亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        羊肚菌子實(shí)體發(fā)育生物學(xué)(下)——生物學(xué)和非生物學(xué)因子對(duì)菌絲培養(yǎng)和子實(shí)體形成的影響

        2018-10-27 09:15:24趙永昌柴紅梅陳衛(wèi)民趙子悅孔令艦
        食藥用菌 2018年5期
        關(guān)鍵詞:研究

        趙永昌 柴紅梅 陳衛(wèi)民 趙子悅 孔令艦

        ?

        羊肚菌子實(shí)體發(fā)育生物學(xué)(下)——生物學(xué)和非生物學(xué)因子對(duì)菌絲培養(yǎng)和子實(shí)體形成的影響

        趙永昌 柴紅梅 陳衛(wèi)民 趙子悅 孔令艦

        (云南省農(nóng)業(yè)科學(xué)院生物技術(shù)與種質(zhì)資源研究所,云南 昆明 650221)

        3 羊肚菌發(fā)育生物學(xué)

        羊肚菌的生活史是研究的難點(diǎn),目前有提出兩種生活史[114, 115],都認(rèn)為形成菌核和分生孢子是關(guān)鍵環(huán)節(jié)。儲(chǔ)存營(yíng)養(yǎng)的菌核在子囊果發(fā)育過程中作用較大,既可以萌發(fā)為生殖菌絲,又可以直接產(chǎn)生子囊果。羊肚菌的菌核為假菌核,不同的可栽培出菇的菌株產(chǎn)菌核能力差別較大,甚至有菌種階段完全不產(chǎn)菌核的菌株也能很好地出菇;另一方面尚無菌核萌發(fā)成原基的直接證據(jù)。分生孢子的爭(zhēng)議則較大,主要是從自然基質(zhì)得到的分生孢子不能萌發(fā),且羊肚菌產(chǎn)量與分生孢子產(chǎn)生量沒有直接相關(guān)性。使用覆膜技術(shù)種植羊肚菌有的分生孢子非常少但出菇不受影響,用圓葉楊種植也幾乎未發(fā)現(xiàn)有分生孢子形成。因此,羊肚菌的發(fā)育生物學(xué)基礎(chǔ)研究可能是解決羊肚菌穩(wěn)產(chǎn)、育種的關(guān)鍵,而實(shí)現(xiàn)室內(nèi)穩(wěn)定出菇則是研究的基礎(chǔ)。解決羊肚菌培養(yǎng)過程中遺傳的多變性是重中之重。

        3.1 子囊孢子形成與萌發(fā)

        子囊孢子的形成與萌發(fā)是羊肚菌發(fā)育的關(guān)鍵問題,羊肚菌子囊孢子具有多核現(xiàn)象,有的多達(dá)數(shù)十個(gè)核,這些核是同核體還是異核體尚不清楚。雖然有不少學(xué)者試圖對(duì)羊肚菌子囊孢子的形成進(jìn)行深入研究,但是由于未實(shí)現(xiàn)室內(nèi)栽培,難以找到不同發(fā)育時(shí)期的子囊孢子個(gè)體,導(dǎo)致研究困難。陳立佼借助梯棱羊肚菌的大田栽培,通過細(xì)胞核染色技術(shù)對(duì)子囊孢子的形成進(jìn)行研究,總結(jié)出子囊孢子形成的過程模式[116],說明羊肚菌子囊孢子的多核是孢子形成后的有絲分裂導(dǎo)致的,多核子囊孢子應(yīng)是同核體,這方面的結(jié)果得到交配型基因鑒定證明。Chai等證明-20和子囊孢子群都是同核體,具有1-1和1-2交配型基因子囊孢子的比例與1?1無偏差,所以M-20和是異宗結(jié)合的[117]。有研究認(rèn)為栽培條件下子囊果形成孢子比較晚,自然生長(zhǎng)的子囊果傾斜或倒伏狀態(tài)時(shí)才會(huì)形成孢子,此時(shí)子囊內(nèi)除孢子外基本呈透明狀態(tài),不存在其他細(xì)胞器或大分子。也有不形成孢子的共生類型的羊肚菌菌株[118]。

