌溉系統(tǒng),布置多個傳感器節(jié)點實現(xiàn)作物區(qū)域的覆蓋度,采用設(shè)定閾值的方式進行灌溉控制,并將采集到的土壤墑情數(shù)據(jù)經(jīng)無線方式上傳到上位機供用戶監(jiān)測。陳艷麗等[15]設(shè)計了基于ZigBee的智能節(jié)水灌溉系統(tǒng),根據(jù)土壤墑情信息是否低于設(shè)定閾值進行自動灌溉,并將采集到的信息無線方式傳輸?shù)絇C終端供用戶查看。賈科進等[16]設(shè)計了基于ZigBee無線傳感器網(wǎng)絡(luò)的土壤墑情檢測系統(tǒng),通過對土壤溫濕度、空氣溫濕度、光照強度的檢測,將數(shù)據(jù)上傳到控制中心進行分析處理,然后下達是否灌溉指令到電磁閥實現(xiàn)閉環(huán)控制。
文獻[12-15]均設(shè)計了土壤自動澆水灌溉系統(tǒng),其中每個檢測節(jié)點均對應(yīng)一個電磁閥,一旦節(jié)點出現(xiàn)故障或檢測精度不夠準確,將可能出現(xiàn)系統(tǒng)誤動作。鑒于單個傳感器檢測的土壤墑情數(shù)據(jù)不足以代表整個作物區(qū)域的濕度分布情況,故上述方式無法準確估計作物區(qū)域的土壤濕度墑情。在文獻[16]中,為了實現(xiàn)對土壤濕度、大氣溫度等多個環(huán)境參數(shù)的實時采集,需要實時檢測并傳輸大量的數(shù)據(jù),從而導(dǎo)致無線傳感器節(jié)點的耗電量較大。因此,這里設(shè)計了一種便攜式土壤濕度檢測裝置,采用移動檢測的方法,可以輔助原檢測系統(tǒng)為上述文獻中的自動化節(jié)水灌溉系統(tǒng)提供更詳細的區(qū)域濕度變化情況,從而提高其決策的準確性;也可以作為獨立精準灌溉系統(tǒng)的檢測部分,能夠充分采集作物區(qū)域的土壤墑情信息,并與上位機決策軟件組成分布式土壤濕度決策系統(tǒng),實現(xiàn)對土壤濕度墑情的準確預(yù)測,為精準灌溉提供決策支持。
精準灌溉決策系統(tǒng)設(shè)計共分為便攜式檢測裝置設(shè)計、上位機數(shù)據(jù)接收程序設(shè)計和分布式?jīng)Q策程序設(shè)計3部分。為了便于對系統(tǒng)的各功能模塊進行調(diào)試,設(shè)計時采用了模塊化思想,把上位機決策程序(包括上位機數(shù)據(jù)接收程序和分布式?jīng)Q策程序)分為6個功能子模塊,相應(yīng)的功能子模塊方框圖如圖1所示。
圖1 功能子模塊框圖
首先,便攜式土壤濕度檢測裝置根據(jù)作物區(qū)域監(jiān)測規(guī)劃對土壤濕度進行檢測,將檢測到的數(shù)據(jù)通過藍牙模塊無線傳輸至上位機數(shù)據(jù)接收程序。上位機數(shù)據(jù)接收程序分為數(shù)據(jù)接收子模塊和數(shù)據(jù)存儲子模塊,其中數(shù)據(jù)接收子模塊用于接收便攜式土壤濕度檢測裝置發(fā)送來的土壤濕度數(shù)據(jù);數(shù)據(jù)存儲子模塊將接收到數(shù)據(jù)保存為excel文件,供用戶查閱分析。上位機決策程序中數(shù)據(jù)歸一化子模塊用于讀取excel文件數(shù)據(jù),并根據(jù)作物濕度需求下限值對數(shù)據(jù)進行歸一化處理,轉(zhuǎn)換為二進制數(shù)據(jù);分區(qū)子模塊根據(jù)監(jiān)測規(guī)劃對作物區(qū)域檢測數(shù)據(jù)進行分區(qū);一致性運算子模塊采用改進的分布式二進制一致性算法[9-13]對屬于不同區(qū)域的二進制數(shù)據(jù)進行數(shù)據(jù)融合,判斷被監(jiān)測區(qū)域總體或分區(qū)是否需要灌溉,并把結(jié)果送至決策顯示子模塊予以顯示。
