魯 偉,汪小旵,2,王鳳杰
?
番茄辣椒微型根系形態(tài)原位采集系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
魯 偉1,汪小旵1,2※,王鳳杰1
(1. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031; 2. 江蘇省現(xiàn)代設(shè)施農(nóng)業(yè)技術(shù)與裝備工程實(shí)驗(yàn)室,南京 210031)
為實(shí)時(shí)獲取淺根系作物的根系生長(zhǎng)形態(tài),設(shè)計(jì)了一種可用于多點(diǎn)測(cè)量的微型根系形態(tài)實(shí)時(shí)原位采集系統(tǒng)。系統(tǒng)主要由微型攝像頭和光學(xué)放大元件等組成(體積1.5 cm3),采集的圖像通過(guò)無(wú)線模塊發(fā)送至終端。采用基于區(qū)域生長(zhǎng)的根系圖像分析方法,以腐蝕圖像為出發(fā)點(diǎn),膨脹圖像為終止點(diǎn),結(jié)合相似性準(zhǔn)則進(jìn)行區(qū)域生長(zhǎng)、區(qū)域標(biāo)記和區(qū)域保留,來(lái)濾除土壤孔隙和雜質(zhì)等對(duì)圖像產(chǎn)生的干擾,從而提取根系輪廓,并通過(guò)圖像形態(tài)學(xué)計(jì)算得到根長(zhǎng)密度、根系平均直徑等形態(tài)參數(shù)。以此系統(tǒng)采集櫻桃番茄、辣椒根系形態(tài)參數(shù),試驗(yàn)結(jié)果表明,根系長(zhǎng)度測(cè)定值的絕對(duì)誤差不超過(guò)1.5 mm,相對(duì)誤差不超過(guò)5.3%;根系平均直徑絕對(duì)誤差不超過(guò)0.09 mm,相對(duì)誤差不超過(guò)6.7%。與土壤采樣法測(cè)定值相比,在0~10、>10~20、>20~30和>30~40 cm 4個(gè)土壤層內(nèi)2種測(cè)定方法根系平均直徑?jīng)Q定系數(shù)2>0.87(<0.01),根長(zhǎng)密度在30 cm深度以內(nèi)的土壤層決定系數(shù)2>0.81(<0.01)。證明本文設(shè)計(jì)的微型根系形態(tài)實(shí)時(shí)原位采集系統(tǒng)具有較高的準(zhǔn)確性,可用于淺根系作物形態(tài)的多點(diǎn)觀測(cè)。
形態(tài);算法;測(cè)量;根系形態(tài);微型根系形態(tài)采集系統(tǒng);多點(diǎn)采集;實(shí)時(shí)獲??;區(qū)域生長(zhǎng)算法
植物的根系具有吸收水分和養(yǎng)分,影響產(chǎn)量和品質(zhì)的作用[1-3]。根系形態(tài)研究是植物營(yíng)養(yǎng)學(xué)、植物生理生態(tài)學(xué)最重要的內(nèi)容[4-7]。實(shí)現(xiàn)對(duì)根系形態(tài)的實(shí)時(shí)、準(zhǔn)確獲取是農(nóng)業(yè)生產(chǎn)中提高水肥利用效率、保證作物品質(zhì)和產(chǎn)量的前提和關(guān)鍵[8-9]。由于作物根系生長(zhǎng)過(guò)程中的不可見(jiàn)性,根系形態(tài)檢測(cè)與研究發(fā)展緩慢,傳統(tǒng)的方法包括挖掘法、剖面法、土柱法、水培法和霧培法等[10]。挖掘法、剖面法、土柱法等方法均屬于破壞性方法,不能用于長(zhǎng)期對(duì)同一根系的生長(zhǎng)和分布進(jìn)行追蹤,且操作方法費(fèi)時(shí)費(fèi)力,誤差較大;水培法、霧培法不使用傳統(tǒng)的土壤或者基質(zhì)進(jìn)行作物培育,而采用水或者霧氣培養(yǎng)法,便于根系的直接觀察。但此種方法嚴(yán)重改變了作物原有的生長(zhǎng)環(huán)境,其試驗(yàn)結(jié)果不具有普適性。
