盧金玲,張 欣,王 維,馮建軍,郭鵬程,羅興锜
?
沙粒粒徑對(duì)水力機(jī)械材料磨蝕性能的影響
盧金玲,張 欣,王 維,馮建軍,郭鵬程,羅興锜
(西安理工大學(xué)水利水電學(xué)院,西安 710048)
對(duì)于運(yùn)行于多泥沙河流的水力機(jī)械而言磨蝕問題不可避免,磨蝕會(huì)造成水力機(jī)械過流部件失重、變形,帶來效率下降、維護(hù)成本增加等問題。目前針對(duì)磨蝕破壞機(jī)理的研究尚不完善,該文利用旋轉(zhuǎn)噴射磨蝕試驗(yàn)裝置對(duì)4種水力機(jī)械常用材料進(jìn)行5種不同沙粒粒徑下的磨蝕試驗(yàn),借助掃描電鏡及激光共聚焦掃描電鏡對(duì)試件磨蝕表面進(jìn)行二維和三維形貌觀察,探究沙粒粒徑對(duì)水力機(jī)械材料磨蝕破壞失效行為的影響規(guī)律及作用機(jī)理。結(jié)果表明:沙粒粒徑為0.043、0.147及0.248 mm時(shí),試件磨蝕累計(jì)質(zhì)量損失與時(shí)間呈線性相關(guān),而粒徑為0.349與0.449 mm時(shí)質(zhì)量損失與時(shí)間滿足Gauss函數(shù)關(guān)系;沙粒粒徑會(huì)影響試件的磨蝕特征,粒徑為0.043 mm時(shí)試件表面磨蝕破壞主要為沙粒的垂直沖擊磨損與空蝕,無明顯水平方向的切削磨損,粒徑為0.147、0.248、0.349及0.449 mm時(shí)試件表面的磨蝕破壞以水平方向的切削磨損和空蝕破壞聯(lián)合為主,并伴有一定量的垂直沖擊磨損;通過分析4種材料的磨蝕特征,發(fā)現(xiàn)磨蝕質(zhì)量損失與粒徑大小二者之間存在強(qiáng)相關(guān)區(qū)與弱相關(guān)區(qū)的關(guān)系。該研究可為合理控制水力機(jī)械過流粒徑大小及制定抗磨措施提供參考。
水力機(jī)械;磨蝕;耐磨性;旋轉(zhuǎn)噴射;沙粒粒徑
中國多數(shù)河流泥沙含量都相對(duì)較高,其中黃河多年平均含沙量為35 kg/m3,居世界第一位。運(yùn)行于多泥沙河流的水力機(jī)械磨蝕問題不可避免,水力機(jī)械磨蝕會(huì)造成過流部件失重、變形從而導(dǎo)致水力性能下降、檢修周期縮短、維護(hù)成本增加等多方面問題,為此國內(nèi)外眾多學(xué)者進(jìn)行了大量研究[1-2]。
沙粒特性作為水力機(jī)械磨蝕研究中重要的一部分,其對(duì)磨蝕的影響尤為值得關(guān)注,針對(duì)沙粒的硬度、形狀、粒徑、含量等因素,專家學(xué)者進(jìn)行了大量的理論分析及試驗(yàn)研究。姚啟鵬[3]通過試驗(yàn)發(fā)現(xiàn)A3(現(xiàn)為Q235)等幾種鋼材磨蝕率與粒徑的平方成正比,提出了粒徑的有害范圍為0.04~0.14 mm;Sato等[4]則認(rèn)為粒徑為0.08~0.17 mm時(shí)破壞最為嚴(yán)重,謝翠松等[5]認(rèn)為該范圍為0.25~0.7 mm,小于0.25 mm時(shí)粒徑的變化不會(huì)影響磨蝕量;王志高[6]通過研究與分析認(rèn)同杜里涅夫提出的有害粒徑范圍為0.1~0.5 mm;鹽鍋峽電站運(yùn)行經(jīng)驗(yàn)則表明,有害粒徑范圍在0.04~0.6 mm[7];權(quán)輝等[8]通過研究發(fā)現(xiàn)在含沙量一定時(shí),沙粒粒徑的增加會(huì)造成離心泵葉輪域體積濃度梯度變化不均勻,對(duì)磨蝕產(chǎn)生促進(jìn)作用。Padhy等[9]通過試驗(yàn)發(fā)現(xiàn)沙粒粒徑的大小是影響磨蝕破壞的重要參數(shù),同時(shí)指出材料的磨蝕質(zhì)量損失是由于表面的塑形變形和沙粒的反復(fù)沖擊造成的。黃偉九等[10]則對(duì)QAl9-4鋁青銅進(jìn)行不同粒徑下沖蝕磨損試驗(yàn)認(rèn)為其在小粒徑下失效行為以犁溝磨損為主,大粒徑時(shí)以鍛打擠壓為主,但并未對(duì)不同粒徑失效范圍進(jìn)行準(zhǔn)確界定。