曹衛(wèi)彬,連國(guó)黨,牛 馳,安亮亮,楊雙平,陳棒棒
?
梳夾式紅花絲采摘頭等高采收性能試驗(yàn)與參數(shù)優(yōu)化
曹衛(wèi)彬1,2,連國(guó)黨1,2,牛 馳1,2,安亮亮1,2,楊雙平1,2,陳棒棒3
(1. 石河子大學(xué)機(jī)械電氣工程學(xué)院,石河子 832000;2. 農(nóng)業(yè)部西北農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,石河子 832000; 3.新疆大學(xué)科學(xué)技術(shù)學(xué)院,阿克蘇 843000)
為驗(yàn)證梳夾式紅花絲采摘頭設(shè)計(jì)理論參數(shù)的合理性及提升其工作性能,以新疆廣泛種植紅花品種“裕民無(wú)刺”為試驗(yàn)對(duì)象,以梳齒長(zhǎng)度、梳齒間隙、梳齒轉(zhuǎn)速為影響因素,采凈率、掉落率、破碎率為響應(yīng)指標(biāo),進(jìn)行二次旋轉(zhuǎn)正交試驗(yàn)。通過(guò)數(shù)據(jù)優(yōu)化軟件Design-Expert 8.6.0建立了響應(yīng)指標(biāo)與影響因素之間的數(shù)學(xué)模型,基于響應(yīng)面法進(jìn)行參數(shù)優(yōu)化,得出最佳組合參數(shù)。以?xún)?yōu)化參數(shù)組合梳齒長(zhǎng)度40 mm,梳齒間隙3.5 mm,梳齒轉(zhuǎn)速為80 r/min,在梳夾式紅花絲采摘頭性能試驗(yàn)臺(tái)上進(jìn)行驗(yàn)證試驗(yàn),其結(jié)果為:采凈率為82%,掉落率2.29%,破碎率2.45%,基本與優(yōu)化結(jié)果吻合。在該優(yōu)化參數(shù)組合下的田間試驗(yàn)結(jié)果顯示,梳夾式紅花采摘裝置采凈率為81.88%,掉落率2.25%,破碎率2.43%,表明梳夾式紅花絲采摘頭可以較好的完成對(duì)一定高度下紅花絲的采摘作業(yè)。該研究為梳夾式紅花絲采摘機(jī)的改進(jìn)提供了參考價(jià)值,對(duì)推動(dòng)紅花絲機(jī)械化盲采具有一定的意義。
農(nóng)業(yè)機(jī)械;優(yōu)化;梳夾式;采摘頭;紅花絲;采摘性能
紅花是一年生菊科草本植物,是集中藥材、染料、油料和飼料為一體的經(jīng)濟(jì)作物[1-2]。據(jù)相關(guān)資料記載,紅花花絲含有查耳酮類(lèi)化合物紅花黃色素,主治閉經(jīng)、痛腫、跌打損傷等癥狀,許多化妝品也用紅花色素作為染色劑[3-4]。截止2017年新疆紅花播種面積為3萬(wàn)hm2左右,占中國(guó)總面積90%以上,主要分布在塔城、昌吉和伊犁等地區(qū)[5-6]。
目前,國(guó)內(nèi)紅花絲的采摘主要以人工為主,機(jī)械為輔,紅花絲機(jī)械化采摘是解決紅花產(chǎn)業(yè)化發(fā)展和提高農(nóng)民收益的關(guān)鍵問(wèn)題,現(xiàn)有紅花絲采收方式已不能滿(mǎn)足紅花規(guī)?;a(chǎn)的需求,紅花絲采收問(wèn)題嚴(yán)重制約紅花產(chǎn)業(yè)的發(fā)展,亟需實(shí)現(xiàn)紅花的機(jī)械化采收。針對(duì)紅花絲機(jī)械化采收問(wèn)題,目前國(guó)內(nèi)外學(xué)者也做出了相應(yīng)的研究,Anil[7]研制了2種紅花收獲機(jī),分別為背負(fù)式紅花收獲機(jī)和以汽油為動(dòng)力源的手推式紅花收獲機(jī),均采用負(fù)壓氣吸原理使果球和花絲分離,采摘效率低,不能滿(mǎn)足大面積采摘;Azimi等[8]研制了一種氣吸紅花收獲機(jī),雖然效率相對(duì)人工增加65%,但是破損較大,未能推廣;新疆裕民縣農(nóng)技人員研發(fā)了一種紅花采收機(jī),運(yùn)用氣吸原理,主要對(duì)開(kāi)敗的干花絲進(jìn)行采摘[9];李景彬等[10]研發(fā)一種氣吸紅花采收機(jī),操作復(fù)雜,采收效率低;韓丹丹等[11]研發(fā)一種切割-氣吸式紅花絲采收裝置,該裝置采摘花絲含雜率高,掉落率高;Ge等[12]研發(fā)一種對(duì)輥式紅花采收機(jī),該機(jī)型為手持背負(fù)式,工作效率低,勞動(dòng)強(qiáng)度大。
綜上所述國(guó)內(nèi)外研究方向多集中于氣吸-切割式、氣吸-氣吹式的手持或背負(fù)采摘裝置,采摘時(shí)采花工須將吸花口對(duì)準(zhǔn)花球,并沒(méi)有從根本上提高采收效率,反而在一定程度上增加了勞動(dòng)強(qiáng)度,同時(shí)由于花絲掉落率和破碎率高,采摘效果不佳并未得到推廣應(yīng)用。鑒于此,本課題組提出了一種梳夾式紅花絲采摘頭,通過(guò)端面凸輪驅(qū)動(dòng)梳齒,模擬人手的拉拔動(dòng)作,實(shí)現(xiàn)紅花絲的摘取,有效解決了紅花絲機(jī)械化采收過(guò)程中存在效率低、紅花絲破碎嚴(yán)重等問(wèn)題。