隨著計(jì)算機(jī)技術(shù)、微電子技術(shù)等的發(fā)展,出現(xiàn)了X射線計(jì)算機(jī)層析成像[11-13](X-ray computed tomography, X-CT)和微根窗[14-17]等方法。X-CT法是采用醫(yī)學(xué)影像技術(shù)獲取作物根系圖片,并使用計(jì)算機(jī)圖像處理技術(shù)進(jìn)行三維重建。吳長(zhǎng)高等采用西門(mén)子四排螺旋CT獲得了理想的原位根系CT序列圖像[18]。但此種方法成本很高,要求特定的培養(yǎng)基質(zhì),目前使用范圍十分狹小。微根窗根系觀測(cè)法是由Bates在1937年提出的,它是一種非破壞性、定點(diǎn)直接觀察和研究植物根系的方法[14]。該技術(shù)主要由一個(gè)插入土壤中的微根窗管、攝像頭、標(biāo)定手柄和照明裝置等組成。Upchurch等使用微光單色攝像機(jī)通過(guò)透明的丙烯酸管進(jìn)行原位根觀測(cè),證明此方法與土壤取樣法存在線性關(guān)系[19]。廖榮偉等采用微根管觀測(cè)法,對(duì)試驗(yàn)地上玉米主要生育期的根系生長(zhǎng)動(dòng)態(tài)進(jìn)行定期直接跟蹤監(jiān)測(cè),結(jié)果表明微根管法與方形整段標(biāo)本法有較好的一致性[20]。張志山等用微根窗觀測(cè)檸條根系生長(zhǎng)動(dòng)態(tài),并與土鉆法進(jìn)行比較,證明微根窗觀測(cè)根系具有一定的優(yōu)勢(shì)[21]。
微根窗法在一定程度上解決了傳統(tǒng)方法的不足,能夠長(zhǎng)期對(duì)同一點(diǎn)的根系進(jìn)行觀察。然而,很多研究表明,微根窗的材質(zhì)、光照以及安裝會(huì)對(duì)根系土壤產(chǎn)生擾動(dòng)[22-23]。微根管與土壤間的緊實(shí)程度往往會(huì)影響根系原有的生長(zhǎng)環(huán)境,如果土壤與微根管接觸不緊密,并不能獲得最真實(shí)的根系生長(zhǎng)狀態(tài),導(dǎo)致根系生長(zhǎng)不具有代表性[22,24];丙烯酸樹(shù)脂、丁酸鹽纖維素管對(duì)根系壽命產(chǎn)生影響[25]。玻璃管對(duì)根系的影響最小,但容易破碎,使用壽命較短;微根窗在地上部分留有手柄等控制部分,一般使用黑色不透明罩子防止光照影響根系生長(zhǎng)[17,25-27]。同時(shí),對(duì)于淺根系作物,微根管體積較大,會(huì)嚴(yán)重影響根系的生長(zhǎng),且不便于多點(diǎn)觀察。此外,此種設(shè)備價(jià)格十分昂貴,且不能多點(diǎn)觀察。
本文設(shè)計(jì)一種適用于淺根系作物的微型根系檢測(cè)系統(tǒng)。通過(guò)實(shí)時(shí)采集土壤內(nèi)根系的形態(tài)圖片,利用圖像處理技術(shù)計(jì)算根系形態(tài)信息,并與土壤采樣法進(jìn)行相關(guān)性驗(yàn)證,以實(shí)時(shí)、準(zhǔn)確、多點(diǎn)獲取根長(zhǎng)密度、根系平均直徑和根體積等參數(shù)。以期從多個(gè)觀測(cè)點(diǎn)對(duì)根系進(jìn)行實(shí)時(shí)觀測(cè),提高根系形態(tài)檢測(cè)的準(zhǔn)確性和時(shí)效性,減輕根系研究過(guò)程的勞動(dòng)強(qiáng)度和提高效率。確保為植物營(yíng)養(yǎng)學(xué)、植物生理生態(tài)學(xué)提供可靠的數(shù)據(jù)依據(jù),為精準(zhǔn)農(nóng)業(yè)的實(shí)施提供技術(shù)支持。
微型根系形態(tài)采集和處理系統(tǒng)由微型攝像頭、光學(xué)放大元件、發(fā)光二極管(LED,light emitting diode)、供電電源和無(wú)線模塊以及圖像處理部分組成,如圖1所示。攝像頭像素為1 200萬(wàn)CMOS(互補(bǔ)金屬氧化物半導(dǎo)體,complementary metal oxide semiconductor),分辨率1920×1080像素,視角120°,工作溫度-20~80 ℃,相對(duì)濕度15%~85%,能夠滿足土壤中的測(cè)量環(huán)境。放大器放大倍數(shù)為1~100倍可調(diào)。由于根系生長(zhǎng)在不見(jiàn)光的土壤內(nèi)部,在獲取根系圖像時(shí)需要外加光照。為了減小光照過(guò)強(qiáng)或者過(guò)弱對(duì)成像產(chǎn)生干擾,在頂部安裝4個(gè)多波段LED光源,采用脈沖寬度調(diào)制方式,實(shí)現(xiàn)LED光源強(qiáng)度與波段調(diào)節(jié)控制。為防止土壤導(dǎo)電導(dǎo)致短路,系統(tǒng)電路部分用熱熔膠密封。系統(tǒng)整體尺寸為1.1 cm×1.1 cm×1.2 cm,體積約1.5 cm3。采集到的根系圖像通過(guò)無(wú)線網(wǎng)卡控制模塊(型號(hào):MEDIATEK MT7601)形成的Wi-Fi信號(hào)傳送至終端接收裝置(手機(jī)或個(gè)人電腦)。