近年來隨著科技的進(jìn)步,用于磨蝕破壞研究的分析檢測(cè)設(shè)備在功能與精度上也有了較大提高。梁武科等[11-12]通過使用掃描電鏡(scanning electron microscope,SEM)對(duì)45# 鋼及合金粉末噴焊焊條Ni67磨蝕破壞形貌觀察可明顯看到磨蝕破壞造成的裂紋及晶體脫落現(xiàn)象;龐佑霞等[13]通過使用SEM及附帶能譜分析(energy dispersive spectrometer,EDS)對(duì)QT500材料進(jìn)行能譜分析發(fā)現(xiàn)磨蝕過程中空蝕破壞產(chǎn)生的瞬間高溫會(huì)造成材料氧化產(chǎn)生氧化鐵粒子;周夏涼等[14-16]利用X射線衍射(X-ray diffraction)表征了涂層物相組成,并利用SEM分析涂層微觀組織結(jié)構(gòu)及磨蝕后表面形貌,探討涂層在含沙水流中磨蝕機(jī)理。
目前針對(duì)沙粒粒徑有害范圍、磨蝕破壞失效行為的影響規(guī)律及作用機(jī)理的研究尚無明確定論。因此,本文利用旋轉(zhuǎn)噴射磨蝕試驗(yàn)裝置對(duì)4種水力機(jī)械常用材料進(jìn)行5種不同沙粒粒徑下磨蝕試驗(yàn),借助高精度SEM、激光共聚焦掃描電鏡(laser scanning confocal microscope,LSCM)等設(shè)備對(duì)材料的微觀失效形貌進(jìn)行觀察分析,探究不同沙粒粒徑對(duì)材料的磨蝕影響規(guī)律及作用機(jī)理。本文對(duì)于合理控制水力機(jī)械過流粒徑大小及制定抗磨措施具有重大意義。
磨蝕作為水力機(jī)械領(lǐng)域一個(gè)老的課題,其試驗(yàn)研究已經(jīng)有半個(gè)多世紀(jì)歷史,在這期間國內(nèi)外研究學(xué)者根據(jù)各自研究的側(cè)重點(diǎn)設(shè)計(jì)出不同的試驗(yàn)裝置,如水洞空蝕試驗(yàn)裝置、旋轉(zhuǎn)圓盤式繞流裝置以及磁致伸縮儀等,但通過比較發(fā)現(xiàn)這些裝置都存在一定缺陷,試驗(yàn)精度欠缺,難以滿足長期安全穩(wěn)定以及復(fù)雜工況等運(yùn)行條件。為此本文在參考其他研究人員試驗(yàn)裝置基礎(chǔ)上通過不斷改進(jìn)完善后,自行搭建了用于磨蝕試驗(yàn)研究的旋轉(zhuǎn)噴射磨蝕裝置。
旋轉(zhuǎn)噴射磨蝕試驗(yàn)裝置如圖1所示,整個(gè)試驗(yàn)裝置由混水箱、調(diào)速電機(jī)、隔膜泵、穩(wěn)壓系統(tǒng)、冷卻系統(tǒng)、轉(zhuǎn)盤室和控制柜等部件組成。調(diào)速電機(jī)帶動(dòng)轉(zhuǎn)盤旋轉(zhuǎn),試驗(yàn)試件沿周向均布于轉(zhuǎn)盤之上,試件表面均開設(shè)相同的空化誘發(fā)孔,在誘發(fā)口后方形成空蝕,同時(shí)含沙水流通過4個(gè)均布的直徑為2.5 mm的噴嘴噴射沖擊試驗(yàn)試件,從而在試件表面形成空蝕與沖擊磨損的聯(lián)合作用,即磨蝕破壞。
1.混水箱 2.攪拌裝置 3.冷水機(jī) 4.隔膜泵 5.穩(wěn)壓罐 6.空壓機(jī) 7.電磁流量計(jì) 8.控制柜 9.試驗(yàn)轉(zhuǎn)盤 10.調(diào)速電機(jī) 11.回水箱 12.回水泵
圖2a為試驗(yàn)裝置速度三角形矢量圖,其中沖蝕速度為相對(duì)速度與圓周速度的合速度,而相對(duì)速度為含沙水流通過噴嘴時(shí)的噴射速度,其方向垂直于旋轉(zhuǎn)圓盤,大小由增壓式隔膜泵流量與噴嘴面積決定;圓周速度指旋轉(zhuǎn)圓盤上試驗(yàn)試件空化誘發(fā)孔所在分度圓的線速度,其方向與分度圓旋轉(zhuǎn)方向相切,大小由拖動(dòng)旋轉(zhuǎn)圓盤的調(diào)速電機(jī)控制。
注:U為圓周速度,m·s-1;V為相對(duì)速度,m·s-1;W為沖蝕速度,m·s-1;α為沖蝕角度,(°).