        在室內(nèi)條件下,羊肚菌的子囊孢子較易萌發(fā),在濕度適宜時(shí)3小時(shí)就可見到芽管,因子囊孢子的多核性其可能從1-5端長(zhǎng)出芽管萌發(fā);在野外,影響子囊孢子萌發(fā)的因素很多,溫度、濕度、營(yíng)養(yǎng)條件都可能影響。研究表明,子囊孢子萌發(fā)對(duì)溫度比較敏感,室內(nèi)溫度低至2 ℃都能萌發(fā),但將孢子包埋在玻璃紙里放置在出菇點(diǎn)時(shí),土壤溫度超過10 ℃都不萌發(fā)。當(dāng)土壤持續(xù)升溫到15 ℃時(shí)會(huì)抑制子囊孢子的萌發(fā),地表的孢子一年后將失去活力。將經(jīng)滅菌的黑麥埋入地中,土壤溫度保持在10 ℃以下時(shí),無論孢子還是菌核都容易在其上定植[119]。一定濃度范圍的MgSO4、KNO3、CaCl2、NaNO3對(duì)孢子萌發(fā)和菌絲生長(zhǎng)有促進(jìn)作用[120]。子囊孢子萌發(fā)的菌絲一般仍為多核體細(xì)胞,同一子囊孢子萌發(fā)得到的初生菌絲不發(fā)生融合,也未觀察到不同子囊孢子萌發(fā)的菌絲之間發(fā)生融合[118, 121]。有研究表明,單孢菌株配對(duì)后能形成異核體,這與菌柄分離的菌株為異核體類似,間接表明其為異宗結(jié)合[114, 122, 123]。

        3.2 多變的培養(yǎng)形態(tài)

        羊肚菌的培養(yǎng)形態(tài)變異之大是目前大型真菌中少有的,相同培養(yǎng)條件下不同種或同種不同菌株在菌核形成的時(shí)間、形態(tài)、多少和大小等方面均有不同,在不同的培養(yǎng)條件下同一菌株菌核的產(chǎn)生和形態(tài)也不同,培養(yǎng)過程中的變化不僅類型多且重復(fù)性較差。雖然培養(yǎng)基組成、生長(zhǎng)條件顯著影響羊肚菌生長(zhǎng)速度[124~129],但引起這些變化的原因是遺傳性的還是純粹生理性的尚不清楚。羊肚菌菌絲存在多核現(xiàn)象,這種多核仍舊是同核體。同核體菌株培養(yǎng)過程中變化穩(wěn)定,不存在由于核丟失而產(chǎn)生變化。

        陳立佼等從單孢群體出發(fā)以產(chǎn)菌核能力為定性特征研究了培養(yǎng)特性變化[130],單孢菌株按培養(yǎng)特征可分為9類(表3),同等條件下每一菌株的培養(yǎng)特性保持穩(wěn)定,在綜合馬鈴薯葡萄糖培養(yǎng)基(CPDA)、葡萄糖硝酸鈉瓊脂培養(yǎng)基(GN)、酵母膏胨葡萄糖瓊脂培養(yǎng)基(YPD)進(jìn)行轉(zhuǎn)接培養(yǎng)時(shí),可成功地將產(chǎn)菌核菌株轉(zhuǎn)化為不產(chǎn)菌核菌株。同一子實(shí)體及不同子實(shí)體產(chǎn)菌核單孢菌株產(chǎn)核數(shù)量及分布,變化很大,對(duì)峙培養(yǎng)后單孢之間性狀會(huì)發(fā)生較大變化,包括菌核形態(tài)、菌絲形態(tài)、生長(zhǎng)勢(shì),特別是產(chǎn)菌核能力會(huì)消失和發(fā)生轉(zhuǎn)移:①同一子實(shí)體單孢菌株之間存在拮抗作用,對(duì)峙培養(yǎng)時(shí)相互接觸部位會(huì)形成交合線,出現(xiàn)濃密的生長(zhǎng)區(qū),將不產(chǎn)菌核的單孢菌株與同一子實(shí)體及不同子實(shí)體產(chǎn)菌核單孢菌株進(jìn)行對(duì)峙培養(yǎng),即使來自相同子實(shí)體的單孢菌株之間也會(huì)出現(xiàn)拮抗作用。拮抗線兩側(cè)的菌絲和親本菌株相比形態(tài)和產(chǎn)核情況有很大變化,在各對(duì)峙組合中不同親本的組合拮抗線情況不同。②在對(duì)峙組合中由于拮抗作用,兩親本的生長(zhǎng)勢(shì)不同,有拮抗的組合中產(chǎn)菌核菌株長(zhǎng)勢(shì)明顯占優(yōu),只是有的長(zhǎng)勢(shì)處于弱勢(shì),可能是由于產(chǎn)菌核菌株菌絲輻射狀快速生長(zhǎng),使其在平板上能迅速占據(jù)更多培養(yǎng)資源。③產(chǎn)菌核水平變化,拮抗作用對(duì)產(chǎn)菌核能力影響較大,有產(chǎn)核能力減弱的,有完全失去產(chǎn)菌核能力的,也有產(chǎn)菌核能力互換的(在組合中一個(gè)菌株將產(chǎn)菌核能力“轉(zhuǎn)染”,原來產(chǎn)菌核的菌株仍然產(chǎn)菌核,不產(chǎn)菌核的菌株能產(chǎn)菌核),可推測(cè)在對(duì)峙培養(yǎng)過程中與菌核形成相關(guān)的遺傳因子可在細(xì)胞間遷移,或是菌核產(chǎn)生與某種分泌物有關(guān)。該物質(zhì)有一定的趨向性,各菌株對(duì)其吸引能力的強(qiáng)弱決定了它的分布,從而影響了菌核的產(chǎn)生和分布。