1.微型攝像頭 2.電路板(包括電源和無(wú)線模塊) 3.光學(xué)放大元件及支柱 4.LED照明燈×4
采集到的根系原圖如圖2a、b所示,土壤孔隙結(jié)構(gòu)會(huì)對(duì)圖像產(chǎn)生嚴(yán)重的干擾,一些細(xì)小的根系不能被很好地保留。中值濾波和加權(quán)均值濾波(圖2c、d)很難將這些干擾去除,因此需要對(duì)圖像進(jìn)一步進(jìn)行根系的復(fù)原,以保證為根系形態(tài)計(jì)算提供完整和可靠的數(shù)據(jù)。
圖2 根系原圖像和低層處理圖像
區(qū)域生長(zhǎng)算法是將空間上具有某些相似性質(zhì)的臨近像素點(diǎn)合并起來(lái)連接成區(qū)域[28-30]。根系像素點(diǎn)在灰度值上比較相近,并且由根系連接成的區(qū)域一般比土壤孔隙和其它干擾要大,因此考慮采用區(qū)域生長(zhǎng)的方法對(duì)經(jīng)過(guò)簡(jiǎn)單低層處理的圖像進(jìn)行進(jìn)一步處理。首先,將根系圖像分別用3×3像素的結(jié)構(gòu)元素進(jìn)行腐蝕和膨脹處理。區(qū)域生長(zhǎng)算法的初始點(diǎn)選擇為腐蝕后的圖像的第一個(gè)像素點(diǎn),終止點(diǎn)為膨脹后的圖像。相似性準(zhǔn)則通過(guò)試驗(yàn)確定為相鄰像素間的灰度差值不大于20(反復(fù)試驗(yàn)獲得)。區(qū)域生長(zhǎng)過(guò)程中會(huì)形成多塊連通區(qū)域,這些區(qū)域可能包含不同的根系、土壤孔隙、雜質(zhì)以及其他的干擾因素,因此需要對(duì)不同的區(qū)域塊進(jìn)行提取和標(biāo)記,以便于后面進(jìn)一步處理。其具體實(shí)現(xiàn)環(huán)境為Matlab R2013a,實(shí)現(xiàn)過(guò)程為:
1)將經(jīng)過(guò)低層處理的根系圖像分別進(jìn)行腐蝕和膨脹,以腐蝕的圖像里搜索第一個(gè)像素為生長(zhǎng)點(diǎn),以膨脹圖像為最大邊界開(kāi)始生長(zhǎng),同時(shí)初始化一個(gè)與同樣大小的空集合,并將置于中,置為“已標(biāo)記”狀態(tài)。
2)若的8鄰域像素在中處于“未標(biāo)記”狀態(tài),且滿足與中心像素之間的差值小于閾值,則將加入,置為“已標(biāo)記”狀態(tài),并將中對(duì)應(yīng)位置的像素點(diǎn)置為0(避免重復(fù)生長(zhǎng)或者陷入死循環(huán))。
3)以為出發(fā)點(diǎn)繼續(xù)生長(zhǎng),重復(fù)2)的過(guò)程,直到該小區(qū)域無(wú)滿足要求的生長(zhǎng)點(diǎn)為止,將該區(qū)域標(biāo)記為第1連通區(qū)域。
4)重復(fù)1)、2)、3)過(guò)程,找到個(gè)連通區(qū)域
根系像素?cái)?shù)目一般較大,而土壤孔隙、雜質(zhì)以及其它的干擾因素相對(duì)較小,因此對(duì)于中像素?cái)?shù)目小于50(試驗(yàn)獲得)的予以刪除,保留剩下的像素點(diǎn),從而得到去除土壤孔隙干擾的根系圖像。如圖3所示土壤中孔隙和雜質(zhì)引起的噪聲基本上被濾除,側(cè)根保留量有所增加。
圖3 基于區(qū)域生長(zhǎng)算法的根系輪廓圖像和根系細(xì)化圖像
2.2.1 根系圖像細(xì)化
為了統(tǒng)計(jì)根系的長(zhǎng)度需要將得到的根系圖像進(jìn)行形態(tài)學(xué)細(xì)化,采用最大圓盤(pán)法[31-33]得到單像素連接根系圖像(圖3c、d)。由于圖像在細(xì)化過(guò)程中最終保留的骨架點(diǎn)為所有圓盤(pán)的圓心的連接點(diǎn),因此根系的長(zhǎng)度在起始點(diǎn)和終止點(diǎn)分別減少了半徑長(zhǎng)度1和2,在長(zhǎng)度計(jì)算過(guò)程中需要進(jìn)行補(bǔ)償。
2.2.2 根系長(zhǎng)度