試驗(yàn)轉(zhuǎn)盤作為試驗(yàn)的核心部件如圖2b所示。轉(zhuǎn)盤共有8處凹槽,按照同種材料采用對(duì)角放置原則可同時(shí)進(jìn)行4種材料下8塊試件磨蝕試驗(yàn)。試驗(yàn)試件均通過統(tǒng)一加工尺寸大小相同,同時(shí)為避免表面粗糙度對(duì)磨蝕試驗(yàn)產(chǎn)生影響,試驗(yàn)前對(duì)試件進(jìn)行拋光處理。本次試驗(yàn)選用的4種材料分別為:16Mn、ZG20SiMn、45#及A型高錳鋼板,這些材料在水力機(jī)械過流部件及引水管道中有著廣泛的應(yīng)用。此外整個(gè)試驗(yàn)裝置還可以用于不同涂層抗磨蝕性能對(duì)比試驗(yàn)研究。
試驗(yàn)前用乙醇將試件清洗、烘干后固定于試驗(yàn)轉(zhuǎn)盤,試驗(yàn)持續(xù)進(jìn)行24 h,每3 h取樣一次,清洗和烘干后使用型號(hào)為BSM 220.4精度0.1 mg的電子天平進(jìn)行稱質(zhì)量,對(duì)角放置的同種試件試驗(yàn)前后質(zhì)量差值的平均值作為該組質(zhì)量損失。試驗(yàn)過程中根據(jù)沙粒的磨損情況進(jìn)行定期換沙以保證磨蝕過程中沙粒的幾何形狀保持一致。沙粒選用黃河花園口非規(guī)則塊狀沙,通過篩網(wǎng)篩選得到5種不同粒徑范圍沙粒,中值粒徑如表1所示。
試驗(yàn)結(jié)果的處理上考慮到質(zhì)量損失法是從整體上把握材料損失,忽略了表面各種空蝕破壞形式及磨痕形貌,導(dǎo)致關(guān)于磨蝕過程中有關(guān)空蝕破壞及磨損細(xì)節(jié)信息的丟失,因此在質(zhì)量損失法的基礎(chǔ)上針對(duì)磨蝕過程中產(chǎn)生的空蝕坑及沖擊磨損造成的磨痕通過蝕坑法和深度法進(jìn)行研究。蝕坑法是借助SEM對(duì)磨蝕試件表面局部進(jìn)行觀測(cè)從統(tǒng)計(jì)學(xué)角度通過空蝕坑數(shù)目的多少來衡量空蝕的破壞程度,同時(shí)借助其附帶分析工具準(zhǔn)確測(cè)定空蝕坑徑尺寸,具有高分辨率及大景深、視野廣特點(diǎn),而LSCM能對(duì)活體觀察、分辨率高、能重構(gòu)形成立體圖像等優(yōu)點(diǎn)。本文將SEM與LSCM結(jié)合使用,對(duì)試件磨蝕形貌進(jìn)行觀察分析。
試驗(yàn)在保持沖蝕速度、沖蝕角度及含沙量不變情況下,研究不同沙粒粒徑對(duì)4種水力機(jī)械常用材料磨蝕影響,具體參數(shù)如表1所示。
表1 試驗(yàn)相關(guān)參數(shù)
圖3為4種試件在不同粒徑下磨蝕累積質(zhì)量損失隨時(shí)間變化擬合曲線圖。由圖3可知,隨著試驗(yàn)時(shí)間的增加,試件磨蝕累積質(zhì)量損失不斷增大,且4種試件在粒徑為0.043、0.147及0.248 mm時(shí),磨蝕累計(jì)質(zhì)量損失隨時(shí)間呈線性變化,經(jīng)擬合后近似得到截距為0的一次函數(shù),其斜率為試件的磨蝕質(zhì)量損失率;粒徑為0.349及0.449 mm時(shí)試件的磨蝕累計(jì)質(zhì)量損失與試驗(yàn)時(shí)間則不再線性相關(guān)而是滿足高斯函數(shù)(Gauss)關(guān)系,試驗(yàn)前期(0~15 h)試件的磨蝕質(zhì)量損失隨時(shí)間的增大快速增大,到后期(15~24 h)質(zhì)量損失率不斷下降試件的質(zhì)量損失也增加比較緩慢,這與Abedini等[17-18]在金屬兩相流的試驗(yàn)研究結(jié)果基本吻合,分析認(rèn)為沙粒在試件表面垂直方向的沖擊鍛打作用造成試件表面發(fā)生塑性變形,硬度也隨之提高,致使試驗(yàn)后期對(duì)試件表面的切削磨損減弱,導(dǎo)致質(zhì)量損失增加緩慢;同時(shí)可以看到16Mn及45#試件則在粒徑為0.147及0.248 mm時(shí)出現(xiàn)質(zhì)量損失率相同、擬合曲線重疊現(xiàn)象,而ZG20SiMn試件在粒徑為0.147 mm時(shí)其質(zhì)量損失率大于粒徑為0.248 mm,A型高錳鋼試件質(zhì)量損失率則隨粒徑的增大而增大。
圖3 不同粒徑下試件磨蝕累計(jì)質(zhì)量損失隨時(shí)間變化曲線
圖4為4種試件在試驗(yàn)24 h后磨蝕累積質(zhì)量損失隨粒徑變化曲線圖。圖中隨著粒徑的增大4種試件磨蝕累計(jì)質(zhì)量損失逐漸增大。當(dāng)粒徑為0.043 mm時(shí)4種試件中A型高錳鋼磨蝕累計(jì)質(zhì)量損失最大,達(dá)到203.8 mg,分別是45#、ZG20SiMn及16Mn的3.92、2.88及2.19倍;當(dāng)粒徑為0.449 mm時(shí)A型高錳鋼磨蝕累計(jì)質(zhì)量損失達(dá)到439.4 mg,分別是45#、ZG20SiMn及16Mn的1.91、1.60及1.48倍??梢钥闯?5# 在這幾組粒徑下磨蝕質(zhì)量損失最少,而A型高錳鋼最多。因此認(rèn)為45#抗磨蝕性能相對(duì)優(yōu)越,ZG20SiMn和16Mn次之,A型高錳鋼抗磨蝕性能則相對(duì)較差。