梳夾式采摘原理主要用于棉花、洋甘菊等作物[13-19];上述梳夾式采摘裝置與紅花絲采摘頭具有一定的區(qū)別,為了滿(mǎn)足紅花絲與紅花籽的不同收獲期要求,紅花絲采摘過(guò)程中花球與花絲分離,花球不能進(jìn)入梳齒間隙,此外,為確保采摘下的花絲從梳齒間隙正常掉落、花絲破碎率低等問(wèn)題,梳齒式采摘頭工作參數(shù)的確定尤為重要。本文借助梳夾式紅花絲等高采摘頭性能試驗(yàn)臺(tái),通過(guò)試驗(yàn)并對(duì)其主要工作參數(shù)進(jìn)行優(yōu)化,以提高其作業(yè)質(zhì)量,為梳夾式紅花絲采摘機(jī)的改進(jìn)提供參考。
紅花絲機(jī)械化采收是一項(xiàng)技術(shù)性、季節(jié)性比較強(qiáng)的工作,采收條件嚴(yán)格,紅花絲每年要采收1~2茬,并且在采收花絲的過(guò)程中不能損壞花球,采收期短,一般僅有半個(gè)月左右。
梳夾式紅花絲采摘頭結(jié)構(gòu)如圖1所示[20],主要由端面凸輪,定梳齒,動(dòng)梳齒,主軸,彈簧等組成。
1.固定圓盤(pán) 2.彈簧 3.定梳齒 4.推桿 5.端面凸輪 6.定梳齒座 7.動(dòng)梳齒 8.主軸
梳夾式紅花絲采摘頭根據(jù)紅花的生長(zhǎng)高度安裝于試驗(yàn)臺(tái)架上,通過(guò)外部動(dòng)力驅(qū)動(dòng)主軸8旋轉(zhuǎn),安裝在旋轉(zhuǎn)軸上的動(dòng)、定梳齒與主軸同步旋轉(zhuǎn),凸輪5與機(jī)架固定,定梳齒3及動(dòng)梳齒7分別通過(guò)定梳齒座6和推桿4固定于主軸8上。當(dāng)動(dòng)力驅(qū)動(dòng)主軸8旋轉(zhuǎn)時(shí),定梳齒3軸向固定不動(dòng),徑向隨主軸8旋轉(zhuǎn),在端面凸輪5和彈簧2的復(fù)合作用下,動(dòng)梳齒7軸向沿主軸8左右往復(fù)移動(dòng),配合定梳齒3實(shí)現(xiàn)梳齒的開(kāi)合動(dòng)作,夾取與釋放紅花絲,而徑向動(dòng)梳齒7與定梳齒3同步隨主軸8旋轉(zhuǎn),實(shí)現(xiàn)夾取花絲的拉拔作業(yè)。凸輪5和彈簧2控制動(dòng)梳齒與定梳齒的間歇夾緊與松開(kāi),模仿人手的拉拔動(dòng)作,以實(shí)現(xiàn)紅花絲機(jī)械化采摘過(guò)程。
根據(jù)紅花采摘原理將端面凸輪的工作行程劃分為花絲夾取、花絲采摘、花絲收取、緩沖運(yùn)行4個(gè)工作行程段,具體如圖2所示:花絲夾取段:推桿從點(diǎn)開(kāi)始進(jìn)入凸輪推程期,此時(shí)動(dòng)、定梳齒夾緊紅花絲;花絲采摘段:推桿從點(diǎn)進(jìn)入凸輪遠(yuǎn)休止階段,采摘頭夾取花絲旋轉(zhuǎn)而拉拔;花絲收取段:推桿從點(diǎn)開(kāi)始進(jìn)入凸輪回程期,動(dòng)、定梳齒分離,紅花絲掉落;緩沖運(yùn)行段:通過(guò)復(fù)位彈簧彈力作用推桿從點(diǎn)開(kāi)始,進(jìn)入凸輪近休止段,完成一次紅花采摘過(guò)程。
圖2 端面凸輪工作段劃分示意圖
梳夾式紅花絲等高采摘頭性能試驗(yàn)臺(tái)是采摘機(jī)關(guān)鍵部件工作性能試驗(yàn)研究的專(zhuān)用試驗(yàn)設(shè)備,主要由機(jī)械部分(機(jī)架2、采摘頭9、行走輪1、集花盒10、鏈輪4、鏈條5)、控制系統(tǒng)(控制器7、調(diào)速手柄8)、動(dòng)力驅(qū)動(dòng)系統(tǒng)(電源5、電機(jī)3)三大系統(tǒng)組成,具體結(jié)構(gòu)如圖3所示。
1.行走輪 2.機(jī)架 3.電機(jī) 4.鏈輪 5.鏈條 6.電源箱 7.控制器 8.調(diào)速手柄 9.采摘頭 10.集花盒
采摘頭作為該試驗(yàn)臺(tái)的核心部件,其安裝高度影響著試驗(yàn)臺(tái)的工作性能,由于紅花花蕾分布不規(guī)律,高度不一致,但在植株頂部花蕾分布較多,因此本試驗(yàn)裝置旨在采摘植株頂部紅花絲,設(shè)計(jì)該梳夾式采摘頭安裝距地面800 mm位置,為等高試驗(yàn)采摘裝置。
新疆紅花種植模式大部分為(150+150+400)mm,即行距為150 mm,交接行為400 mm。采摘部件空間布局橫向?yàn)?80 mm,試驗(yàn)臺(tái)架寬度確定為900 mm。梳夾式紅花絲等高采摘頭性能試驗(yàn)臺(tái)具體參數(shù)如表1所示。
表1 梳夾式紅花絲等高采摘頭性能試驗(yàn)臺(tái)參數(shù)
試驗(yàn)對(duì)象為新疆塔城地區(qū)主種植品種“裕民無(wú)刺”紅花,紅花株高75~105 cm,最低分枝高度35~40 cm,一級(jí)有效分枝7~10個(gè),二級(jí)有效分枝7~11個(gè),全株花球15~20個(gè),單個(gè)花球花絲根數(shù)為40~105根。隨著紅花花蕾吐絲后時(shí)間的不同,花絲的含水率也隨之變化,根據(jù)紅花絲含水率的變化與時(shí)間(天)的關(guān)系曲線如圖4所示。
圖4 紅花絲含水率隨時(shí)間變化曲線圖