細(xì)化后的根系圖像長(zhǎng)度的自動(dòng)測(cè)量,目前已有一些不同的算法,如鏈碼跟蹤法、一次掃描長(zhǎng)度法和蠶食法[12]等,其性能各有優(yōu)劣。本文對(duì)蠶食法進(jìn)行改進(jìn),提出一種簡(jiǎn)單、直觀的算法——有界蠶食法。該算法首先對(duì)根系的長(zhǎng)軸進(jìn)行提取,即獲取一條最長(zhǎng)軸根的長(zhǎng)度。然后模擬蠶吃桑葉的方式,對(duì)整幅圖像進(jìn)行掃描,以搜索到某一條根的端點(diǎn)為初始點(diǎn),以軸根為邊界,統(tǒng)計(jì)每條側(cè)根的長(zhǎng)度,并予以刪除,直到非軸根全部被刪除掉,如圖3c,圖3d所示,細(xì)化后的根系保留了大部分側(cè)根。
式中表示根長(zhǎng),1表示對(duì)角方向連接的像素個(gè)數(shù),2水平和豎直方向連接的像素個(gè)數(shù),1和2為補(bǔ)償?shù)拈L(zhǎng)度,表示圖像上像素距離與實(shí)際像素距離的對(duì)應(yīng)關(guān)系,為光學(xué)元件的放大倍數(shù)。
根系平均直徑按下式計(jì)算
S=·/(2)
式中S表示根系總面積,表示根系平均直徑,表示根系總像素個(gè)數(shù)。
根體積V的計(jì)算可以近似把根看作柱體形狀,由總根長(zhǎng)和根系平均直徑可得
V=π(/2)2×(4)
式中要根據(jù)試驗(yàn)獲得根長(zhǎng)密度來(lái)進(jìn)行估算。
為了驗(yàn)證根系形態(tài)采集系統(tǒng)及根系圖像處理方法的可行性和精確度,于2018年3月5日、3月13日、3月21日和4月1日各采集線椒根系片段20個(gè)和櫻桃番茄根系片段20個(gè)(長(zhǎng)度從5到50 mm不等,總計(jì)辣椒根系樣=80,番茄樣品=80),根系類(lèi)型包括僅含有1級(jí)側(cè)根、僅含有2級(jí)側(cè)根以及同時(shí)包含1級(jí)側(cè)根和2級(jí)側(cè)根的根系片段。將每個(gè)樣品混入原生長(zhǎng)區(qū)域的土壤,于根系上表面放置微型根系形態(tài)采集器,并將微型采集器攝像頭面正對(duì)著根系樣品。然后,將每個(gè)試驗(yàn)區(qū)土壤體積減掉1.5 cm3,再將土壤覆蓋到微型根系形態(tài)采集器上,并用橡膠錘輕輕鎮(zhèn)壓,以盡量保證土壤緊實(shí)度與原生長(zhǎng)土壤環(huán)境一致和使根系樣品片段能夠在采集器的成像區(qū)厚度范圍內(nèi)(3 mm)。這樣做的目的是避免實(shí)地采集過(guò)程中因挖掘?qū)е赂狄苿?dòng)或斷裂,進(jìn)而獲取真實(shí)的數(shù)據(jù)以驗(yàn)證該系統(tǒng)的性能。圖像采集后,將每個(gè)樣品用蒸餾水洗凈并用吸水紙巾擦拭干凈,用手工法測(cè)量根長(zhǎng)和根粗,用排水法測(cè)量根系體積,作為真實(shí)值與圖像法對(duì)比。由于根系體積值是由根長(zhǎng)密度和根系平均直徑來(lái)進(jìn)行間接計(jì)算,因此僅繪制根長(zhǎng)密度和根系平均直徑圖表。
由表1的結(jié)果可以看出,本文的根系形態(tài)采集系統(tǒng)及其圖像處理算法能較為準(zhǔn)確的獲得采集系統(tǒng)視野范圍內(nèi)的根系參數(shù)。對(duì)于不同的根系均能以較高的精確度獲得根長(zhǎng)、平均直徑等參數(shù),為進(jìn)一步使用該系統(tǒng)進(jìn)行原位監(jiān)測(cè)提供了較為可靠的技術(shù)手段和方法。
表1 微型根系形態(tài)采集系統(tǒng)性能
為了驗(yàn)證微型根系形態(tài)采集和處理系統(tǒng)的性能,進(jìn)一步進(jìn)行了原位監(jiān)測(cè)試驗(yàn)。試驗(yàn)于2018年3月27日開(kāi)始,于6月9日結(jié)束。種植于經(jīng)過(guò)篩選(1 cm×1 cm)的通用型種植營(yíng)養(yǎng)土。設(shè)置3個(gè)小區(qū),每個(gè)小區(qū)面積為2×2 m2,株距20 cm,按如圖4所示的方式于定植期分別在距離地表5,15,25和35 cm的土層安裝根系采集器。為了減小隨機(jī)誤差和變異性,于每個(gè)土壤層中距離根系中心線(豎直方向?qū)嵕€)5 cm和10 cm處各安裝一個(gè)采集器,并用其平均值來(lái)代替這一層的根系形態(tài)參數(shù)。