金相分析發(fā)現(xiàn)鑄態(tài)A型高錳鋼其組織為奧氏體加大量碳化物在晶界碳化物易形成網(wǎng)狀,含碳量較高時(shí)其耐沖擊韌性基本為零[19]。故致使A型高錳鋼在高速含沙射流沖擊磨損中質(zhì)量損失最多,為提高A型高錳鋼抗磨性能可通過固溶處理使其組織中碳化物溶解于奧氏體晶體內(nèi),從而達(dá)到韌性大幅度提高,耐磨性增大的目的。
圖4 試件磨蝕累計(jì)質(zhì)量損失與沙粒粒徑關(guān)系曲線
對(duì)4種試件的磨蝕累計(jì)質(zhì)量損失隨粒徑變化曲線進(jìn)一步分析發(fā)現(xiàn):沙粒粒徑在0.043~0.147及0.349~0.449 mm范圍時(shí),粒徑尺寸的改變會(huì)引起材料磨蝕質(zhì)量損失出現(xiàn)明顯的改變,故將這一區(qū)域定義為沙粒粒徑與材料磨蝕質(zhì)量損失強(qiáng)相關(guān)區(qū),而粒徑在0.147~0.349 mm范圍時(shí)其粒徑變化對(duì)磨蝕質(zhì)量損失影響較小,則將這一區(qū)域定義為弱相關(guān)區(qū)。這一結(jié)果與姚啟鵬[3]在泥沙粒徑級(jí)配對(duì)材料磨損影響試驗(yàn)在重合粒徑范圍內(nèi)趨勢(shì)基本保持一致。
4種材料在不同倍數(shù)下進(jìn)行掃描后圖片較多,本文僅以16Mn試件作為研究對(duì)象進(jìn)行表面形貌二維和三維分析。
3.2.1 二維表面形貌分析
圖5為16Mn試件在LSCM及SEM下原始二維形貌及不同沙粒粒徑下磨蝕試驗(yàn)后的二維形貌。為了便于對(duì)試件表面蝕坑及磨痕進(jìn)行局部與整體觀察,SEM分別放大500倍、2 000倍、5 000倍及10 000倍,LSCM則放大20倍(此處指物鏡倍數(shù))。
粒徑為0.043 mm時(shí),LSCM掃描發(fā)現(xiàn)試件表面凹凸不平,相比拋光后試件的原始表面,出現(xiàn)大小不一形狀各異的凹坑且凹坑表面存在密集麻點(diǎn),隨著試驗(yàn)時(shí)間的增加密集麻點(diǎn)逐漸轉(zhuǎn)變成蓬松狀,同時(shí)試件表面無明顯磨痕。SEM放大500倍及2 000倍下可以清晰觀察到部分尺寸較大橢圓狀凹坑及大量針孔狀小坑,小坑周圍凸起細(xì)小金屬碎屑,碎屑相互交織使得試件表面如同蜂窩狀。
圖5 LSCM和SEM下16Mn原始二維形貌以及不同沙粒粒徑下的二維形貌
粒徑為0.147、0.248、0.349及0.449 mm時(shí)通過LSCM可觀察到沿含沙水流沖擊方向產(chǎn)生大量方向一致的磨痕且粒徑越大試件表面磨痕越明顯。而在SEM放大500倍及2 000倍下則能清楚觀察到大量凹坑及磨痕,凹坑與凹坑之間在尺寸與形狀上存在較大差異,通過與粒徑為0.147 mm時(shí)試件磨蝕表面對(duì)比并結(jié)合Kornfeld等提出的空蝕破壞微射流理論后,分析認(rèn)為試件表面凹坑大致分為2種:一種是空泡由球狀變?yōu)楸馄綘钸M(jìn)而分裂潰滅時(shí)瞬間產(chǎn)生的高速微射流沖擊試件表面而產(chǎn)生的較深且整體尺寸較大的空蝕坑;一種是在沙粒反復(fù)沖擊作用下因疲勞磨損而導(dǎo)致材料脫落而形成的小凹坑,隨著試驗(yàn)時(shí)間的增加大量小凹坑連接成片進(jìn)而剝落形成面積較大且相對(duì)較淺的沖擊凹坑。
圖5中粒徑為0.147、0.248及0.349 mm時(shí)試件表面空蝕坑相對(duì)比較明顯,蝕坑分布均勻,但因空泡潰滅時(shí)微射流對(duì)試件表面的沖擊強(qiáng)度不同,造成了空蝕坑尺寸大小不一,較大蝕坑坑徑為10m左右,較小蝕坑坑徑在1~4m范圍內(nèi),空蝕坑邊緣主要是圓形或者類圓形,同時(shí)蝕坑周圍坑唇處可見明顯的邊壁效應(yīng)(邊壁發(fā)亮)呈現(xiàn)白色[20-23]。
在探究沙粒粒徑對(duì)空蝕破壞的影響中本文對(duì)16Mn試件在不同沙粒粒徑磨蝕下表面空蝕坑數(shù)目及空蝕坑尺寸進(jìn)行了統(tǒng)計(jì)和測(cè)量??瘴g坑數(shù)目統(tǒng)計(jì)結(jié)果如圖6所示,圖中橫坐標(biāo)為沙粒粒徑,縱坐標(biāo)為該粒徑對(duì)應(yīng)的試樣采集區(qū)域的空蝕坑總數(shù)。
圖6 16Mn試件表面空蝕坑數(shù)量隨沙粒粒徑變化曲線
通過測(cè)量得到粒徑為0.043 mm時(shí)空蝕坑平均坑徑為4m,而粒徑為0.147、0.248、0.349及0.449 mm時(shí)蝕坑的平均坑徑分別為5、9、8及7m,可見沙粒在圓盤磨蝕試驗(yàn)中對(duì)空蝕的產(chǎn)生及破壞都具有一定的影響作用,空蝕的破壞程度與沙粒的粒徑大小有關(guān)但并非簡單線性關(guān)系。在試驗(yàn)條件下粒徑為0.248 mm時(shí)空蝕坑數(shù)目及蝕坑坑徑均達(dá)到最大值[24-29]。SEM放大2 000倍后可清晰觀察到因磨蝕破壞而產(chǎn)生的方向整齊犁溝狀磨痕并且隨著粒徑的增大磨痕也變得更寬更長。通過測(cè)量及統(tǒng)計(jì)得到不同粒徑下試件表面磨痕平均長度及寬度,結(jié)果如表2所示。