便攜式土壤濕度檢測裝置由FDR原理的土壤水分傳感器MS-10、信號放大模塊、C8051F410低功耗單片機、CH452按鍵掃描和數(shù)碼顯示控制芯片、DS1302時鐘芯片、數(shù)碼顯示模塊和藍牙通信模塊組成,其中電源模塊為一節(jié)Drie Auge 18650型可充電鋰電池,直流電壓為3.7 V,電容量為2 800 mAh。裝置結(jié)構(gòu)如圖2所示。
圖2 便攜式土壤濕度檢測裝置結(jié)構(gòu)圖
1.1.1 便攜式土壤濕度檢測裝置硬件設(shè)計
土壤濕度檢測裝置微控制器采用C8051F410單片機,其機器周期由標準的12個系統(tǒng)時鐘周期減為1個系統(tǒng)時鐘周期,因此比標準的8051結(jié)構(gòu)指令在執(zhí)行速度上有很大的提高,峰值性能達到25MIPS(百萬指令/秒,Million Instructions Per Second)。該裝置在設(shè)計時使用了出廠已經(jīng)校準的24.5±2%MHz內(nèi)部振蕩器,并配置兩對濾波電容對單片機工作電壓和A/D轉(zhuǎn)換基準電壓進行濾波設(shè)計,連接管腳2的為單片機復(fù)位電路,短接JRS可以復(fù)位單片機。傳感器模擬信號配置為模擬輸入,其他外圍設(shè)備管腳根據(jù)其具體功能予以配置,主控芯片的原理如圖3a所示。
為了更好地采集能夠反映土壤濕度的時間、空間特性的數(shù)據(jù),本裝置設(shè)計了實時時鐘電路,用于記錄數(shù)據(jù)的采集時間,進而分析土壤濕度時空變化規(guī)律,提高節(jié)水灌溉的精確性,時鐘電路原理圖如圖3b所示。
圖3 便攜式土壤濕度檢測裝置的主控芯片及時鐘電路圖
時鐘電路采用DS1302時鐘芯片,是DALLAS公司推出的涓流充電時鐘芯片,具有寬范圍的工作電壓2.0~5.5V。在裝置開機時,裝置電源作為時鐘供電方式,裝置關(guān)機時,使用3.6 V紐扣電池作為時鐘電源。該芯片具有300 nA的低功耗,因此續(xù)航能力較強。
1.1.2 便攜式土壤濕度檢測裝置的軟件設(shè)計
便攜式土壤濕度檢測裝置的主體程序采用C語言編寫,程序首先進行硬件和時鐘的初始化,然后進入主函數(shù)。為了實現(xiàn)實時顯示,主函數(shù)里構(gòu)建了一個無限循環(huán)用于快速刷新LED顯示數(shù)碼管。裝置的軟件程序流程如圖4所示。
圖4 便攜式土壤濕度檢測裝置的程序流程圖
土壤濕度傳感器輸出0~2 V電壓信號經(jīng)采集電路處理后送入單片機進行A/D轉(zhuǎn)換,轉(zhuǎn)換為數(shù)字信號后,計算出相應(yīng)的濕度值并實時顯示。裝置設(shè)計有土壤濕度數(shù)據(jù)采集按鍵和數(shù)據(jù)發(fā)送按鍵,濕度采集按鍵用來記錄數(shù)據(jù);數(shù)據(jù)發(fā)送按鍵則在檢測結(jié)束后發(fā)送檢測的數(shù)據(jù),配置W25Q64 FLASH存儲芯片,具有64Mbit存儲空間,足夠數(shù)據(jù)存儲使用;數(shù)據(jù)傳輸采用無線藍牙通信方式,避免了相對復(fù)雜的有線傳輸方式。
1.2.1 精準灌溉決策系統(tǒng)上位機軟件總體流程
本著界面設(shè)計易懂、實用的基本原則,盡量減少界面的操作流程,并給予足夠的提示信息。上位機數(shù)據(jù)接收程序使用VB語言編寫,主要負責與便攜式土壤濕度檢測裝置進行無線連接,并接受裝置采集的數(shù)據(jù)。上位機數(shù)據(jù)接收程序流程如圖5a所示。
上位機操作界面使用MATLAB GUI工具進行編寫。首先打開存儲的excel文件并讀取土壤濕度數(shù)據(jù),根據(jù)作物對土壤濕度的需求值設(shè)定灌水下限值進行數(shù)據(jù)歸一化,然后調(diào)用具有強擴展性的一致性算法子模塊進行預(yù)測,判斷整體區(qū)域或分區(qū)是否需要灌溉,相應(yīng)程序流程如圖5b所示。
圖5 上位機精準灌溉決策系統(tǒng)流程圖
1.2.2 分布式二進制一致性算法設(shè)計
1)分布式二進制一致性算法原理