由于根系形態(tài)采集器個(gè)數(shù)的限制,一個(gè)周期試驗(yàn)僅能采集6株作物樣本(每株作物安裝有8個(gè)微型根系采集器),為了充分利用有限的采集器獲取更多的樣本數(shù)據(jù)和獲得處于不同生長(zhǎng)期的根系形態(tài),連續(xù)進(jìn)行6個(gè)周期試驗(yàn),分別于3月27日,4月2日,4月15日,5月17日,5月24日和5月30日2-3片真葉時(shí)定植,并同時(shí)埋入微型根系形態(tài)采集器。每個(gè)周期采樣挖掘后所有的采集器立即使用進(jìn)入第2周期,整個(gè)采集周期共計(jì)獲得36個(gè)樣本。采集根系圖像的同時(shí),用柱形取樣器,以植株根系中心點(diǎn)為圓心,10 cm為半徑,每10 cm深度為一層,挖掘4個(gè)土壤層的含有根系的土柱。用蒸餾水洗掉根系上附著的土壤,然后將根系用吸水紙巾擦拭干凈,最后手工測(cè)量每一層土壤中根系的根長(zhǎng)密度和根系平均直徑。試驗(yàn)期間,灌溉營(yíng)養(yǎng)液配方采用山東農(nóng)業(yè)大學(xué)番茄辣椒配方,灌溉方式為肥液灌溉每周一次(200 mL/株,Ec值為2.0 mS/cm,pH值為6.5),灌溉水每日一次(200 mL/株)。
圖4 微型根系形態(tài)采集器攝像頭布置示意圖
圖5為定植后第13天和第32天土壤采樣法和微型根系采集法獲得的根長(zhǎng)密度和根系平均直徑對(duì)比圖。由圖可知,在辣椒定植后第13天,在淺層土壤中,距根系中10 cm處的根長(zhǎng)密度為0.137 cm/cm3,遠(yuǎn)小于平均值(0.199 cm/cm3)。而距根系中心線水平距離為5 cm處根長(zhǎng)密度為0.273 cm/cm3,表明在作物生長(zhǎng)初期淺層土壤中根系橫向伸展不明顯,主要集中在水平距離為5 cm范圍內(nèi);而在作物生長(zhǎng)中后期,根系的橫向擴(kuò)展程度逐漸增加。在大于25 cm的土壤中,在距根系中心線水平距離為10 cm處根長(zhǎng)密度值略大于平均值,表明在深層土壤中根系有橫向伸展增大趨勢(shì),這可能與水肥供應(yīng)以及作物主動(dòng)獲取適宜生長(zhǎng)空間有關(guān)。
注:圖中1,2,3,4分別表示土壤采樣法測(cè)定值,微型根系采集法在每個(gè)土壤層測(cè)得的平均值,采集器與根系中心線水平距離為5 cm處的測(cè)定值,采集器與根系中心線水平距離為10 cm處的測(cè)定值。
從總體上來(lái)看,辣椒的根系主要集中在深度為20 cm以內(nèi)的淺層土壤中,辣椒根系的根長(zhǎng)密度隨著深度增加而減少。微型根系采集法獲得的根長(zhǎng)密度略小于土壤采樣法。這種現(xiàn)象產(chǎn)生的原因主要有兩個(gè),一方面是隨著深度的增加,根系數(shù)目減少,微型根系采集器布置個(gè)數(shù)較少,能捕獲到根系的概率相應(yīng)減少;另一方面,由于采集器在不同深度的土壤層中的布置方式較為單一,其對(duì)根系的攔截可能不夠全面。微型根系采集法獲得的根系平均直徑與土壤采樣法在各個(gè)土壤層總體趨勢(shì)較為一致,能夠反應(yīng)根系的真實(shí)平均直徑。
為了進(jìn)一步分析微型根系采集法和土壤采樣法之間是否具有相關(guān)關(guān)系,將采集到的樣本(=36)進(jìn)行回歸。定義微型根系采集法測(cè)定值為,土壤采樣法測(cè)定值為,計(jì)算其線性回歸關(guān)系,如表2所示。在深度0~10,>10~20,>20~30和>30~40 cm處,2種方法測(cè)得的根系平均直徑呈現(xiàn)較好的線性關(guān)系,2分別為0.902、0.899和0.813(<0.01)。在深度>30 cm的土壤層相關(guān)關(guān)系較低,這可能是因?yàn)槔苯肥菧\根系作物,其根系主要聚集在10~20 cm左右的土壤層,尤其是在作物生長(zhǎng)的早期階段,>30 cm深度處的根系十分稀疏,微型根系形態(tài)采集系統(tǒng)很有可能無(wú)法捕獲稀疏的根系,導(dǎo)致采集到的根長(zhǎng)密度值與實(shí)際測(cè)量值相關(guān)性較低。
表2 微型根系形態(tài)原位監(jiān)測(cè)與土壤采樣法測(cè)定值回歸分析
注:**表示達(dá)到極顯著水平(<0.01),*表示達(dá)到顯著水平(<0.05)。
Note: **represents significant at 1% level, and *represents significant at 5% level.