        表3 基于YPD上的培養(yǎng)特征的羊肚菌單孢菌株分組[130]

        3.3 菌核形成與變化

        3.3.1 純培養(yǎng)條件下菌核變化

        菌核是一種由菌絲組織化形成的具有抵御逆境作用的致密菌絲結(jié)構(gòu),逆境是菌核產(chǎn)生的重要基礎(chǔ)與條件;然而羊肚菌在營(yíng)養(yǎng)豐富的環(huán)境中也能產(chǎn)生菌核。說明營(yíng)養(yǎng)因素既可以刺激也可能抑制羊肚菌菌核的形成。盡管羊肚菌栽培取得了進(jìn)展,但仍具有挑戰(zhàn)性,因?yàn)榧词拱凑諏@膊荒芡耆耘喑龉?。多?shù)研究認(rèn)為,要獲得栽培成功,必須獲得菌核,不少人曾經(jīng)將精力集中在菌核產(chǎn)生研究上。對(duì)于羊肚菌菌核的形態(tài)和形成過程有不同看法,Alvarado-Castillo等[131]的分類比較合理,包括七個(gè)階段:①菌絲生長(zhǎng),②初級(jí)菌絲生長(zhǎng)和分枝,③次級(jí)菌絲纏繞,④大量菌絲聚集,⑤菌絲聚合生長(zhǎng),⑥菌核形成,⑦菌核生長(zhǎng)與成熟,成熟伴隨厚垣孢子和分生孢子形成。

        影響菌核形成的因素較多,包括環(huán)境因子和營(yíng)養(yǎng)因子[71, 132],營(yíng)養(yǎng)因子涉及種類和濃度。在不同蔗糖濃度的培養(yǎng)基上,菌絲生長(zhǎng)速度、菌核顏色差別較大,且形成菌核的菌絲體外表會(huì)有一些具備儲(chǔ)蓄能力的氣泡[133, 134]。氮源的影響高于碳源[135],在含核糖、半乳糖、山梨糖和甘露醇的培養(yǎng)基上較難形成菌核,而NaNO3和酵母提取物有利于分散型菌核形成[136, 137]。復(fù)合營(yíng)養(yǎng)物如玉米、小麥、燕麥和黑麥等,對(duì)菌核的形成有促進(jìn)作用[138]。而饑餓可以誘導(dǎo)和增加假菌核的形成,假菌核中丙二醛含量增加與脂肪的過氧化和氧化壓力有關(guān)[139]。影響菌核形成的非營(yíng)養(yǎng)因素包括光照、溫度、有機(jī)酸、環(huán)境腐敗產(chǎn)物的積累、酚類化合物、多酚氧化酶活性、機(jī)械屏障、疏基修飾因子,以及滲透壓等,能增加或減弱氧化應(yīng)激的生長(zhǎng)因子可能都有促進(jìn)或抑制菌核分化的作用。

        3.3.2 菌核生理變化

        木質(zhì)素降解酶是大型真菌最重要的酶之一,其參與人工栽培的子實(shí)體形成。在羊肚菌生活史中,菌核是羊肚菌從菌絲到子實(shí)體的中間態(tài)。研究表明,在不同培養(yǎng)基上,羊肚菌菌核形成過程中木質(zhì)素降解酶的活性有較大變化,不同培養(yǎng)基上都產(chǎn)生漆酶(LAC)、木質(zhì)素過氧化物酶(LiP)和錳過氧化物酶(MnP)等木質(zhì)素降解酶,在麥粒培養(yǎng)基上LAC活性最高,而在谷殼培養(yǎng)基上則是MnP和LiP最高;在土壤復(fù)合培養(yǎng)基上,從菌核形成到成熟都能產(chǎn)生漆酶,都能測(cè)到漆酶活性[140, 141]。由于基質(zhì)對(duì)菌核形成及相關(guān)酶分泌有誘導(dǎo)作用,所以羊肚菌栽培過程中栽培種配方的選擇對(duì)菌核形成及后期胞外酶的表達(dá)有決定性作用。