可以得出吐絲后第1~2天花絲含水率小幅度上升;第 3、4、5天紅花含水率逐漸下降;第6天以后的紅花含水率基本趨于穩(wěn)定。梳夾式紅花絲采摘頭主要針對(duì)開(kāi)花后1~5 d紅花進(jìn)行采摘,因此試驗(yàn)樣本選取開(kāi)花后1~5 d的紅花(含水率≥45%);試驗(yàn)時(shí)間:2018年6月23日至6月28日;試驗(yàn)地點(diǎn):石河子大學(xué)機(jī)械電氣工程學(xué)院小工廠收獲實(shí)驗(yàn)室。
梳夾式紅花絲采摘頭性能試驗(yàn)臺(tái)(課題組自制),SPS402F精密電子天平(美國(guó)Ohaus Scout Pro,量程0~400 g,精度0.01 g),DT-2234C數(shù)字式轉(zhuǎn)速表(中國(guó)TondaJ,量程:2.5~999 99 r/min,分辨力:0.1 r/min),MA45快速水分測(cè)定儀(德國(guó)Sartorius,量程0~45 g,精度0.001 g)。
2.3.1 因子參數(shù)的確定
根據(jù)梳夾式紅花絲采摘頭性能試驗(yàn)臺(tái)結(jié)構(gòu)設(shè)計(jì)參數(shù)與工作參數(shù),本試驗(yàn)選取影響采摘效果的3個(gè)關(guān)鍵因素:梳齒長(zhǎng)度1,梳齒間隙2,梳齒轉(zhuǎn)速3。
1)梳齒轉(zhuǎn)速
梳齒通過(guò)電機(jī)帶動(dòng)高速旋轉(zhuǎn)時(shí),通過(guò)前期試驗(yàn),當(dāng)梳齒轉(zhuǎn)速大于等于60 r/min時(shí),即可將花絲采摘下來(lái),轉(zhuǎn)速過(guò)高,梳齒就會(huì)將紅花絲切割,這樣采摘的花絲質(zhì)量較差,本試驗(yàn)考慮機(jī)械機(jī)構(gòu)在工作過(guò)程中的穩(wěn)定性和可靠性以及凸輪的振動(dòng)情況[21],梳齒轉(zhuǎn)速選擇在60~100 r/min內(nèi)進(jìn)行試驗(yàn),梳齒轉(zhuǎn)速分別設(shè)置為60、80、100 r/min。
2)梳齒長(zhǎng)度
梳齒長(zhǎng)度直接影響紅花絲喂入的效果,若梳齒長(zhǎng)度增大,紅花絲喂入效果較好,梳齒與花絲的接觸面積大,摩擦力大,但是功耗較大,確定梳齒的工作長(zhǎng)度時(shí),要綜合考慮梳齒長(zhǎng)度與花絲長(zhǎng)度兩方面因素,確保大部分花絲能被釆摘下來(lái)?!掇r(nóng)業(yè)機(jī)械學(xué)》中介紹了梳齒長(zhǎng)度與桿徑長(zhǎng)度之間的關(guān)系式[22]
式中梳齒工作段長(zhǎng)度,mm;l為梳齒工作段內(nèi)被拉過(guò)的莖稈長(zhǎng)度,mm,本文引用為梳齒工作段內(nèi)被拉過(guò)的花絲長(zhǎng)度;為采摘一朵花絲轉(zhuǎn)動(dòng)的角度,(°)。從式(1)得出梳齒工作段長(zhǎng)度與紅花絲長(zhǎng)度成正比例關(guān)系。
通過(guò)前期試驗(yàn)統(tǒng)計(jì),單株紅花莖稈直徑為2.5~4.5 mm,紅花絲的生長(zhǎng)展幅為18~25 mm,紅花絲長(zhǎng)度平均為20 mm左右。建立如圖5所示的紅花采摘模型,以確定采摘頭完成單朵花所轉(zhuǎn)過(guò)的角度,根據(jù)紅花生長(zhǎng)特性及采摘頭結(jié)構(gòu)參數(shù)確定參數(shù)值:=37 mm,=53 mm,=18~25 mm,=20 mm。
注:o為旋轉(zhuǎn)中心;a為旋轉(zhuǎn)中心至梳齒面的距離,mm;b為梳齒底部到齒尖距離,mm;c為旋轉(zhuǎn)中心至梳齒尖距離,mm;e為紅花絲展幅,mm;h為紅花絲長(zhǎng)度,mm;θ為采摘一朵花絲轉(zhuǎn)動(dòng)的角度,(°);α為θ的平分角,(°)。
通過(guò)上述模型分析,采摘頭完成每朵花絲采摘轉(zhuǎn)動(dòng)的角度=16°~22°。聯(lián)立式(1)~(4)帶入數(shù)值可得梳齒有效工作長(zhǎng)度=18.54~19.23 mm。
由于安裝尺寸需要,梳齒長(zhǎng)度不能按照有效工作長(zhǎng)度確定,故而確定梳齒尺寸為25~45 mm之間,本試驗(yàn)梳齒長(zhǎng)度分別設(shè)置為25、35、45 mm。
3)梳齒間隙
梳齒間隙大小直接影響花絲與果球的分離效果。梳齒間隙越大,花絲有效喂入效果好,但梳齒對(duì)花絲的正壓力和摩擦力相應(yīng)減小。間隙過(guò)大,花絲與果球無(wú)法分離。梳齒間隙越小,花絲所受梳齒的擠壓力和摩擦力越大;間隙過(guò)小,花絲無(wú)法喂入,不能完成紅花的機(jī)械采收。摘花時(shí)花絲在兩梳齒間的受力情況如圖6所示。
花絲被采摘下需要滿(mǎn)足
式中F為梳齒對(duì)花絲沖擊力在豎直方向力,N;為花球?qū)ńz的拉力,N。
式中為梳齒對(duì)花絲的沖擊力,N;為與水平方向的夾角,(°);為梳齒間隙,mm;為花絲重心到梳齒上端面的距離,mm。