微型根系形態(tài)采集系統(tǒng)獲得的根系平均直徑與土壤采樣法測(cè)定值在各個(gè)深度均達(dá)到極顯著相關(guān)關(guān)系,能夠反應(yīng)根系的真實(shí)平均直徑。在>30~40 cm深度處,根系平均直徑表現(xiàn)出較高的相關(guān)性,而根長(zhǎng)密度的相關(guān)性較低,其主要原因是根長(zhǎng)密度是通過(guò)計(jì)算某一土壤層內(nèi)多個(gè)采集器測(cè)量的平均值,如果采集器不能攔截到根系,其平均值會(huì)減小,從而影響最終測(cè)量結(jié)果。
設(shè)計(jì)了一種適用于淺根系作物的微型根系形態(tài)實(shí)時(shí)采集系統(tǒng),結(jié)合圖像處理技術(shù)能夠?qū)崟r(shí)監(jiān)測(cè)根系形態(tài)信息。采用基于區(qū)域生長(zhǎng)的方法對(duì)低層處理的根系圖像進(jìn)行處理,濾除土壤孔隙結(jié)構(gòu)和雜質(zhì)等對(duì)圖像產(chǎn)生的干擾,提取基本的根系輪廓,并根據(jù)根系形態(tài)學(xué)原理計(jì)算根長(zhǎng)密度、根系平均直徑等參數(shù)。用于檢測(cè)辣椒苗,與土壤采樣法測(cè)定值相比,在30 cm深度以內(nèi)的土壤層根長(zhǎng)密度相關(guān)系數(shù)2>0.81(<0.01),根長(zhǎng)密度平均相對(duì)誤差不超過(guò)13.5%;根系平均直徑在0~10、>10~20、>20~30和>30~40 cm 4個(gè)土壤層內(nèi)決定系數(shù)2>0.87(<0.01),平均相對(duì)誤差不超過(guò)10.4%。該微型根系形態(tài)采集器可用于定點(diǎn)觀測(cè)根系的形態(tài)變化,尤其適用于淺根系作物。
準(zhǔn)確及時(shí)獲取作物根系原位圖像,對(duì)于作物生長(zhǎng)檢測(cè)具有非常重要的意義。多點(diǎn)原位檢測(cè)是獲取整株作物根系構(gòu)型和生長(zhǎng)狀態(tài)的一種有效手段。由于微型根系形態(tài)采集器體積小巧,相對(duì)于其他觀測(cè)方法,具有對(duì)根系生長(zhǎng)環(huán)境改變較小的優(yōu)點(diǎn),適合于長(zhǎng)期多點(diǎn)觀測(cè)。尤其對(duì)于設(shè)施生產(chǎn)中的袋培等基質(zhì)栽培方法,由于作物根系生長(zhǎng)較淺,密度較高,采用微根觀測(cè)可以比較方便獲取整個(gè)生長(zhǎng)周期的圖像,可為環(huán)境調(diào)控、作物肥水管理等提供直接的根系數(shù)據(jù)。但是對(duì)于其他的栽培方式,如果根系長(zhǎng)度超過(guò)30 cm,并且橫向分布不均勻,如何通過(guò)合理的位置預(yù)埋,并考慮作物根系的避讓特性,獲得準(zhǔn)確的根系圖像就變得非常關(guān)鍵,也是今后研究的重點(diǎn)。
[1] Chen X, Li Y, He R, et al. Phenotyping field-state wheat root system architecture for root foraging traits in response to environment×management interactions[J]. Scientific Reports, 2018, 8(1): 1-9.
[2] Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement[J]. Current Opinion in Biotechnology, 2015, 32(32C): 93-98.
[3] Mari C L, Kirchgessner N, Marschall D, et al. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis [J]. Plant Methods, 2014, 10(1): 13.
[4] Morris E C, Griffiths M, Golebiowska A, et al. Shaping 3D root system architecture [J]. Current Biology, 2017, 27(17): R919.
[5] Amato M, Lupo F, Bitella G, et al. A high quality low-cost digital microscope minirhizotron system[J]. Computers & Electronics in Agriculture, 2012, 80(1): 50-53.
[6] Taylor B N, Beidler K V, Strand A E, et al. Improved scaling of minirhizotron data using an empirically-derived depth of field and correcting for the underestimation of root diameters[J]. Plant & Soil, 2014, 374(1/2): 941-948.
[7] Chen Y, Xie Y, Song C, et al. A comparison of lateral root patterning among dicot and monocot plants [J]. Plant Science, 2018, 274: 201-211.
[8] Padilla F M, Pena-Fleitas M T, Fernandez M D, et al. Responses of soil properties, crop yield and root growth to improved irrigation and N fertilization, soil tillage and compost addition in a pepper crop[J]. Scientia Horticulturae, 2017, 225: 422-430.
[9] 孔清華,李光永,王永紅,等. 不同施肥條件和滴灌方式對(duì)青椒生長(zhǎng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7):21-25.
Kong Qinghua, Li Guangyong, Wang Yonghong, et al. Influences of subsurface drip irrigation and surface drip irrigation on bell pepper growth under different fertilization conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 21-25. (in Chinese with English abstract)
[10] 溫維亮,郭新宇,趙春江,等. 作物根系構(gòu)型三維探測(cè)與重建方法研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(3):436-448.