        3.3.3 菌核形成過程中基因表達(dá)變化

        羊肚菌菌核形成能力的差異,表面上受環(huán)境因素影響,實(shí)際上是由菌株本身的遺傳多樣性決定的。Chen等[142]利用mRNA差異顯示技術(shù)對(duì)同一子實(shí)體分離的在相同培養(yǎng)條件下得到的產(chǎn)菌核和不產(chǎn)菌核的羊肚菌單孢進(jìn)行研究,得到了陽性的假設(shè)蛋白及未知的差異片段58個(gè),其中26條片段為已知蛋白功能片段、9條與已知物種的假設(shè)蛋白編碼片段相似,23條為未找到假設(shè)蛋白片段。這些片段對(duì)應(yīng)的基因可能控制著羊肚菌產(chǎn)菌核與否或能力高低,為在遺傳和基因調(diào)控水平研究羊肚菌產(chǎn)菌核的機(jī)理提供了重要的遺傳信息。在確定功能的基因中,氨基丁酸通透酶片段、外膜家族蛋白相關(guān)蛋白片段和人類角蛋白結(jié)合蛋白片段都與羊肚菌逆境應(yīng)激和結(jié)構(gòu)適應(yīng)性變化有關(guān),即得到的差異片段與植物中的脂質(zhì)代謝、氮代謝、逆境應(yīng)激及細(xì)胞周期調(diào)控有關(guān)。這些片段可能是羊肚菌的氧化應(yīng)激反應(yīng)的上游誘導(dǎo)因子或下游產(chǎn)物,需要得到片段全長(zhǎng)并進(jìn)行更深入的功能研究才能確定。表明羊肚菌菌核形成能力可能更多地與菌株對(duì)外界環(huán)境適應(yīng)性的遺傳多樣性有關(guān)。

        3.3.4 菌核與子實(shí)體形成能力之間的關(guān)系

        雖然最早的研究認(rèn)為,菌核是羊肚菌生活史中最重要的階段[9],易出菇的火燒地在兩年內(nèi)觀測(cè)到的羊肚菌菌核比非火燒地多得多[143]。但對(duì)羊肚菌的生活環(huán)境調(diào)查研究發(fā)現(xiàn),菌核并不是所有種的羊肚菌生活史的必須階段,不同種在生活史的進(jìn)化上有區(qū)別[71]。目前實(shí)驗(yàn)證明,菌核的有無與出菇與否及產(chǎn)量高低之間沒有必然的聯(lián)系,有菌核產(chǎn)生的菌株不一定出菇,很少形成菌核的菌株同樣也可以出菇[144]。雖然在栽培實(shí)踐中,多數(shù)種植者認(rèn)為需要栽培種長(zhǎng)滿菌袋(瓶)并形成菌核后才可以播種,但不少菌絲長(zhǎng)滿后就播種的出菇時(shí)間縮短,且產(chǎn)量穩(wěn)定。

        3.4 分生孢子

        羊肚菌栽培過程中會(huì)形成分生孢子,Ower[9]也有提及。分生孢子在目前假設(shè)的羊肚菌生活史中是重要的階段。研究表明,羊肚菌分生孢子多數(shù)為單核[145],且產(chǎn)生與否與出菇與否無直接關(guān)系[144]。但也有認(rèn)為分生孢子類似于植物花粉的作用,對(duì)出菇有重要的意義[146]。

        圖2 羊肚菌產(chǎn)生分生孢子(左)與不產(chǎn)生分生孢子(右)

        明確羊肚菌分生孢子的生物學(xué)功能,首先須解決無菌培養(yǎng)條件下分生孢子的形成和分生孢子的萌發(fā)兩個(gè)難題。分生孢子可能是一種休眠體,其萌發(fā)需要特定的環(huán)境條件,目前尚無在栽培過程中觀察到分生孢子萌發(fā)的報(bào)道。根據(jù)我們研究,在滅菌基質(zhì)上生長(zhǎng)的羊肚菌可以形成分生孢子(圖2):①分生孢子形成與器皿無關(guān),不同的器皿培養(yǎng)都能形成分生孢子;②分生孢子形成與接種量密切相關(guān),當(dāng)接種量大時(shí)不形成分生孢子;③分生孢子形成與溫度相關(guān),溫度超過24 ℃,形成的分生孢子較少,而10~24 ℃間的差別不明顯,但形成時(shí)間有差異;④在最優(yōu)條件下,不同菌株分生孢子的產(chǎn)生量差別較大,同一物種分生孢子形成數(shù)量多孢菌株>單孢菌株>組織分離菌株;⑤分生孢子形成與土壤基質(zhì)的顆粒度密切相關(guān),顆粒度小分生孢子數(shù)量少。