分布式一致性算法是一種用于對大規(guī)模數(shù)據(jù)進行有效融合的算法,其核心思想是通過相鄰傳感器檢測點之間的數(shù)據(jù)交換和計算,最終實現(xiàn)所有檢測點的參數(shù)值達到一致[18-22],因為該算法不需要知道全局信息,所以具有并行計算、擴展性好、魯棒性強等特點。而分布式二進制一致性算法式是分布式一致性算法的特例,即傳感器檢測點之間所傳輸?shù)臄?shù)據(jù)只有“0”或“1”2個狀態(tài)。在土壤濕度決策過程中,該算法把采集到的所有檢測點的土壤濕度與設(shè)定的土壤濕度下限值進行比較,小于則取狀態(tài)值為“1”,反之則為“0”;相鄰的傳感器檢測點所采集的數(shù)據(jù)通過相互分享狀態(tài)值,按照如下步驟進行計算,即可對整個區(qū)域是否需要灌溉進行準確估計。
③當被監(jiān)測區(qū)域中各傳感器檢測點的狀態(tài)值遵循以下3種屬性[18]之一,即出現(xiàn)
時,則判定系統(tǒng)達到間隔一致,計算結(jié)束;否則返回步驟①循環(huán)計算,直到滿足步驟③條件或超出規(guī)定循環(huán)次數(shù)為止(估計失敗)。
④令小于0.25的狀態(tài)值等于0,大于0.75的狀態(tài)值等于1,即可進行決策:狀態(tài)值為“1”則認為被監(jiān)測區(qū)域缺水,反之則認為被監(jiān)測區(qū)域不缺水。
2)分布式二進制一致性算法仿真測試
整個算法按照上述步驟進行迭代,經(jīng)過一段時間后即可得到被監(jiān)測區(qū)域缺水與否的準確估計。該算法采用遺傳算法[23-25]進行優(yōu)化后,其仿真準確率大大提高。
圖6 優(yōu)化后的準確率統(tǒng)計
由圖6知,算法的估計準確率隨著檢測點數(shù)的增加而增加,當檢測點數(shù)大于63時,算法的估計準確率都將超過98%。
土壤濕度傳感器多采用烘干法進行標定[26-30],為不失一般性,本文設(shè)計的便攜式土壤濕度檢測裝置也采用烘干法進行標定。由文獻[31]知,溫度每變化1℃對傳感器輸出只有大約1.914 mV的影響,所以溫度對濕度測量的準確性影響較小,因此本設(shè)計中未考慮溫度補償措施。
在烘干法試驗中,土壤質(zhì)量含水率計算公式為
式中表示土壤質(zhì)量含水率;m為容器質(zhì)量和土壤濕質(zhì)量之和,g;m為容器質(zhì)量和土壤干質(zhì)量之和,g;m為容器質(zhì)量,g。
便攜式土壤濕度檢測裝置的標定采用云南紅壤土,去除顆粒和雜質(zhì),過篩孔徑0.9 mm,烘箱使用DGG-9123A型電熱恒溫鼓風干燥箱,電子秤型號YP100001,測量精度0.1 g。具體標定步驟如下:
1)將處理好的土壤置于烘箱于105 ℃條件下烘干12 h,冷卻2 h后取出;
2)稱取土壤干質(zhì)量,裝入直徑為10 cm,高為8.5 cm的不銹鋼杯中,并將土壤均勻壓實,按1.16 g/cm3容重配置9份樣品;
3)依次向樣品加水,每個樣品加水量遞增25 mL水,然后靜置12 h,分別稱濕質(zhì)量,計算土壤質(zhì)量含水率理論值,并記錄試驗數(shù)據(jù);
4)將探針充分插入待測樣品,測取土壤濕度傳感器輸出電壓值,觀察數(shù)碼管顯示的讀數(shù),并記錄試驗數(shù)據(jù);
5)根據(jù)土壤濕度標定值進行最小二乘擬合,作出擬合曲線,并根據(jù)標定值和擬合曲線上對應(yīng)的值標定檢測裝置的精度;
6)重復(fù)步驟1)~4),驗證檢測裝置的可靠性。
根據(jù)烘干法所得到的標定值和基于標定值進行最小二乘法擬合得到擬合曲線如圖7所示,其中擬合曲線上的星型點表示對應(yīng)于標定值的擬合值。
圖7 實驗室土壤濕度標定值與擬合曲線
考慮到土壤濕度傳感器的精度和單片機有限的計算能力,這里選擇4次多項式擬合,所得的電壓值(, V)與土壤質(zhì)量含水量(, %)的換算公式如式(5)所示。