Wen Weiliang, Guo Xinyu, Zhao Chunjiang, et al. Crop roots configuration and visualization: A Review[J]. Scientia Agricultura Sinica, 2015, 48(3): 436-448. (in Chinese with English abstract)
[11] Koenig C, Wey H, Binkley T. Precision of the XCT 3000 and comparison of densitometric measurements in distal radius scans between XCT 3000 and XCT 2000 peripheral quantitative computed tomography scanners[J]. Journal of Clinical Densitometry the Official Journal of the International Society for Clinical Densitometry, 2008, 11(4): 575-580.
[12] Yang Xiaofan, Varga Tamas, Liu Chongxuan, et al. What can we learn from in-soil imaging of a live plant: X-ray Computed tomography and 3D numerical simulation of root-soil system[J]. Rhizosphere, 2017, 3(2): 259-262.
[13] 周學(xué)成,羅錫文. 基于XCT技術(shù)的原位根系三維可視化研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(增刊1):202-205. Zhou Xuecheng, Luo Xiwen. 3-D Visualization of root system in situ based on XCT technology[J].Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(Supp.1): 202-205. (in Chinese with English abstract)
[14] Bates G H. A device for the observation of root growth in the soil[J]. Nature, 1937, 139(3527): 966-967.
[15] Sanders J L, Brown D A. A new fiber optic technique for measuring root growth of soybeans under field conditions[J]. Agronomy Journal, 1978, 70(6): 1073-1076.
[16] Sumioitoh. In situ measurement of rooting density by micro-rhizotron[J]. Soil Science & Plant Nutrition, 1985, 31(4): 653-656.
[17] 白文明,程維信,李凌浩. 微根窗技術(shù)及其在植物根系研究中的應(yīng)用[J]. 生態(tài)學(xué)報(bào),2005,25(11):3076-3081.
Bai Wenming, Cheng Xinxin, Li Linghao. Applications of minirhizotron techniques to root ecology research[J]. Acta Ecologica Sinica, 2005, 25(11): 3076-3081. (in Chinese with English abstract)
[18] 吳長(zhǎng)高,羅錫文. 計(jì)算機(jī)視覺(jué)技術(shù)在根系形態(tài)和構(gòu)型分析中的應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2000,31(3):63-66.
Wu Changgao, Luo Xiwen. Appl ication of computer vision technology to analysis of root pattern and architecture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(3): 63-66. (in Chinese with English abstract)
[19] Upchurch D R, Ritchie J T. Root observations using a video recording system in mini-rhizotrons[J]. Agronomy Journal, 1983, 75(6): 1009-1015.
[20] 廖榮偉,劉晶淼,安順清,等. 基于微根管技術(shù)的玉米根系生長(zhǎng)監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(10):156-161.
Liao Rongwei, Liu Jingmiao, An Shunqing, et al. Monitor of corn root growth in soil based on minirhizotron technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 156-161. (in Chinese with English abstract)
[21] 張志山,李新榮,張景光,等. 用Minirhizotrons觀測(cè)檸條根系生長(zhǎng)動(dòng)態(tài)[J]. 植物生態(tài)學(xué)報(bào),2006,30(3):457-464.
Zhang Zhishan, Li Xinrong, Zhang Jingguang, et al. Root growth dynamics ofusing minirhizotrons[J]. Journal of Plant Ecology (formerly Acta Phytoecologica Sinica), 2006, 30(3): 457-464. (in Chinese with English abstract)
[22] Joslin J D, Wolfe M H. Disturbances during minirhizotron installation can affect root observation data[J]. Soil Science
Society of America Journal, 1999, 63(1): 218-221.
[23] Phillips D L, Johnson M G, Tingey D T, et al. Minirhizotron installation in sandy, rocky soils with minimal soil disturbance[J]. Soil Science Society of America Journal, 2000, 64(2): 761-764.
[24] Majdi H. Root sampling methods-applications and limitations of the minirhizotron technique [J]. Plant & Soil, 1996, 185(2): 255-258.
[25] Withington J M, Elkin A D, Bulaj B, et al. The impact of material used for minirhizotron tubes for root research[J]. New Phytologist, 2003, 160(3): 533-544.
[26] Merrill S D, Upchurch D R. Converting root numbers observed at minirhizotrons to equivalent root length density[J]. Soil Science Society of America Journal, 1994, 58(4): 289-302.
[27] Taylor H M, Ruck M G, Klepper B, et al. Measurement of soil-grown roots in a rhizotron[J]. Agronomy Journal, 1970, 62(6): 807-809.
[28] 孫海英. 圖像高斯噪聲及椒鹽噪聲去噪算法研究[D]. 上海:復(fù)旦大學(xué),2012.
Sun Haiying. Research on denoising algorithm of image gao si noise and salt and pepper noise[D]. Shanghai: Fudan University, 2012. (in Chinese with English abstract)
[29] Shih F Y, Cheng S. Automatic seeded region growing for color image segmentation[J]. Image & Vision Computing, 2005, 23(10): 877-886.