1.紅花絲 2.梳齒 3.花球
由式(5)、(6)得出
由式(7)可得,F(xiàn)與d同趨向變化,梳齒間隙d變大,梳齒夾取花絲的沖擊力也變大,這樣容易漏采或者夾住莖稈采摘花球,間隙過(guò)小易造成花絲阻塞、纏繞等一系列問(wèn)題,故對(duì)紅花(“裕民無(wú)刺”)莖稈做了直徑測(cè)量[23],結(jié)果如圖7所示。
為防止采花梳齒摘花時(shí)梳齒間發(fā)生堵塞,梳齒間隙應(yīng)當(dāng)大于紅花枝稈的最小直徑;為防止采花梳齒摘夾取花絲時(shí)發(fā)生漏摘、誤摘,梳齒間隙應(yīng)當(dāng)小于紅花枝稈最大直徑。的理論范圍為2.5 mm≤≤4.5 mm,花絲在采摘時(shí)會(huì)發(fā)生擠壓變形,采花梳齒最佳采摘間隙需要通過(guò)試驗(yàn)確定,梳齒間隙分別設(shè)置為2.5、3.5、4.5 mm。
2.3.2 響應(yīng)指標(biāo)測(cè)定
按照梳夾式紅花采摘頭的工作性能要求[24],本試驗(yàn)選用花絲采凈率1、花絲掉落率2和花絲破碎率3作為其效果評(píng)價(jià)指標(biāo)[25]。
1)花絲采凈率1
單朵花球上被梳夾式紅花采摘頭采摘下來(lái)的紅花絲質(zhì)量與單朵花球上紅花絲總質(zhì)量的百分比為花絲采凈率。其計(jì)算公式為
式中1梳齒采摘下來(lái)的花絲(收集和掉落的紅花絲)質(zhì)量,g;為單個(gè)花球全部花絲的質(zhì)量,g。
2)掉落率2
采摘頭采收過(guò)程中,單朵花球上掉落未被收集到的紅花絲質(zhì)量與單朵花球紅花絲總質(zhì)量的百分比為掉落率。計(jì)算公式為
式中2為采摘下來(lái)未被收集到而掉落的花絲質(zhì)量,g。
3)破碎率3
采摘頭工作過(guò)程中,單朵花球上破碎紅花絲的質(zhì)量與采摘下來(lái)的紅花絲總質(zhì)量的百分比為破碎率。其計(jì)算公式為
式中3為采摘下來(lái)的紅花絲里面破碎的紅花絲(收集和掉落)質(zhì)量,g。
2.3.3 試驗(yàn)設(shè)計(jì)
本文由于考慮紅花絲采收過(guò)程的復(fù)雜性,采用二次旋轉(zhuǎn)正交組合設(shè)計(jì)方案[26-27],研究梳齒長(zhǎng)度、梳齒間隙、梳齒轉(zhuǎn)速對(duì)采摘頭采凈率、花絲掉落率、花絲破碎率的影響,并完成多目標(biāo)參數(shù)優(yōu)化,按三因素五水平安排試驗(yàn),因素水平編碼見(jiàn)表2所示。
表2 試驗(yàn)因素水平編碼表
根據(jù)試驗(yàn)因素水平編碼表,制定二次旋轉(zhuǎn)正交組合設(shè)計(jì)方案進(jìn)行采摘頭采摘性能試驗(yàn),安排20組試驗(yàn),每組試驗(yàn)重復(fù)3次,取3次試驗(yàn)結(jié)果平均值,試驗(yàn)方案設(shè)計(jì)及結(jié)果分析通過(guò)Design-Expert 8.6.0軟件完成,如表3所示。
分別建立梳齒長(zhǎng)度、梳齒間隙、梳齒轉(zhuǎn)速與采凈率、掉落率、破碎率之間的二次多項(xiàng)式回歸模型,剔除不顯著因素后得到回歸方程為
式中1、2、3為梳齒長(zhǎng)度、梳齒間隙和梳齒轉(zhuǎn)速的編碼值。
表3 二次旋轉(zhuǎn)正交組合試驗(yàn)方案及結(jié)果
對(duì)試驗(yàn)結(jié)果進(jìn)行方差分析,如表4所示,結(jié)果顯示:采凈率、掉落率和破碎率的回歸方程模型<0.000 1,說(shuō)明3個(gè)回歸方程模型顯著。
根據(jù)檢驗(yàn)法進(jìn)行檢驗(yàn),具體如下
采凈率檢驗(yàn),1(回)=32.15>0.1(8,11)=2.30
1(失)=2.61<0.1(6,5)=3.40;
掉落率檢驗(yàn),2(回)=10.41>0.1(7,12)=2.28,
2(失)=1.39<0.1(7,5)=3.37;
破碎率檢驗(yàn),3(回)=47.46>0.1(8,11)=2.30,
3(失)=2.52<0.1(6, 5)=3.40。
故而,3個(gè)回歸方程滿(mǎn)足條件,具有實(shí)際意義。
1)影響因素對(duì)采凈率的分析
由圖8a可知,當(dāng)梳齒間隙固定在0水平(2=3.5 mm)時(shí),采凈率隨著梳齒轉(zhuǎn)速的增大先增大后減小,隨著梳齒長(zhǎng)度的增大也是先增大后減小。
響應(yīng)曲面沿梳齒長(zhǎng)度的方向變化較快,沿梳齒轉(zhuǎn)速的方向變化相對(duì)較慢。在梳齒間隙一定的情況下,梳齒長(zhǎng)度對(duì)采凈率的影響要比梳齒轉(zhuǎn)速的影響顯著,故梳齒間隙在3.5 mm左右,梳齒長(zhǎng)度在40 mm左右時(shí),采凈率較高。
由圖8b可知,當(dāng)梳齒轉(zhuǎn)速在0水平(3=80 r/min)時(shí),隨梳齒間隙的增大,采凈率先增大后減??;隨著梳齒長(zhǎng)度的增大,采凈率也先增大后減小。
表4 回歸模型方差分析
注:<0.01:極顯著。
Note:<0.01: Extremely significant.