表2 16Mn試件表面磨痕參數(shù)
含沙水流以30°沖角沖擊試件表面時(shí)對(duì)試件表面的磨損破壞可分解為與試件表面平行的水平切削作用及與試件表面垂直的沖擊鍛打擠壓作用。從單個(gè)沙粒的沖擊磨損來看同一沖擊速度下粒徑越大沙粒質(zhì)量越大所具有的動(dòng)能越大[16]。粒徑為0.043 mm時(shí)試件表面無明顯磨痕只有少量空蝕坑及大量凹坑,分析認(rèn)為這一粒徑下沙粒所具有的動(dòng)能在水平方向上不足以造成與沖擊點(diǎn)的位置滑移,更多是以垂直方向上的沖擊鍛打擠壓為主,沙粒與沖擊點(diǎn)接觸后造成試件塑性變形后被彈起進(jìn)而由高速水流攜帶離開試件表面。
粒徑為0.147、0.248、0.349及0.449 mm時(shí)試件磨蝕表面出現(xiàn)磨痕、空蝕坑及凹坑,其中粒徑為0.147、0.248及0.349 mm時(shí)試件表面空蝕坑數(shù)目較多,分析認(rèn)為這4種粒徑沙粒所具有的動(dòng)能在水平方向與試件表面接觸時(shí)在沖擊點(diǎn)出現(xiàn)相對(duì)位置的滑移從而造成磨痕,粒徑越大磨痕也越長。由此可從磨痕特性來判斷材料的抗泥沙磨損性能的優(yōu)劣[30]。
圖7是粒徑為0.449 mm時(shí)試件表面放大5 000倍及10 000倍后磨蝕破壞形貌。空泡在潰滅過程中產(chǎn)生微射流,微射流高速?zèng)_擊試件表面形成破壞產(chǎn)生空蝕坑,隨著試驗(yàn)時(shí)間的增加更多空泡出現(xiàn)潰滅,微射流對(duì)試件的沖擊作用也由表及里從而造成具有一定深度的蝕坑,蝕坑內(nèi)部各種凸起碎屑交織,形成復(fù)雜空蝕破壞形貌。同時(shí)在含沙水流的反復(fù)沖擊作用下試件表面犁溝狀磨痕數(shù)量不斷增多交疊嚴(yán)重出現(xiàn)翻邊等現(xiàn)象,最終導(dǎo)致脫落造成試件磨損質(zhì)量損失。空蝕坑邊壁也因沙粒的切削作用而出現(xiàn)破邊現(xiàn)象[31]。
圖7 5 000X、10 000X下16Mn磨蝕表面形貌
3.2.2 三維形貌分析
圖8為16Mn試件在不同粒徑下磨蝕三維形貌圖。
注:X為掃描區(qū)域長度,μm;Z為掃描區(qū)域磨損凸起高程,μm。
各粒徑下磨蝕三維形貌圖都以整個(gè)掃描區(qū)域最低點(diǎn)為原點(diǎn),不同顏色代表不同高程,觀察發(fā)現(xiàn)在粒徑為0.043 mm時(shí)試件表面出現(xiàn)較多面積較大凹坑,其高程在0.8~1.6m之間,結(jié)合上文LSCM及SEM表面形貌掃描,分析認(rèn)為造成這一現(xiàn)象的原因在于沙粒在垂直方向的反復(fù)鍛打擠壓造成試件表面疲勞磨損產(chǎn)生脫落形成密集小凹坑,進(jìn)而隨著試驗(yàn)時(shí)間的增加密集小凹坑連接形成較大片狀凹坑[32]。沙粒粒徑的增加致使試件表面不僅存在凹坑同時(shí)存在因沙粒切削作用而形成的犁溝且在犁溝尖端出現(xiàn)凸起唇片。對(duì)比粒徑為0.147、0.248、0.449 mm磨蝕三維形貌圖看到粒徑越大犁溝的寬度、長度及深度都有明顯增加。但粒徑為0.349 mm的三維形貌更多以凸起磨痕為主,其原因可能與掃描的區(qū)域有關(guān)。凸起的唇片與下陷的凹坑、蝕坑及犁溝形成了復(fù)雜的磨蝕三維形貌。
采用旋轉(zhuǎn)噴射磨蝕試驗(yàn)裝置對(duì)4種水力機(jī)械常用材料16Mn、ZG20SiMn、45#與A型高錳鋼進(jìn)行不同沙粒粒徑下的磨蝕試驗(yàn),在對(duì)磨蝕失重及破壞形貌分析后得到如下結(jié)論:
1)粒徑為0.043、0.147及0.248 mm時(shí)材料累計(jì)磨蝕質(zhì)量損失與試驗(yàn)時(shí)間成線性關(guān)系,粒徑為0.349及0.449 mm時(shí)材料累計(jì)磨蝕質(zhì)量損失隨時(shí)間的增大滿足一種高斯函數(shù)的非線性增加。
2)同種材料累計(jì)磨蝕質(zhì)量損失隨著粒徑的增大而增加,粒徑為0.043 mm時(shí)材料累計(jì)磨蝕質(zhì)量損失最小,粒徑為0.449 mm時(shí)磨蝕累計(jì)質(zhì)量損失最大。沙粒粒徑在0.043~0.147及0.349~0.449 mm范圍內(nèi)為磨蝕質(zhì)量損失與粒徑的強(qiáng)相關(guān)區(qū),0.147~0.349 mm為弱相關(guān)區(qū)。
3)4種材料中45# 鋼抗磨蝕性能相對(duì)較好,16Mn與ZG20SiMn相對(duì)次之,A型高錳鋼板相對(duì)較差。
4)粒徑為0.043 mm時(shí)試件表面造成的磨蝕破壞主要為沙粒的垂直沖擊磨損與空蝕,無明顯水平方向的切削磨損。粒徑為0.147、0.248、0.349及0.449 mm時(shí),試件表面的磨蝕破壞以水平方向的切削磨損和空蝕破壞聯(lián)合為主,并伴有一定量垂直沖擊磨損。
[1] 顧四行,楊天生. 水機(jī)磨蝕研究與實(shí)踐50年[M].北京:中國水利水電出版社,2005.