結(jié)合公式(5)和步驟6)所獲得的相關(guān)測試數(shù)據(jù)計算結(jié)果可知,土壤濕度質(zhì)量含水率標定值與擬合曲線基本吻合,最大絕對誤差2.2%,按量程為0~53%計算,則所設(shè)計裝置檢測精度大于95%。
考慮到實驗室條件過于理想,因此有必要進行田間抽樣測試以檢驗該裝置能否應(yīng)用于田間這類非理想環(huán)境。整個抽樣過程按照檢測裝置插入測試點測量、環(huán)刀取樣、烘干法標定的順序進行。試驗所得的田間實測數(shù)據(jù)和烘干法稱質(zhì)量所得標定數(shù)據(jù)如表1所示。
表1 田間測試土壤濕度標定值與測量值對比
在進行田間試驗時,便攜式土壤濕度檢測裝置測定的土壤濕度質(zhì)量含水量和烘干法得到的標定土壤濕度質(zhì)量含水量的誤差大小,可以用均方根誤差RMSE(root mean square error)來衡量[32]。其計算方式為
將表1中第2列所示的檢測電壓代入式(5)中計算出的土壤濕度質(zhì)量含水量的測量值,依次填入表1的第1列,然后按照式(6)計算出均方根誤差RMSE為2.18%,而由裝置95%精度算出允許誤差為±2.65%,即均方根誤差小于允許誤差。因此,該便攜式土壤濕度檢測裝置符合標定的精度,說明該裝置能夠勝任田間等野外區(qū)域的土壤濕度數(shù)據(jù)采集工作。
系統(tǒng)測試對象為昆明理工大學(xué)圖書館前草坪。由于設(shè)置灌溉方式為圓形自旋轉(zhuǎn)微噴灌溉,因此,依據(jù)草坪形狀和噴頭位置可將草坪分為4個分區(qū)域,對草坪整體區(qū)域進行土壤濕度檢測和自動分區(qū)決策,檢測點布置為30 m×30 m的正方形,分區(qū)后每個區(qū)域檢測點布置為15 m×15 m的小正方形,檢測點均勻分布于整個區(qū)域,平均3 m左右1個測點,總計為100個檢測點,實現(xiàn)了對作物土壤濕度檢測的全面覆蓋,為正確決策提供保障。
設(shè)草坪每個檢測點為分布式二進制一致性算法的1個節(jié)點,節(jié)點之間的通信半徑為9 m,則所有檢測點組成1個分布式網(wǎng)絡(luò);在4個分區(qū)中,令節(jié)點的通信半徑為5 m,節(jié)點之間的拓撲連接形式4個分布式子網(wǎng)絡(luò)。
便攜式土壤濕度檢測裝置把指定位置的檢測數(shù)據(jù)通過藍牙方式發(fā)送至上位機,并存儲為相應(yīng)的excel文件,上位機決策軟件中的分布式二進制一致性算法分別根據(jù)整體區(qū)域、分區(qū)域拓撲連接對檢測數(shù)據(jù)進行同步運算。
經(jīng)過為期1個月的跟蹤測試(1次/d),從30組數(shù)據(jù)中選擇出5組分別對圖書館前草坪的檢測數(shù)據(jù)進行總體和分區(qū)決策。為測試決策系統(tǒng)結(jié)果的準確性,這里采用決策系統(tǒng)結(jié)果與專家統(tǒng)計結(jié)果對比的方式來進行。專家統(tǒng)計結(jié)果的統(tǒng)計規(guī)則為“被監(jiān)測區(qū)域狀態(tài)值為“1”的檢測點之和與被監(jiān)測區(qū)域所有檢測點之和的比值的百分數(shù)”。當統(tǒng)計結(jié)果的值大于或等于50%即判定被監(jiān)測區(qū)域為“缺水”,反之則判定為“不缺水”。對比結(jié)果如表2所示。
表2 決策系統(tǒng)測試結(jié)果與專家統(tǒng)計結(jié)果對比
注:“1”與“(1)”分別代表被決策系統(tǒng)和專家判定為缺水,而“0”與“(0)”分別代表被決策系統(tǒng)和專家為不缺水。
Note: “1” and “(1)” denote water shortage judged by decision system and experts respectively, while “0” and “(0)” denote not short of water judged by decision system and experts respectively.