        A:分散型原基;B:叢生型原基;C:分散性菌核周邊的原基;D:大菌核周邊的原基。

        3.5 原基形成分化與子囊果形成

        Ower[9]首次較為完整地描述了羊肚菌子實(shí)體,之后不斷有人對(duì)羊肚菌發(fā)育過程進(jìn)行描述[69,70,144],基本特征是在基質(zhì)表面上從一個(gè)點(diǎn)逐步形成菌絲團(tuán),菌絲團(tuán)上下組織化分化出菌蓋和菌柄,菌柄往下生長(zhǎng)吸收營(yíng)養(yǎng),菌蓋往上發(fā)育逐步成熟。與其他菇類原基下面是密集的菌絲不同,大田中經(jīng)常觀察到羊肚菌原基是由一個(gè)小點(diǎn)形成的,羊肚菌子實(shí)體發(fā)育的營(yíng)養(yǎng)是如何供給輸送的尚不清楚。我們研究發(fā)現(xiàn)光溫濕可控條件下原基可以形成(圖3):①單一交配型的菌株都不能形成原基,不同物種多孢分離菌株和組織分離菌株在原基形成的形態(tài)和數(shù)量上有差異,但無規(guī)律;②原基形成的數(shù)量與分生孢子形成相關(guān),沒有分生孢子(包括接種量大、24 ℃培養(yǎng))的都未形成原基;③雖然很難看到原基由菌核分化而來,但菌核多的原基數(shù)量多且密。雖然是初步結(jié)果,且在原基的分化和幼菇發(fā)育控制上尚需進(jìn)一步研究,但結(jié)合大田的種植結(jié)果可以為羊肚菌優(yōu)良菌株鑒定體系的建立奠定基礎(chǔ)。

        圖4 羊肚菌栽培兩種不同的出菇方式

        3.6 出菇方式與富營(yíng)養(yǎng)栽培

        大田栽培羊肚菌出菇方式有見原基和不見原基兩種(圖4),有以下特點(diǎn):①與菌株特性有關(guān),多數(shù)菌株是見原基出菇,有的則易不見原基出菇,也有兩種出菇形式都常見;②與土壤的酸堿度、顆粒大小、濕度等相關(guān);③與栽培方式如覆土厚度相關(guān);④不見原基出菇的成菇率高,但其發(fā)生率更低;⑤同一菌株同一田塊兩種出菇方式都會(huì)發(fā)生;⑥不見原基出菇往往伴隨假根的形成(圖5)。

        圖5 不見原基出菇形成的假根

        圖6 營(yíng)養(yǎng)袋內(nèi)形成的原基

        兩種出菇方式的機(jī)理尚不明確,對(duì)其研究有利于提高成菇率,可控制出菇的密度和整齊度。實(shí)現(xiàn)對(duì)不見原基出菇方式的控制更有利于實(shí)現(xiàn)工廠化栽培。不見原基出菇形成的假根應(yīng)該是環(huán)境因素引起而不是物種的特點(diǎn),不應(yīng)作為分類依據(jù)。沙質(zhì)土壤滴灌或噴灌易導(dǎo)致土壤微移動(dòng),這種土壤移動(dòng)是“見原基出菇”方式中原基因移動(dòng)而懸空死亡的重要原因,提高成菇率可在催菇后進(jìn)行噴霧保濕。

        工廠化栽培的難點(diǎn)是通過富營(yíng)養(yǎng)栽培提高單位面積的產(chǎn)量。但富營(yíng)養(yǎng)情況下較難出菇,在栽培中曾發(fā)現(xiàn)營(yíng)養(yǎng)袋內(nèi)形成大量原基(圖6),提示條件適宜的情況下富營(yíng)養(yǎng)栽培是可行的。

        致謝 本文圖5、圖6由四川省平昌縣金源生物科技有限公司孫勝先生提供,特此感謝。

        [1] Sheikh PA, Dar GH, Dar WA, et al. Chemical Composition and Anti-oxidant activities of Some Edible Mushrooms of Western Himalayas of India[J]. International Journal of Plant Research, 2015, 28 (2): 124-133.

        [2] Vieira V, Fernandes ?, Barros L, et al. WildPers. from different origins: a comparative study of nutritional and bioactive properties[J]. Journal of the Science of Food and Agriculture, 2016, 15, 96(1): 90-98.

        [3] Nitha B, Fijesh PV, Janardhanan KK. Hepatoprotective activity of cultured mycelium of Morel mushroom,[J]. Experimental and Toxicologic Pathology, 2013, 65(1-2): 105-112.

        [4] Hatanaka SI. A new amino acid isolated fromand related species[J]. Phytoehemistry, 1969, 8(7): 1305-1308.

        [5] Tietel Z, Masaphy S. True morels (Morchella)—nutritional and phytochemical composition, health benefits and flavor: A review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(11): 1888-1901.

        [6] Tietel Z, Masaphy S. Aroma-volatile profile of black morel () grown in Israel[J]. Journal the Science of Food and Agriculture, 2018, 8(1): 346-353.

        [7] Shameem N, Kamili AN, Ahmad M, et al. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya[J]. Microbial Pathogenesis, 2017, 105: 356-360.