注:響應(yīng)面試驗(yàn)因素見(jiàn)表2,響應(yīng)值見(jiàn)表3,下同。
2)影響因素對(duì)掉落率的分析
由圖9a可知,當(dāng)梳齒間隙固定在0水平(2=3.5 mm)時(shí),掉落率隨著梳齒轉(zhuǎn)速的增大先增大后減小,隨著梳齒長(zhǎng)度的增大先增大后減小。響應(yīng)曲面可以看出掉落率沿梳齒轉(zhuǎn)速的方向變化較慢,沿梳齒長(zhǎng)度的方向變化相對(duì)較快。在梳齒間隙一定的情況下,梳齒長(zhǎng)度對(duì)掉落率的影響要比梳齒轉(zhuǎn)速的影響顯著,梳齒長(zhǎng)度在40 mm左右,梳齒轉(zhuǎn)速在80 r/min左右時(shí),掉落率較低。
由圖9b可知,當(dāng)梳齒長(zhǎng)度固定在0水平(1=35 mm)時(shí),掉落率隨著梳齒轉(zhuǎn)速的增大先增大后減小,隨著梳齒間隙的增大先減小后增大。由響應(yīng)曲面可知,掉落率沿梳齒轉(zhuǎn)速和梳齒間隙的方向變化均較緩慢。梳齒間隙和梳齒轉(zhuǎn)速對(duì)掉落率的影響基本相同,當(dāng)梳齒長(zhǎng)度為35 mm,梳齒間隙3.5 mm左右,梳齒轉(zhuǎn)速在80 r/min左右時(shí),掉落率較低。
圖9 交互因素對(duì)掉落率的影響
3)影響因素對(duì)破碎率的分析
如圖10a所示,梳齒轉(zhuǎn)速在0水平(3=80 r/min)時(shí),破碎率隨著梳齒間隙的增大,先減小后增大;隨著梳齒長(zhǎng)度的增大,破碎率也先減小后增大;梳齒間隙在3.5 mm左右,梳齒長(zhǎng)度在40 mm左右時(shí),破碎率較低。
由圖10b可知,當(dāng)梳齒間隙固定在0水平(2=3.5 mm)時(shí),破碎率隨著梳齒轉(zhuǎn)速的增大先減小后增大,隨著梳齒長(zhǎng)度的增大先減小后增大。響應(yīng)曲面可以看出掉落率沿梳齒長(zhǎng)度的方向變化較慢,沿梳齒轉(zhuǎn)速的方向變化相對(duì)較快。在梳齒間隙一定的情況下,梳齒轉(zhuǎn)速對(duì)掉落率的影響要比梳齒長(zhǎng)度的影響顯著,梳齒長(zhǎng)度在40 mm左右,梳齒轉(zhuǎn)速在80 r/min左右時(shí),掉落率較低。
圖10 交互因素對(duì)破碎率的影響
為確保采摘頭具有更好的工作性能,本文根據(jù)高采凈率、低掉落率及低破碎的采收目標(biāo),進(jìn)行梳夾式紅花絲等高采摘頭工作參數(shù)和結(jié)構(gòu)參數(shù)優(yōu)化,利用Design-Expert.V8.0.6.0軟件中Optimization-Numerical模塊進(jìn)行優(yōu)化求解,其目標(biāo)函數(shù)與約束條件為
優(yōu)化后得到影響因素最佳組合區(qū)域,通過(guò)軟件Design-Expert 8.6.0選取最佳參數(shù)組合為[28-30]:梳齒長(zhǎng)度為39.71 mm,梳齒轉(zhuǎn)速為78.68 r/min,梳齒間隙為3.42 mm,此時(shí)采凈率為82.42%,掉落率2.30%,破碎率2.53%。
以?xún)?yōu)化參數(shù)組合:梳齒長(zhǎng)度40 mm,梳齒間隙3.5 mm,梳齒轉(zhuǎn)速為80 r/min,在梳夾式紅花絲采摘頭性能試驗(yàn)臺(tái)上進(jìn)行驗(yàn)證試驗(yàn),為消除隨機(jī)誤差,進(jìn)行5次重復(fù)性試驗(yàn)取平均值,結(jié)果采凈率82%,掉落率2.29%,破碎率2.45%,與優(yōu)化參數(shù)結(jié)果基本吻合。
由于中國(guó)農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)中尚未對(duì)紅花采摘機(jī)械作業(yè)質(zhì)量進(jìn)行界定,故田間試驗(yàn)方法確定及田間情況測(cè)定參照“GB/T5262-2008農(nóng)業(yè)機(jī)械試驗(yàn)條件測(cè)定方法一般規(guī)定”和“GB/T67-2008農(nóng)業(yè)機(jī)械生產(chǎn)試驗(yàn)方法”中的規(guī)定[31-32],評(píng)估性能指標(biāo)參照“NY/T1133—2006采棉機(jī)作業(yè)質(zhì)量”中的相關(guān)規(guī)定執(zhí)行[24]。
試驗(yàn)所需設(shè)備及儀器有:梳夾式紅花絲采摘裝置、SPS402F精密電子天平、DT-2234C數(shù)字式轉(zhuǎn)速表、MA45快速水分測(cè)定儀、鋼卷尺、皮尺、標(biāo)桿、樣品袋、不干膠標(biāo)貼以及各色線繩等。