由表2可知,根據(jù)5次檢測數(shù)據(jù)進行決策的結(jié)果與專家統(tǒng)計結(jié)果完全吻合,系統(tǒng)決策準確無誤。綜合30次的結(jié)果來看,平均準確率達到90%以上,其中第3次預(yù)測結(jié)果如圖8所示。
圖8 上位機決策界面
在圖8中,左1圖表示數(shù)據(jù)歸一化后檢測點的缺水狀態(tài)分布,紅色圓圈為缺水,藍色星為不缺水;左2圖表示整體決策結(jié)果為“不缺水”;圖8右側(cè)有2行2列共計4張圖分別為4個分區(qū)的決策結(jié)果,其中圖中分區(qū)1、分區(qū)2、分區(qū)3的決策結(jié)果均為“不缺水”,而分區(qū)4的決策結(jié)果顯示為“缺水”狀態(tài)。即第1、2、3分區(qū)不缺水,可以暫不進行灌溉,而第4分區(qū)缺水,需要進行灌溉。綜上所述,該算法可以從整體和局部2種尺度為用戶提供灌溉決策建議,為實施節(jié)水灌溉提供了有效支持。
本文設(shè)計了一種可用于精細化農(nóng)田節(jié)水灌溉決策的土壤濕度精準灌溉決策系統(tǒng)。通過便攜式濕度檢測裝置采集數(shù)據(jù),結(jié)合上位機的分布式二進制一致性融合算法,能夠?qū)崿F(xiàn)對被監(jiān)測區(qū)域土壤濕度缺水情況的多尺度預(yù)測。經(jīng)過實驗室測試和田間實際驗證得到如下結(jié)論:
1)便攜式土壤濕度檢測裝置包含土壤濕度數(shù)據(jù)實時顯示、數(shù)據(jù)存儲、土壤濕度采集燈光提示、藍牙模塊無線傳輸數(shù)據(jù)等功能,使用方便、操作簡單;
2)便攜式土壤濕度檢測裝置運行穩(wěn)定、數(shù)據(jù)傳輸可靠,最大誤差為2.2%,設(shè)計裝置檢測精度為95%,符合實際檢測需要。
3)決策系統(tǒng)界面友好、操作方便,系統(tǒng)算法運行穩(wěn)定、決策結(jié)果準確。在檢測點數(shù)大于63時,仿真試驗平均決策準確率達到98%,田間試驗的平均決策準確率超過90%。
該節(jié)水灌溉預(yù)測系統(tǒng)預(yù)測精度較高、便攜性好、可擴展性強、有利于在精細化節(jié)水灌溉領(lǐng)域進行推廣應(yīng)用。
[1] 黃玉祥,韓文霆,周龍,等. 農(nóng)戶節(jié)水灌溉技術(shù)認知及其影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(18):113-120.
Huang Yuxiang, Han Wenting, Zhou Long, et a1.Farmer cognition on water-saving irrigation technology and its influencing factors analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 113-120. (in Chinese with English abstract)
[2] 王旭,孫兆軍,楊軍,等. 幾種節(jié)水灌溉新技術(shù)應(yīng)用現(xiàn)狀與研究進展[J]. 節(jié)水灌溉,2016(10):109-112
[3] 趙文杰,丁凡琳. 我國節(jié)水灌溉技術(shù)推廣現(xiàn)狀與對策研究綜述[J]. 節(jié)水灌溉,2015(4):95-98.