        [8] Su CA, Xu XY, Liu DY, et al. Isolation and characterization of exopolysaccharide with immunomodulatory activity from fermentation broth of[J]. Daru J Pharmaceutical Sciences, 2013, 21(1): 1-6.

        [9] Ower RD. Notes on the development of the morel ascocarp:[J]. Mycologia, 1982, 74(1): 142-144.

        [10] 趙永昌, 柴紅梅, 李樹紅, 等. 云南羊肚菌居群多樣性研究[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2008, 21(2): 444-447.

        [11] Yoon CS, Gessner RV, Romano MA. Population genetics and systematics of the Morchella esculenta complex[J]. Mycologia, 1990, 82(2): 227-235.

        [12] Wipf D, Bedell JP, Munch JC, et al. Polymorphism in morels: isozyme electrophoretic analysis[J]. Canadian Journal of Microbiology, 1996, 42: 819-827.

        [13] Royse DJ, May B. Interspecific allozyme variation amongspp. and its inferences for systematics within the Genus [J]. Biochemical Systematics and Ecology, 1990, 18(7/8): 475-479.

        [14] Wipf D, Munch J C, Botton B, et al. DNA Polymorphism in Morels: Complete Sequences of the Internal Transcribed Spacer of Genes Coding for rRNA in(Yellow Morel) and(Black Morel)[J]. Applied and Environmental Micriobiology, 1996, 62(9): 3541-3543.

        [15] Buscot F, Wipf D, Battista CD, et al. DNA polymorphism in morels: PCR/RFLP analysis of theribosomal DNA spacers and microsatellite-primed PCR[J]. Mycological Research, 1996, 100(1): 63-71.

        [16] Du XH, Zhao Q, Yang ZL, et al. How well do ITS rDNA sequences differentiate species of true morels ()?[J]. Mycologia, 2012, 104(6): 1351-1368.

        [17] Barseghyan GS, Kosakyan A, Isikhuemhen OS, et al. Phylogenetic analysis within genera(Ascomycota, Pezizales) and Macrolepiota (Basidiomycota, Agaricales) inferred from rDNA ITS and EF- α sequences, in Systematic and Evolution of Fungi. Misra J.K., Tewari J.P. & S.K. Deshmukh (Eds.), Science Publishers, Enfield, NH, USA, 2012: 159-205.

        [18] Wipf D, Fribourg A, Munch JC, et al. Diversity of the internal transcribed spacer of rDNA in morels[J]. Canadian Journal of Microbiology, 1999, 45: 769-778.

        [19] Gessner RV. Genetics and systematics of North American populations of[J]. Canandian Journal of Botany, 1995, 73(Suppl. 1): S967-S972.

        [20] Dalgleish HJ, Jacobson KM. A first assessment of genetic variation among Morchella esculenta (morel)populations[J]. Journal of Heredity, 2005, 96(4): 396-403.

        [21] Degreef J, Fischer E, Sharp C, et al. African(Ascomycota, Pezizales) revealed by analysis of nrDNA ITS[J]. Nova Hedwigia, 2009, 88: 11-22.

        [22] Ta?kin H, Büyükalaca S, Do?an HH, et al. A multigene molecular phylogenetic assessment of true morels ()in Turkey[J]. Fungal Genetics and Biology, 2010, 47: 672-682.

        [23] Du XH, Zhao Q, Yang ZL. A review on research advances, issues, and perspectives of morels[J]. Mycology, 2015, 6(2): 78-85.

        [24] Loizides M, Bellanger JM, Clowez P, et al. Combined phylogenetic and morphological studies of true morels (Pezizales, Ascomycota) in Cyprus reveal significant diversity, includingandspp. nov. [J]. Mycological Progress, 2016, 15(4): 39.

        [25] Richard F, Bellanger JM, Clowez P, et al. True morels (, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy[J]. Mycologia, 2015, 107(2): 359-382.

        [26] Pildain MB, Visnovsky SB, Barroetave?a C. Phylogenetic diversity of true morels (), the main edible non-timber product from native Patagonian forests of Argentina[J]. Fungal Biology, 2014, 118(9-10): 755-763.

        [27] O’Donnell K, Rooney AP, Mills GL, et al. Phylogeny and historical biogeography of true morels () reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic[J]. Fungal Genetics and Biology, 2011, 48(3): 252-265.

        [28] Ta?k?n H, Büyükalaca S, Hansen K, et al. Multilocus phylogenetic analysis of true morels () reveals high levels of endemics in Turkey relative to other regions of Europe[J]. Mycologia, 2012, 104(2): 446-461.

        [29] Du XH, Zhao Q, O’Donnell K, et al. Multigene molecular phylogenetics reveals true morels () especially species-rich in China[J]. Fungal Genetics and Biology, 2012, 49: 455-469.