[2] 楊沛源,賀志富. 水輪機(jī)泥沙磨蝕危害及保護(hù)措施[J]. 吉林水利,2017,425(10):60-62.
Yang Peiyuan, He Zhifu. Sand erosion hazard and protection measures of water turbine[J]. Water Conservancy of Jilin Province, 2017, 425 (10): 60-62. (in Chinese with English abstract)
[3] 姚啟鵬. 泥沙粒徑級(jí)配對(duì)材料磨損影響的試驗(yàn)研究[J]. 水力發(fā)電學(xué)報(bào),1997(1):87-94. Yao Qipeng. An experimental study on effect of silt grain sizes on abrasion of materials[J]. Journal of Hydroelectric Engineering, 1997(1): 87-94. (in Chinese with English abstract)
[4] Sato J, Usami K, Okamura T. Basic study of coupled damage caused by silt abrasion and cavitation erosion[C]//Transactions of the Japan Society of Mechanical Engineers Series B, 1990(56): 696-701.
[5] 謝翠松,段文忠,謝葆玲,等. 水輪機(jī)沙粒磨損問題研究[J]. 湖北水力發(fā)電,2002(1):37-40.
Xie Cuisong, Duan Wenzhong, Xie Baoling, et al. Study on sand erosion of hydroturbines[J]. Hubei Water Power, 2002(1): 37-40.
[6] 王志高. 我國水輪機(jī)磨蝕現(xiàn)狀和防護(hù)措施的進(jìn)展[J]. 水利水電工程設(shè)計(jì),2002,21(3):1-4.
Wang Zhigao. Current situation of water erosion and progress of protective measures in China[J]. Design of Water Resources and Hydroelectric Engineering, 2002, 21(3): 1-4.
[7] 顧四行. 我國有關(guān)水機(jī)磨蝕研究和防護(hù)措施[J]. 水力發(fā)電學(xué)報(bào),1991(2):27-28.
Gu Sihang. The recent advances of research on abrasion and cavitation of hydraulic machinery in China[J]. Journal of Hydroelectric Engineering, 1991(2): 27-28. (in Chinese with English abstract)
[8] 權(quán)輝,李仁年,蘇清苗. 含沙水下粒徑對(duì)螺旋離心泵磨蝕效應(yīng)的數(shù)值分析[J]. 西華大學(xué)學(xué)報(bào):自然科學(xué)版,2014,33(3):91-94.
Quan Hui, Lin Rennian, Sun Qingmiao. Numerical analysis of erosion effect of sand-laden water on screw centrifugal pump[J]. Journal of Xihua University: Natural Science Edition, 2014, 33(3): 91-94. (in Chinese with English abstract)
[9] Padhy M K, Saini R P. Study of silt erosion mechanism in pelton turbine buckets[J]. Energy, 2012, 39(1):268-293.
[10] 黃偉九,劉成龍,李志均,等. 沖蝕速度及沙粒粒徑對(duì)鋁青銅沖蝕磨損的影響[J]. 功能材料,2016,47(10):10193-10197. Huang Weijiu, Liu Chenglong, Li Zhijun, et al. Effect of flow velocity and particle size on the erosion of QAL9-4 aluminum bronze[J]. Journal of Functional Materials, 2016, 47(10): 10193-10197. (in Chinese with English abstract)
[11] 梁武科,羅興锜,廖偉麗. 含沙水流中金屬材料磨蝕機(jī)理分析[J]. 陜西水力發(fā)電,1996,12(3):42-46.