Zhao Wenjie, Ding Fanlin. A review on the current situation and countermeasures of water-saving irrigation technology extension in China[J]. Water Saving Irrigation, 2015(4): 95-98. (in Chinese with English abstract)
[4] 牛文全, 薛萬來. 礦化度對微潤灌土壤入滲特性的影響[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(4):163-172.
Niu Wenquan, Xue Wanlai. Effects of mineralization degrees on soil infiltration under moistube-irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 163-172. (in Chinese with English abstract)
[5] El-Abedin T K Z, Mattar M A, Alazba A A, et al. Comparative effects of two water-saving irrigation techniques on soil water status, yield, and water use efficiency in potato[J]. Scientia Horticulturae, 2017(225): 525-532.
[6] 陳琳,田軍倉,王子路. 痕灌技術(shù)研究現(xiàn)狀及展望[J]. 農(nóng)業(yè)科學(xué)研究,2015,36(3):52-56.
Chen Lin, Tian Juncang, Wang Zilu. The research status and the future development of trace quantity irrigation technology[J]. Journal of Agricultural Sciences, 2015, 36(3): 52-56. (in Chinese with English abstract)
[7] 康紹忠,潘英華,石培澤,等. 控制性作物根系分區(qū)交替灌溉的理論與試驗[J]. 水利學(xué)報,2001,32(11):80-87.
Kang Shaozhong, Pan Yinghua, Shi Peize, et a1. Con-trolled root-divided alternative irrigation-theory and experiments[J]. Journal of Hydraulic Engineering, 2001, 32(11): 80-87. (in Chinese with English abstract)
[8] 劉梅先,楊勁松,李曉明,等.滴灌模式對棉花根系分布和水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(增刊1):98-105.
Liu Meixian, Yang Jingsong, Li Xiaoming, et al. Effects of drip irrigation strategy on cotton root distribution and water useefficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 98-105. (in Chinese with English abstract)
[9] Rejesus R M, Palis F G, Rodriguez D G P, et al. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the philippines[J]. Food Policy, 2011, 36(2): 280-288.
[10] Feng L, Dai J, Tian L, et al. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China[J]. Field Crops Research, 2017, 208: 18-26.
[11] 劉柯楠,吳普特,朱德蘭,等. 基于GPS 的太陽能平移式噴灌機自主導(dǎo)航系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(16):89-94.
Liu Kenan, Wu Pute, Zhu Delan, et al. Design and experiment of autonomous navigation system for solar poweredlinear move sprinkler machine based on GPS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 89-94. (in Chinese with English abstract)
[12] 張增林,韓文霆. 自動化控制在節(jié)水灌溉系統(tǒng)中的應(yīng)用[J]. 節(jié)水灌溉,2012(10):65-68.
Zhang Zenglin, Han Wenting. Application of automatic control in water saving irrigation system[J]. Water Saving Irrigation, 2012(10): 65-68. (in Chinese with English abstract)
[13] 郭英芳. 單片機技術(shù)在農(nóng)田節(jié)水灌溉系統(tǒng)中的應(yīng)用[J]. 陜西農(nóng)業(yè)科學(xué),2015,61(6):93-95.
[14] 趙斌,范學(xué)佳,衣淑娟,等. 旱田節(jié)水灌溉智能監(jiān)控系統(tǒng)的研究[J]. 中國農(nóng)機化學(xué)報,2016,37(7):174-178.
Zhao Bin, Fan Xuejia, Yi Shujuan, et al. Research on dry field water-saving irrigation intelligent monitoring system[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 174-178. (in Chinese with English abstract)
[15] 陳艷麗,謝芳. 基于ZigBee的農(nóng)田智能節(jié)水灌溉系統(tǒng)的設(shè)計[J]. 中國農(nóng)機化學(xué)報,2017,38(2):81-83.
Chen Yanli, Xie Fang. Design of intelligent water-saving farmland irrigation system based on ZigBee[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(2): 81-83. (in Chinese with English abstract)
[16] 賈科進,王文貞,杜太行,等. 基于ZigBee無線傳感器網(wǎng)絡(luò)的土壤墑情監(jiān)測系統(tǒng)[J]. 節(jié)水灌溉,2014(3):69-71.