課題組于2018年6月28日,在石河子大學(xué)試驗(yàn)田隨機(jī)選取一塊地,進(jìn)行田間試驗(yàn),如圖11所示,為對(duì)紅花植株頂部花絲進(jìn)行采摘試驗(yàn)。
圖11 田間試驗(yàn)
選取開(kāi)花1~5 d、種植模式為(150+150+400)mm的“裕民無(wú)刺”,由于紅花果球的分布位置不同,需要按照果球的分布情況,在空間布置多個(gè)采摘頭,但是大部分果球分布在頂部,因此本文選擇紅花頂部花球作為試驗(yàn)對(duì)象,在參數(shù)組合為:梳齒長(zhǎng)度40 mm,梳齒間隙3.5 mm,梳齒轉(zhuǎn)速為80 r/min下進(jìn)行田間試驗(yàn),沿測(cè)試區(qū)域的對(duì)角線,從地角算起以1/4、3/4點(diǎn)處為測(cè)點(diǎn)。采摘前在測(cè)試區(qū)域內(nèi)臨近測(cè)點(diǎn)的區(qū)域內(nèi)選取5點(diǎn),每點(diǎn)不少于1 m2,測(cè)定該地塊的采凈率、掉落率、破碎率。
試驗(yàn)測(cè)定基本參數(shù),取平均值采凈率為81.88%,掉落率2.25%,破碎率2.43%,如表5所示。
表5 田間試驗(yàn)測(cè)定結(jié)果
1)試驗(yàn)結(jié)果顯示,在梳齒間隙一定的情況下,梳齒長(zhǎng)度對(duì)采凈率的影響要比梳齒轉(zhuǎn)速的影響顯著,梳齒長(zhǎng)度對(duì)掉落率的影響要比梳齒轉(zhuǎn)速的影響顯著;梳齒轉(zhuǎn)速一定時(shí),隨梳齒間隙的增大,破碎率先減小后增大,隨著梳齒長(zhǎng)度的增大,破碎率也先減小后增大。
2)以采凈率最大,掉落率和破碎率最小為優(yōu)化目標(biāo),對(duì)試驗(yàn)數(shù)據(jù)通過(guò)Design-Expert 8.6.0 軟件處理及優(yōu)化,梳夾式紅花絲采摘頭最佳參數(shù)組合為:梳齒長(zhǎng)度為39.71 mm,梳齒轉(zhuǎn)速為78.68 r/min,梳齒間隙為3.42 mm,此時(shí)采凈率為82.42%,掉落率2.30%,破碎率2.53%。
3)以?xún)?yōu)化參數(shù)組合梳齒長(zhǎng)度40 mm,梳齒間隙3.5 mm,梳齒轉(zhuǎn)速為80 r/min,在梳夾式紅花絲采摘頭性能試驗(yàn)臺(tái)上進(jìn)行驗(yàn)證試驗(yàn),其結(jié)果為:采凈率為82%,掉落率2.29%,破碎率2.45%,基本與優(yōu)化結(jié)果吻合。在該優(yōu)化參數(shù)組合下的田間試驗(yàn)表明,梳夾式紅花絲采摘機(jī)采凈率為81.88%,掉落率2.25%,破碎率2.43%,梳夾式紅花絲等高采收裝置能夠?qū)崿F(xiàn)對(duì)同一高度紅花絲的采收。
由于紅花花蕾分布不規(guī)律,為頂生類(lèi)作物,花蕾在植株頂端分布較多,因此本文中單個(gè)梳夾式紅花絲采摘試驗(yàn)裝置為采摘特定高度下的紅花絲,擬針對(duì)紅花植株花蕾分布情況,呈弧形在豎直方向布置多個(gè)梳夾式采摘頭以實(shí)現(xiàn)對(duì)紅花絲的機(jī)械化盲采。
[1] 王建勛. 新疆紅花及其主要品種簡(jiǎn)介[J]. 特種經(jīng)濟(jì)動(dòng)植物,2006(2):25-26.
[2] 王兆木,陳躍華. 紅花[M]. 北京:中國(guó)中醫(yī)藥出版社,2001.
[3] 朱莉紅. 紅花藥理分析及臨床應(yīng)用分析[J]. 中國(guó)現(xiàn)代藥物應(yīng)用,2016,10(16):286-287.
[4] Siavash Azimi, Gholamreza Chegini, Mohamad Hosein Kianmehr, et al. Design and construction of a harvesting safflower petals machine[J]. Mechanics & Industry, 2012, 13(5): 301-305.
[5] 劉金欣,郭徵,李耿,等. 新疆地區(qū)藥用紅花的高光譜特征研究[J]. 中國(guó)中藥雜志,2013,38(9):1335-1339. Liu Jinxin, Guo Zheng, Li Geng, et al.Hyperspectral characteristics of Carthamus tinctorius in Xinjiang region[J]. China Journal of Chinese Materia Medica, 2013, 38(9): 1335-1339. (in Chinese with English abstract)
[6] 中藥材天地網(wǎng). 紅花產(chǎn)量大減,市場(chǎng)緊俏[N]. 中國(guó)中醫(yī)藥報(bào),2017-08-10(006).