Liang Wuke, Luo Xingqi, Liao Weili. Investigation on cavitation-abrasion of metal materials[J]. Journal of Shaanxi Water Power, 1996, 12(3): 42-46. (in Chinese with English abstract)
[12] 蘇義祥,張志堅(jiān),邱曉來,等. Cr3C2對(duì)45鋼表面超音速火焰噴涂制備的Ni基合金涂層熱態(tài)抗磨損性能的影響[J]. 材料導(dǎo)報(bào),2018,32(6):899-904,923.
Su Yixiang, Zhang Zhijian, Qiu Xiaolai, et al. Effect of Cr3C2on wear resistance of Ni base alloy coating prepared by supersonic flame spraying on 45 steel surface[J]. Materials Review, 2018, 32(6): 899-904, 923. (in Chinese with English abstract)
[13] 龐佑霞,陸由南,尹喜云. 含沙量和沙粒粒徑對(duì) QT500材料沖蝕磨損特性的影響[J]. 機(jī)械工程材料,2006,30(4):51-53.
Pang Youxia, Lu Younan, Yin Xiyun. The influence of sediment concentration and particle size on the erosion wearing characteristics of QT500[J]. Materials for Mechanical Engineering, 2006, 30(4): 51-53. (in Chinese with English abstract)
[14] 周夏涼,陳小明,趙堅(jiān),等. HVOF噴涂WC-12Co涂層性能及磨蝕機(jī)理[J]. 腐蝕與防護(hù),2014,35(10):994-1001.
Zhou Xialiang, Chen Xiaoming, Zhao Jian. Properties and abrasion mechanism of WC-12Co coating prepared by HVOF[J]. Corrosion and Protection, 2014, 35(10): 994-1001. (in Chinese with English abstract)
[15] Qiao L, Wu Y, Hong S, et al. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/ nanocrystalline coatings[J]. Ultrasonics Sonochemistry, 2017, 39(11): 39-46.
[16] Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying[J]. Surface & Coatings Technology, 2009, 204(5): 563-570.
[17] Abedini M, Ghasemi H M. Corrosion behavior of Al‐brass alloy during erosion–corrosion process: Effects of jet velocity and sand concentration[J]. Materials & Corrosion, 2016, 67(5): 513-521.
[18] Zhao Y, Zhou F, Yao J, et al. Erosion–corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement[J]. Wear, 2015(328/329): 464-474.
[19] 張?jiān)鲋? 耐磨高錳鋼[M]. 北京:冶金工業(yè)出版社,2002.
[20] 龐佑霞,陸由南,尹喜云. 含沙量和沙粒粒徑對(duì)QT500材料沖蝕磨損特性的影響[J]. 機(jī)械工程材料,2006,30(4):51-53.
Pang Youxia, Lu Younan, Yin Xiyun. The influence of sediment concentration and particle size on the erosion wearing characteristics of QT500[J]. Materials for Mechanical Engineering, 2006, 30(4): 51-53. (in Chinese with English abstract)
[21] 薛偉,陳昭運(yùn). 空蝕破壞的微觀過程研究[J]. 機(jī)械工程材料,2005(2):59-62.
Xue Wei, Chen Zhaoyun. The micro-cours of the cavitation erosion[J]. Materials for Mechanical Engineering, 2005(2): 59-62. (in Chinese with English abstract)
[22] 顏大運(yùn),汪家道,陳大融. 微顆粒影響空蝕破壞的試驗(yàn)研究[J]. 潤滑與密封,2010(8):15-18,22.
Yan Dayun, Wang Jiadao, Chen Darong. Experimental study of cavitation on erosion damage affected by microparticles[J]. Lubrication Engineering, 2010(8): 15-18, 22. (in Chinese with English abstract)
[23] Deng Wen, Hou Guoliang, Li Shuangjian. A new methodology to prepare ceramic-organic composite coatings with good cavitation erosion resistance[J]. Ultrasonics Sonochemistry, 2018, 44: 115-119.
[24] Li D G, Chen D R, Liang P. Enhancement of cavitation erosion resistance of 316 L stainless steel by adding molybdenum[J]. Ultrasonics Sonochemistry, 2017, 35(Pt A): 375-381.
[25] 王榮克. 磨蝕泥沙起動(dòng)裝置的研制與泥沙特性對(duì)磨蝕影響的研究[D]. 南京:河海大學(xué),2007.
Wang Rongke. The Designs of Sand-Initiated Device and Researches of the Effects of Sand Characteristics on Abrasion[D]. Nanjing: Hohai University, 2007. (in Chinese with English abstract)
[26] 緱文娟. 泥沙粒徑對(duì)45號(hào)鋼的磨蝕影響研究[C]//第二十七屆全國水動(dòng)力學(xué)研討會(huì)文集,2015.
[27] 李永健. 空蝕發(fā)生過程中表面形貌作用機(jī)理研究[D]. 北京:清華大學(xué),2008.
Li Yongjian. Study on Mechanism of Surface Topography Effects on Generation of Cavitation Erosion[D]. Beijing: Tsinghua University, 2008. (in Chinese with English abstract)
[28] Luo Qin, Zhang Qi, Qin Zhenbo. The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy[J]. Journal of Alloys and Compounds, 2018, 447: 861-868.