[17] Peng X, Liu G. Intelligent water-saving irrigation system based on fuzzy control and wireless sensor network[C]// Fourth International Conference on Digital Home. IEEE, 2012: 252-256.
[18] Draief M, Vojnovic M. Convergence speed of binary interval consensus[J]. Proceedings-IEEE Infocom, 2009, 50(50): 1-9.
[19] Abdaoui A, Elfouly T M. Distributed binary consensus algorithm in wireless sensor networks with faulty nodes[C]// Gcc Conference and Exhibition, 2013: 495-500.
[20] Mostofi Y, Malmirchegini M. Binary consensus over fading channels[J]. IEEE Transactions on Signal Processing, 2010, 58(12): 6340-6354.
[21] Abdaoui A, El-Fouly T M. TOSSIM and distributed binary consensus algorithm in wireless sensor networks[J]. Journal of Network & Computer Applications, 2014, 41: 451-458.
[22] Al-Nakhala N, Riley R, Elfouly T M. Binary consensus in sensor motes[C]//Wireless Communications and Mobile Computing Conference. IEEE, 2013: 1337-1342.
[23] 劉玉梅,魏歐,黃鳴宇,等. 應(yīng)用改進的遺傳算法優(yōu)化軟件產(chǎn)品線特征選擇[J]. 小型微型計算機系統(tǒng),2017,38(1):35-39.
Liu Yumei, Wei Ou, Huang Mingyu, et al. Feature selection optimization based on atomic est and genetic algorithm in software product line[J]. Journal of Chinese Computer Systems, 2017, 38(1): 35-39. (in Chinese with English abstract)
[24] 范莎. 無線傳感器網(wǎng)絡(luò)的分布式快速一致性濾波[D]. 昆明:昆明理工大學(xué),2016.
Fan Sha. Distributed Fast Consistency Filtering for Wireless Sensor Networks[D]. Kunming: Kunming University of Science and Technology, 2016. (in Chinese with English abstract)
[25] 張鵬,馮旭祥,葛小青. 基于改進遺傳算法的多天線地面站硬件資源分配方法[J]. 計算機工程與科學(xué),2017,39(6):1155-1163.
Zhang Peng, Feng Xuxiang, Ge Xiaoqing. A hardware resource allocation method for multi-antenna ground station based on improved genetic algorithm[J]. Computer Engineering & Science, 2017, 39(6): 1155-1163. (in Chinese with English abstract)
[26] 唐玉邦,何志剛,虞利俊,等. 土壤水分傳感器(FDR)在作物精準灌溉中的標定與應(yīng)用[J]. 江蘇農(nóng)業(yè)科學(xué),2014,42(4):343-344.
[27] 江朝暉,檀春節(jié),支孝勤,等. 基于頻域反射法的便攜式土壤水分檢測儀研制[J]. 傳感器與微系統(tǒng),2013,32(1):79-82.
Jiang Zhaohui, Tan Chunjie, Zhi Xiaoqin, et al. Development of portable soil moisture detector based on principle of frequency domain reflectometry[J]. Transducer and Microsystem Technologies, 2013, 32(1): 79-82. (in Chinese with English abstract)
[28] 孟德倫,孟繁佳,段曉菲,等. 基于頻域法的便攜式無線土壤水分測量裝置設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(增刊1):114-119.
Meng Delun, Meng Fanjia, Duan Xiaofei, et al. Design and experiment of portable wireless soil moisture measuring device based on frequency-domain method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 114-119. (in Chinese with English abstract)
[29] 李加念,洪添勝,馮瑞玨,等. 基于真有效值檢測的高頻電容式土壤水分傳感器[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(8):216-221.
Li Jianian, Hong Tiansheng, Feng Ruijue, et al. High-frequency capacitive soil water content sensor based on detecting of true root mean square[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 216-221. (in Chinese with English abstract)
[30] 姜明梁,方嫦青,馬道坤. 基于TDR的土壤水分傳感器設(shè)計與試驗[J]. 農(nóng)機化研究,2017,39(8):147-153.
Jiang Mingliang, Fang Eqing, Ma Daokun. Design and experimental research of an instrument for soil moisture sensor based on TDR[J]. Journal of Agricultural Mechanization Research, 2017, 39(8): 147-153. (in Chinese with English abstract)
[31] 員玉良,盛文溢,孫宇瑞. 三深度土壤水分傳感器的研制及試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(12):64-71.