[30] 王博,蘇玉民,萬(wàn)磊,等. 基于梯度顯著性的水面無(wú)人艇的海天線檢測(cè)方法[J]. 光學(xué)學(xué)報(bào),2016(5):58-67.
Wang Bo, Su Yumin, Wan Lei, et al. Sea sky line detection method of unmanned surface vehicle based on gradient saliency[J]. Acta Optica Sinica, 2016(5): 58-67. (in Chinese with English abstract)
[31] 周學(xué)成,羅錫文. 采用區(qū)域生長(zhǎng)法分割根系CT圖像的改進(jìn)算法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(12):122-125.
Zhou Xuecheng, Luo Xiwen. An improved region growing algorithm for the CT images segmentation of plant root[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(12): 122-125. (in Chinese with English abstract)
[32] 刁智華,吳貝貝,魏玉泉,等. 利用最大圓盤(pán)提取作物行骨架的改進(jìn)算法[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2016,37(7):141-144.
Diao Zhihua, Wu Beibei, Wei Yuquan, et al. Improved algorithm of crop rows skeleton extraction based on maximum disc[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 141-144. (in Chinese with English abstract)
[33] 周南,崔屹. 數(shù)學(xué)形態(tài)學(xué)骨架化及重建[J]. 中國(guó)圖象圖形學(xué)報(bào),1997,2(10):712-716.
Zhou Nan, Cui Yi. Skeletonization and reconstruction via mathematical morphology[J]. Journal of Image and Graphics, 1997, 2(10): 712-716. (in Chinese with English abstract)
Design and validation of in situ micro root observation system for tomato and pepper
Lu Wei1, Wang Xiaochan1,2※, Wang fengjie1
(1.,210031,; 2.,210031,)
Being the principle organ to absorb water and nutrition, root system plays a very important role in the growth of plants. Since roots usually grow in soil that is invisible to us, it is very difficult to detect root morphology in real time or to study on it over a long period of time, especially for shallow root plants. In order to acquire root morphological characteristics in real time, a kind of in situ micro root observation system was proposed and designed. The system was composed mainly of micro camera, optical amplifiers and adjustable lighting device, and its whole volume was only 1.5cm3. The captured images were sent to the terminal (mobile-phone or personal computer) via the wireless module for later image processing. Images of root were always with low quality affected by complicated soil environment (soil pores, obstacles, and moisture), which could not be eliminated by simple image processing method such as median filter and mean filter algorithm. In order to filter out these interferes to the image, method of regional growth was used to extract roots image. First, the image was corroded and expanded by 3×3 structural element to acquire the start point and the end point of the algorithm, where the corrosion image was determined as the start point, and the expansion image as the end point. Then the process of regional growth was carried out by similarity criteria(grayscale difference less than 20), and regions including soil pore structure, moisture and other obstacles were formed. These regions were marked and numbered, and distinguished by the threshold (the threshold 50 pixel was determined by trial and error). At last, root regions were kept, and soil pore structure, moisture and other obstacles were deleted by filtering. The kept root regions were further processed by skeleton extraction based on maximum circle to calculate root length, diameter and other parameters. Non-in-situ test was carried out to test the accuracy of the designed system. The result showed that the system was able to capture images with high accuracy (maximum absolute errors of root length and average diameter were less than 1.5 mm and 0.09 mm respectively , and maximum relative errors of root length and average diameter were less than5.3% and 6.7% respectively). In situ experiment was then carried out by arranging micro root observation systems in different positions and depths into soil around root system. Calibration of micro root observation system was made by comparing with soil samples. The results of in-situ monitoring showed that the micro root observation system can dynamically observe the growth of shallow root in multi points. The determination coefficient of average diameter was more than 0.87 in all soil depths (0-10, >10-20, >20-30 and >30-40 cm; relative error less than 10.4%); and the determination coefficient of root length density within 30 cm was over 0.81 (relative error less than 13.5%). This micro root observation system could dynamically acquire root morphology in multiple spots fast and accurate, which would provide reliable data for plant nutrition, plant physiology and ecology.
morphology; algorithm; measurements; root morphology; micro root observation system; multi-point acquisition; real-time acquisition; regional growth algorithm
魯 偉,汪小旵,王鳳杰. 番茄辣椒微型根系形態(tài)原位采集系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):12-18. doi:10.11975/j.issn.1002-6819.2018.22.002 http://www.tcsae.org
Lu Wei, Wang Xiaochan, Wang Fengjie. Design and validation of in situ micro root observation system for tomato and pepper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 12-18. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.002 http://www.tcsae.org
2018-06-16
2018-10-20
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200602-4);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(16)1002)
魯 偉,博士生,主要從事農(nóng)業(yè)智能檢測(cè)與控制技術(shù)研究。 Email:lwreed@126.com
汪小旵,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)生物環(huán)境模擬與控制研究。Email:wangxiaochan@njau.edu.cn
10.11975/j.issn.1002-6819.2018.22.002
S237
A
1002-6819(2018)-22-0012-07