[29] 趙偉國,韓向東,李仁年. 沙粒粒徑與含沙量對(duì)離心泵空化特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):117-124.
Zhao Weiguo, Han Xiangdong, Li Rennian. Effects of silt diameter and silt concentration on cavitation flow in centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 117-124. (in Chinese with English abstract)
[30] 陸力,劉娟,易艷林,等. 白鶴灘電站水輪機(jī)泥沙磨損評(píng)估研究[J]. 水力發(fā)電學(xué)報(bào),2016,35(2):67-74.
Lu Li, Liu Juan, Yi Yanlin, et al. Study on Evaluation of Silt Wear of Turbine in Baihetan Power Station[J]. Journal of Hydroelectric Engineering, 2016, 35(2): 67-74.
[31] Hu H X, Zheng Y G. The effect of sand particle concentrations on the vibratory cavitation erosion[J]. Wear, 2017(384/385): 95-105.
[32] Zhao Wanqin, Wang Wenjun, Mei Xuesong. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel[J]. Optics & Laser Technology, 2014, 58: 94-99.
Effect of silt diameter on abrasion performance of hydraulic mechanical materials
Lu Jinling, Zhang Xin, Wang Wei, Feng Jianjun, Guo Pengcheng, Luo Xingqi
(,710048,)
The abrasion problem is inevitable for hydraulic machineries which operate in sediment-laden rivers. Abrasion can induce serious wear damage such as material weight loss and distortion in hydro-equipment. The wear damage can lower the efficiency of hydraulic machineries, shorten the maintenance period, and increase maintenance cost. Therefore, it is necessary to study the abrasion mechanism to avoid the abrasion. The mechanism of abrasion failure has not been well understood at the present time, and there are still some arguments about the mechanism. Thus, in this research, a rotating abrasion test device was utilized to study the material abrasion of hydraulic machineries with different particle sizes. The test device was composed of a mixing tank, a speed-regulating motor, a diaphragm pump, a constant voltage system, a cooling system, a turntable room and a control cabinet. The turntable was driven by the speed-regulating motor at a high speed, and the test specimens were placed on the rotary table around the annulus. The same cavitation-induced holes were opened on the surface of the different specimens, and the cavitation would happen behind the cavitation-induced holes. Meanwhile, the test specimens were jetted with silt carrying flow which came from fournozzles. The nozzles with a diameter of 2.5 mm were equally distributed in the circumferential direction. Thus, both the cavitation and the impact wear could be observed on the test specimen surface. Four kinds of common materials used in hydraulic machineries were tested for 24 h, andthe weight loss of specimens was weighed every 3 h with electronic scales. Two specimens with the same material were diagonally placed on the rotary table around the annulus. A total of 8 specimens were placed on the table. The averaged value of the same test specimens was recorded before and after the test. The change of the averaged value was defined as the weight loss of abrasion. The irregular massive sand came from Yellow River Garden Estuary. The used five particle sizes of sand were obtained with screen mesh. According to the wear condition of sand grains, the sand was changed regularly during the test to ensure the same geometric shape of sand grains. The sand was changed every 6 h in this test. The surface morphology observation of specimens was one of the most effective and intuitive methods for abrasion analysis. With the help of Search Engine Marketing (SEM) and Laser Scanning Confocal Microscope (LSCM), the 2D and 3D surface morphology of the specimens were observed after the abrasion test. The mechanism and influence law of the effect of particle sizes on the material abrasion failure behavior of hydraulic machinery were obtained by observing the surface abrasion morphology and the number of cavitation pits. The results showed that there was a linear relationship between the abrasive weight loss of specimens and the test time when the sand size was 0.043, 0.147 and 0.248 mm. However, when the particle size was 0.349 and 0.449 mm, the relationship of the weight loss and the test time matched the Gauss function. Meanwhile, the variation of sand particle size changed the character of specimen abrasion. When the sand particle size was 0.043 mm, the surface abrasion damage of specimens was mainly composed of vertical impact wear of sand particles and cavitation, and there was no obvious cutting wear in the horizontal direction. Nevertheless, when the sand particles were 0.147, 0.248, 0.349 and 0.449 mm, the abrasion failure on the surface of specimens contained cutting wear in the horizontal direction and cavitation damage. A certain amount of vertical impact wear can also be observed. A strongcorrelation region and a weak correlation region between the weight loss of specimen abrasion and the sand particle sizes were separated based on the analysis of the four materials abrasion characteristics.
hydraulic machinery; abrasion; wear resistance; rotary jet; silt diameter
盧金玲,張 欣,王 維,馮建軍,郭鵬程,羅興锜. 沙粒粒徑對(duì)水力機(jī)械材料磨蝕性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):53-60. doi:10.11975/j.issn.1002-6819.2018.22.007 http://www.tcsae.org
Lu Jinling, Zhang Xin, Wang Wei, Feng Jianjun, Guo Pengcheng, Luo Xingqi. Effect of silt diameter on abrasion performance of hydraulic mechanical materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 53-60. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.007 http://www.tcsae.org
2018-05-28
2018-10-10
國家自然科學(xué)基金項(xiàng)目(51879216,51679195,51339005)
盧金玲,副教授,主要從事流體機(jī)械流動(dòng)理論與試驗(yàn)研究。 Email:jinling_lu@163.com
10.11975/j.issn.1002-6819.2018.22.007
TK730.7
A
1002-6819(2018)-22-0053-08