Yun Yuliang, Sheng Wenyi, Sun Yurui. Design and experiment of soil water sensor monitoring soil moisture at three depths[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 64-71. (in Chinese with English abstract)
[32] 鄭茹梅,李子忠,龔元石,等. 基于相位差的時域反射儀測定土壤含水量的標定和田間驗證[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2011,16(1):100-104.
Zheng Rumei, Li Zizhong, Gong Yuanshi, et al. Calibration and field verification of TDR based on phase difference for measuring soil water content[J]. Journal of China Agricultural University, 2011, 16(1): 100-104. (in Chinese with English abstract)
Portable detection device of soil moisture for precision irrigation decision system
Yang Chunxi1, Liu Hua1, Xie Kexin1, Yang Qiliang2
(1.,,650500,; 2.,,650500,)
Precision irrigation by applying state-of-the-art techniques is an unavoidable trend for modern agriculture, but the dilemma is faced for predicting the soil moisture of a given crop area: Arranging limited number of soil detection sensors may not able to capture the whole information well, but adding sensors means increased investment costs. Hence, in this paper, a new soil moisture decision system by using portable detection device was designed and put into field-testing. The detection system can be decomposed into the portable soil moisture detection device and the host computer decision software. And the portable soil moisture detection device was designed with the soil moisture sensor MS-10 which follows the FDR principle, the C8051F410 low power consumption Micro-controller, the Bluetooth wireless transmission module, the data display module and the peripheral circuit. This hardware owns several useful functions such as time recording, data storage, data transmission and real-time display by LED. All these units are well organized to reduce the volume and weight of the device, which makes it easier to operate in the field. After experimental calibration and the field tests, the maximum allowable error and the design accuracy of this portable detection device were 2.2% and 95%, respectively. Meanwhile the software in PC is composed of the data receiving module, the distributed binary consensus algorithm module and the system operation interface. These sub-modules are developed by Visual Basic, Matlab and Matlab GUI, respectively. For the data collected by the portable device, firstly, it can be transmitted from the portable device to the upper computer through the data receiving module with wireless Bluetooth transmission mode; Then, it can be normalized as two states (state “0” and “1”) by the normalization method through compared with the set irrigation low limit; The third, the distributed binary consensus algorithm module is used to compute the total and the local decision results according to these data which comes from at the same time; and finally, the decision results can be displayed on the system operation interface as pictures and symbols. In addition, this software can obtain multi-scale and adjustable decision results with higher estimation accuracy if several key parameters in the distributed binary consensus algorithm are optimized by the genetic algorithm (GA). By using the bio-inspired operators such as mutation, crossover and selection, high-quality solutions can be generated efficiently for the optimization and searching problems encountered in our application. Several field tests for the designed decision system are implemented on a 30 m×30 m lawn, the results showed that the system had several advantages, such as high accurate predication (the average accuracy rate of simulation test is about 98% when data is more than 63 and the average accuracy rate of experiment tests is above 90%), lower power cost and strong extendibility. In addition, this system not only can be used independently, but also can be used as an effective complement for the classical fixed detection method. Consequently, this system improves the utilization rate of water resources effectively by means of measuring the soil moisture content accurately, reliable data wireless transmission and fast parallel computation.
irrigation; soil moisture; temperature; precision irrigation; portable; detection device; decision system
楊春曦,劉 華,謝可心,楊啟良. 便攜式土壤濕度檢測裝置用于精準灌溉決策系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(22):84-91. doi:10.11975/j.issn.1002-6819.2018.22.011 http://www.tcsae.org
Yang Chunxi, Liu Hua, Xie Kexin, Yang Qiliang. Portable detection device of soil moisture for precision irrigation decision system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 84-91. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.011 http://www.tcsae.org
2018-04-03
2018-09-24
國家自然科學(xué)基金項目(61364002,51779113);昆明理工大學(xué)實驗室建設(shè)與管理研究項目資助(SYYJ35)
楊春曦,博士,教授,主要從事網(wǎng)絡(luò)控制系統(tǒng),無線傳感器網(wǎng)絡(luò)和分布式數(shù)據(jù)融合研究。Email:ycx@kmust.edu.cn.
10.11975/j.issn.1002-6819.2018.22.011
TP13
A
1002-6819(2018)-22-0084-08