[7] Anil K R. Development of Safflower Petal Collector[D]. Maharashtra: Nimbkar Agricultural Research Institute (NARI), 2005.
[8] Azimi S, Chegini G, Kianmehr M H, et al. Design and construction of a harvesting safflower petals machine[C]// CIGR-AgEng 2012, 2012: 1-6.
[9] http://www.ylxw.com.cn/news/content/2011-09/16/ content_113866.htm.
[10] 李景彬,坎雜,李成松,等. 一種多人紅花采收機(jī):CN102893756A[P]. 2013-01-30.
[11] 韓丹丹,葛云,湯明軍,等. 切割-氣吸式紅花花絲采收裝置的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2014,36(10):120-123.
Han Dandan, Ge Yun, Tang Mingjun, et al. Design of harvesting device of safflower petals based on cutting- pneumatic[J]. Journal of Agricultural Mechanization Research, 2014, 36(10): 120-123. (in Chinese with English abstract)
[12] Ge Yun, Zhang Lixin, Qian Ying, et al. Dynamic model for sucking process of pneumatic cutting-type safflower harvest device[J]. International Journal of Agricultural & Biological Engineering, 2016, 9(5): 43-50.
[13] 丁于. 負(fù)壓氣動(dòng)視頻色差采摘頭及茶、紅花、棉花采摘機(jī):CN103371024A[P]. 2013-8-30.
[14] 王春香. 手推式杭白菊梳齒摘花機(jī)結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[D]. 南京:南京農(nóng)業(yè)大學(xué),2016.
Wang Chunxiang. Design and Experiment of Hand-Push Chrysanthemum Morifolium Comb-Picking Machine[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract)
[15] 劉曉麗,陳發(fā),王學(xué)農(nóng). 4MZ-3000型梳齒式采棉機(jī)梳齒部件的結(jié)構(gòu)分析[J]. 新疆農(nóng)業(yè)科學(xué),2011,48(9):1635-1639.
Liu Xiaoli, Chen Fa, Wang Xuenong. The tructure analysis of stripper finger component on the 4MZ-3000 cotton stripper finger[J]. Xinjiang Agricultural Sciences, 2011, 48(9): 1635-1639. (in Chinese with English abstract)
[16] 姬長(zhǎng)英,張純,顧寶興,等. 梳割氣吸一體式貢菊采摘機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):137-145.
Ji Changying, Zhang Chun, Gu Baoxing, et al. Design and experiment of shear-sucting mountain chrysanthemum picking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 137-145. (in Chinese with English abstract)
[17] 亓丹丹,史建新,王學(xué)農(nóng). 4MZ-5梳齒式采棉機(jī)采摘頭工作參數(shù)的確定[J]. 農(nóng)機(jī)化研究,2012,34(3):64-67.
Qi Dandan, Shi Jianxin, Wang Xuenong. On the operational parameter confirmation of 4MZ-5 serrate-type cotton picking up head[J]. Journal of Agricultural Mechanization Research, 2012, 34(3): 64-67. (in Chinese with English abstract)
[18] 康建明,陳學(xué)庚,溫浩軍,等. 基于響應(yīng)面法的梳齒式采棉機(jī)采收臺(tái)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊2):57-61.
Kang Jianming, Chen Xuegeng, Wen Haojun, et al. Optimization of comb-type cotton picker device based on response surface methodology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.2): 57-61. (in Chinese with English abstract)
[19] 姬長(zhǎng)英,王春香,顧寶興,等. 手推式杭白菊梳齒摘花機(jī)結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):143-150,142.
Ji Changying, Wang Chunxiang, Gu Baoxing, et al.Structure design and experiment of hand-push chrysanthemum morifolium comb-teeth picking machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 143-150, 142. (in Chinese with English abstract)
[20] 孫胃嶺,曹衛(wèi)彬,古樂(lè)樂(lè),等. 基于紅花力學(xué)特性的梳夾式采摘機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2018,40(5):46-51.
Sun Weiling, Cao Weibin, Gu Lele, et al. Design and experiment of comb clip picking mechanism based on mechanical characteristics of safflower[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 46-51. (in Chinese with English abstract)
[21] 葉秉良,李麗,俞高紅,等. 蔬菜缽苗移栽機(jī)取苗臂凸輪機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):21-29.
Ye Bingliang, Li Li, Yu Gaohong, et al. Design and test on cam mechanism of seedling pick-up arm for vegetable transplanter for pot seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 21-29. (in Chinese with Einglish abstract)
[22] 李寶筏. 農(nóng)業(yè)機(jī)械學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2003.
[23] 孫胃嶺,曹衛(wèi)彬,楊萌,等. 紅花分枝力學(xué)特性測(cè)試及運(yùn)動(dòng)分析[J]. 農(nóng)機(jī)化研究,2018,40(12):212-216.
Sun Weiling, Cao Weibin, Yang Meng, et al. Kinematics analysis of safflower based on mechanical properties[J]. Journal of Agricultural Mechanization Research, 2018, 40(12): 212-216. (in Chinese with English abstract)
[24] 全國(guó)農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會(huì)農(nóng)業(yè)機(jī)械化分技術(shù)委員會(huì). NY/T1133-2006采棉機(jī)作業(yè)質(zhì)量[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2006.
[25] 葛云,張立新,谷家偉,等. 對(duì)輥式紅花采收裝置參數(shù)優(yōu)化及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(21):35-42.
Ge Yun, Zhang Lixin, Gu Jiawei, et al. Parameter optimization and experiment of dual roller harvesting device for safflower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 35-42. (in Chinese with English abstract)
[26] 費(fèi)榮昌. 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 無(wú)錫:江南大學(xué)出版社,2001:59-63.