        [30] Yatuiik I, Saar I, Kalamees K, et al. Epitypification ofsteppicola (Morchellaceae, Pezizales), a morphologically, phylogenetically and biogeographically distinct member of the Esculenta Clade from central Eurasia[J]. Phytotaxa, 2016, 284(1):31-40.

        [31] Voitk A, Beug MW, O'Donnell K, et al. Two new species of true morels from Newfoundland and Labrador: cosmopolitanand parochial[J]. Mycologia, 2016, 108(1): 31-37.

        [32] Ta?k?n H, Do?an H, Büyükalaca S, et al., an autumn species from Turkey[J]. Mycotaxon, 2015, 130(1): 215-221.

        [33] Ta?k?n H, Do?an H, Büyükalaca S, et al. Four new morel () species in thesubclade () from Turkey[J]. Mycotaxon, 2016, 131(2): 467-482.

        [34] Clowez P, Alvarado P, Becerra M, et al.sp. nov. (Ascomycota, Pezizales): A new but widespread morel in Spain[J]. Boletín de la Sociedad Micológica de Madrid, 2014, 38 (2): 251-260.

        [35] Elliott TF, Bougher NL, O’Donnell K, et al. Morchella australiana sp. nov., an apparent Australian endemic from New South Wales and Victoria[J]. Mycologia, 2014, 106(1): 113-118.

        [36] Pinzón-Osorio CA, Jonás Pinzón-Osorio J. First report of family Morchellaceae (Ascomycota: Pezizales) for Colombia[J]. Revista peruana de biología, 2017, 24(1): 105-110.

        [37] Loizides M, Alvarado P, Clowez P, et al, andor:a study of three poorly known Mediterranean morels,with nomenclatural updates in section Distantes[J]. Mycol Progress, 2015, 14(3): 1-18.

        [38] Acar ?, Uzun Y. An Interesting Half-Free Morel Record for Turkish Mycobiota (M. Kuo, M.C. Carter & J.D.Moore)[J]. Ekim, 2017, 8(2): 125-128.

        [39] Baran J, Boroń P. Two species of true morels (the genus, Ascomycota) recorded in the Ojców National Park (south Poland)[J]. Acta Mycologica, 2017, 52(1): 1094.

        [40] 宋曉英, 石宗水, 朱文華, 等. 羊肚菌在泰山山系周圍分布及生態(tài)習(xí)性的調(diào)查研究[J]. 山東林業(yè)科技, 2006, 4: 51-52.

        [41] Emery MR, Barron ES. Using Local Ecological Knowledge to Assess Morel Decline in the U.S. Mid–Atlantic Region[J]. Economic Botany, 2010, 64(3): 205-216.

        [42] 趙永昌, 吳毅歆, 嚴(yán)世武. 羊肚菌發(fā)生區(qū)氣候土壤生態(tài)環(huán)境研究[J]. 中國(guó)食用菌, 1998, 17(3): 4-6.

        [43] Mato?ec N, Ku?an I, Mrvo? D, et al. The autumnal occurrence of the vernal genus(Ascomycota, Fungi)[J]. Natura Croatica, 2014, 23(1): 163-178.

        [44] Tiffany LH, Knaphus G, Huffman DM. Distribution and Ecology of the Morels and False Morels of Iowa[J]. Journal of the Iowa Academy of Science, 1998, 105(1): 1-15.

        [45] 王尚榮, 劉高峰, 趙貴紅. 菏澤黃河沖積平原羊肚菌資源及生態(tài)環(huán)境調(diào)查[J]. 中國(guó)食用菌, 2008, 27(6): 12-14.

        [46] Manikandan K, Sharma VP, Kumar S, et al. Edaphic conditions of natural sites of Morchella and Phellorinia[J]. Mushroom Research, 2011, 20(2): 117-120.

        [47] Winder RS, Keefer ME. Ecology of the 2004 morel harvest in the Rocky Mountain Forest District of British Columbia[J]. Botany, 2008, 86: 1152-1167.

        [48] Boddy L, Büntgen U, Egli S, et al. Climate variation effects on fungal fruiting[J]. Fungal Ecology, 2014, 10: 20-33.

        [49] Liu HM, Xu JJ, Li X, et al. Effects of microelemental fertilizers on yields, mineral element levels and nutritional compositions of the artificially cultivated[J]. Scientia Horticulturae, 2015, 189: 86-93.

        [50] Liu Q, Liu H, Chen C, et al. Effects of element complexes containing Fe, Zn and Mn on artificial morel's biological characteristics and soil bacterial community structures[J]. PLoS ONE, 2017, 12(3): e0174618.