[27] 任露泉. 試驗(yàn)優(yōu)化設(shè)計(jì)與分析[M]. 北京:高等教育出版社,2003.
[28] 王磊,張宏文,劉巧. 膠棒滾筒棉花采摘頭采收性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):35-41.
Wang Lei, Zhang Hongwen, Liu Qiao. Test on harvest performance of cotton picking head with rubber-bar roller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 35-41. (in Chinese with Einglish abstract)
[29] 王業(yè)成,陳海濤,林青. 黑加侖采收裝置參數(shù)的優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):79-83.
Wang Yecheng, Chen Haitao, Lin Qing. Optimization of parameters of blackcurrant harvesting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 79-83. (in Chinese with English abstract)
[30] 于昭洋,胡志超,王海鷗,等. 大蒜果秧分離機(jī)構(gòu)參數(shù)優(yōu)化及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):40-46.
Yu Zhaoyang, Hu Zhichao, Wang Haiou, et al. Parameters optimization and experiment of garlic picking mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 40-46. (in Chinese with English abstract)
[31] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì).GB/T5262-2008農(nóng)業(yè)機(jī)械試驗(yàn)條件測(cè)定方法的一般規(guī)定[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2006.
[32] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). GB/T67-2008農(nóng)業(yè)機(jī)械生產(chǎn)試驗(yàn)方法[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2006.
Harvest performance test and parameter optimization of comb-type safflower-filaments picking head at same height
Cao Weibin1,2, Lian Guodang1,2, Niu Chi1,2, An Liangliang1,2, Yang Shuangping1,2, Chen Bangbang3
(1.,,832000,; 2.,832000,; 3.,,843000,)
Safflower is difficult to be harvested mechanically because of its growth characteristics in Xinjiang.Considering that the picking-mouth must be aligned with the flower-ball when harvesting, present technology has not fundamentally improved the efficiency of harvesting, which has increased the labor intensity to a certain extent. Meanwhile, the pattern of mechanized harvesting has not been promoted and applied due to the poor harvesting effect, high dropping rate and broken rate. In view of this, we proposed the picking head of comb-type safflower-filaments. This head could intermittently close and open by moving comb and fixing comb to clip filaments via the interaction of terminal face cam and the return spring. And finally, the clipped filaments were pulled down through the spindle rotation. Given that a single picking head was installed 3 sets of comb, safflower-filaments could be harvested 3 times in one rotation. The working stroke of terminal face-cam could be divided into 4 working strokes, including filaments grip segment, picking segment, collecting segment, and buffer running segment. By simulating the pulling action of the human hand to realize the extraction of the safflower, this device effectively solved the main issues in the process of mechanized harvesting of safflower, including low efficiency and severe broken safflower filaments. To further study the safflower picking device of comb-type and improve its working quality, we designed a test-bed of comb-type harvesting performance. Due to the irregular distribution of safflower flower balls, this test device only performed the picking test at a certain height. The test-bed was mainly composed of a comb-type picking head, power transmission system, frame and petals collect-box. The picking head was driven by electric motor. The experiment chose the safflower of “Yu Min stingless” as the test object. In order to further verify the rationality of the comb-type head design and improve its working performance, comb length, comb clearance and comb speed were considered as the influencing factors, and the collect rate, dropping rate and broken rate were taken as the response indicators. We carried out a test of quadratic rotation-orthogonal combination with 3 factors and 5 levels on the picking test-bed with comb type. Quadratic orthogonal rotary regressive experimental design was employed to develop the second order polynomial regression model, which explained the relationship between influencing factors and response indicators parameters. A mathematical model between response indicators and influencing factors was established by data optimization software Design-Expert 8.6.0. The influence of significant factors on the quality of operation was analyzed, and model parameters were optimized based on response surface methodology. The best combination parameters were as follows: the comb length was 39.71 mm; the comb speed was 78.68 r/min, and the comb clearance was 3.42 mm. In this condition, the collect rate, dropping rate and broken rate were 82.42%, 2.30% and 2.53%, respectively. When the comb length was 40 mm, the comb speed was 80 r/min, and the comb clearance was 3.5 mm, the repeated bench test results showed that the collect rate, dropping rate and broken rate were 82%, 2.29% and 2.45%, respectively. Because of the different distributed positions of safflower balls, it was necessary to arrange multiple picking heads in space according to distributed of balls, but most of the balls was distributed at the top. Therefore, this paper took the top safflowers as the test object for field experiment. The results of field experiment showed that the collect rate, dropping rate and broken rate were 81.88%, 2.25% and 2.43% under the same rounded optimization parameter combination, respectively. These results demonstrated that the comb-type head could perform well in the picking of safflower filaments. And it can offer a lot for improving the comb-type safflower picking device as well as the mechanized picking process for safflower.
agricultural machinery; optimization; comb-type; picking head; safflower-filaments; picking performance
曹衛(wèi)彬,連國(guó)黨,牛 馳,安亮亮,楊雙平,陳棒棒. 梳夾式紅花絲采摘頭等高采收性能試驗(yàn)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):36-44. doi:10.11975/j.issn.1002-6819.2018.22.005 http://www.tcsae.org
Cao Weibin, Lian Guodang, Niu Chi, An Liangliang, Yang Shuangping, Chen Bangbang. Harvest performance test and parameter optimization of comb-type safflower-filaments picking head at same height[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 36-44. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.005 http://www.tcsae.org
2018-08-05
2018-09-20
新疆生產(chǎn)建設(shè)兵團(tuán)科技攻關(guān)項(xiàng)目( 2015AB020)
曹衛(wèi)彬,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)信息化與機(jī)械自動(dòng)化研究。Email:wbc828@163.com
10.11975/j.issn.1002-6819.2018.22.005
S225.99
A
1002-6819(2018)-22-0036-09