        [51] Mohammad J, Khan S, Shah MT, et al. Essential and nonessential metal concentradions in morel mushroom() in Dir-Kohistan,Pakistan[J]. Pakistan Journal of Botany, 2015, 47(SI): 133-138.

        [52] 陳誠(chéng), 李強(qiáng), 黃文麗, 等. 羊肚菌白霉病的發(fā)生對(duì)土壤真菌群落結(jié)構(gòu)的影響[J]. 微生物學(xué)報(bào), 2017, 44(11): 2652-2659.

        [53] 沈洪, 汪虹, 趙永昌, 等. 采用變性梯度凝膠電泳研究羊肚菌土壤真菌群落結(jié)構(gòu)[J]. 食用菌學(xué)報(bào), 2009, 16(2): 6-9.

        [54] 沈洪. 云南羊肚菌分類及其生長(zhǎng)土壤微生物群落結(jié)構(gòu)分析[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2007.

        [55] 姚麗. 云南羊肚菌生長(zhǎng)土壤真菌群落結(jié)構(gòu)分析[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2009.

        [56] Singh SK, Kamal S, Tiwari M, et al. Myco-ecological studies of natural morel sites in Shivalik hills of Himachal Pradesh[J]. India Micologia Aplicada International, 2004, 16(1): 1-6.

        [57] Pion M, Spangenberg JE, Simon A, et al. Bacterial farming by the fungus[J]. Proceeding of the Royal Society B, 2013, 280: 20132242.

        [58] Larson AJ,Cansler CA, Cowdery SG, et al. Post-fire morel (Morchella) mushroom abundance, spatial structure, and harvest sustainability[J]. Forest Ecology and Management, 2016, 377: 16-25.

        [59] Reazin C, Morris S, Smith JE, et al. Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US ponderosa pine forest ecosystem[J]. Forest Ecology and Management, 2016, 377: 118-127.

        [60] Pilza D, Webera NS, Carterb MC, et al. Productivity and diversity of morel mushrooms in healthy, burned, and insect-damaged forests of northeastern Oregon[J]. Forest Ecology and Management, 2004, 198: 367-386.

        [61] Masaphy S, Zabari L. Observations on post-fire black morel ascocarp development in an Israeli burnt forest site and their preferred micro-sites[J]. Fungal Ecology, 2013, 6: 316-318.

        [62] McFarlane EM, Pilz D, Weber NS. High-elevation gray morels and otherspecies harvested as non-timber forest products in Idaho and Montana[J]. Mycologist, 2005, 19 (2): 62-68.

        [63] Li Q, Xiong C, Huang WL, et al. Controlled surface fire for improving yields of[J]. Mycol Progress, 2017, 16(11-12): 1057-1063.

        [64] Mihil JD, Bruhn JN, Bonello P. Spatial and temporal patterns of morel fruiting[J]. Mycological Research, 2007, 113(3): 339-346.

        [65] Masaphy S, Zabari L, Goldberg D. New long-season ecotype offrom northern Israel[J]. Micologia Aplicada International, 2009, 21(2): 45-55.

        [66] Golway M, Amir R, Goldberg D, et al.exhibiting a long fruiting season[J]. Mycological Research, 2000, 104 (8): 1000-1004.

        [67] Buscot F. Field observations on growth and development ofand Mitrophora similibera in relation to forest soil temperature[J]. Canadian Journal of Botany, 1989, 67: 589-593.

        [68] Ower RD, Mills GL, Malachowski JA. Cultivation of, 1985, US4757640 (A).

        [69] Masaphy S. External ultrastructure of fruit body initiation in[J]. Mycological Research, 2005, 109 (4): 508-512.

        [70] Masaphy S. Biotechnology of morel mushrooms: successful fruiting body formation and development in a soilless system[J]. Biotechnol Letters, 2010, 32: 1523-1527.

        [71] 趙永昌, 王芳, 吳毅歆. 羊肚菌菌核的形成研究[J]. 中國(guó)食用菌, 1998, 17(1): 5-7.

        [72] Buscot F, Roux J. Association between living roots and ascocarps of Morchella rotunda[J]. Transactions of the British Mycological Society, 1987, 89 (2): 249-252.

        [73] Buscot F. Mycorrhizal succession and morel biology. In Read DJ, Lewis DH, Fitter AH, Alexander IJ. (eds.). Mycorrhizas in Ecosystems. Wallingford, United Kingdom: CAB International, 1992: 220-224.

        [74] Dahlstrom JL, Smith JE, Weber NS. Mycorrhiza-like interaction bywith species of the Pinaceae in pure culture synthesis[J]. Mycorrhiza, 2000, 9 (5): 279-285.

        [75] Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages[J]. Mycorrhiza, 2010, 20 (4): 217-263.

        [76] Stefani FO, Sokolski S, Wurtz TL, et al.: a unique belowground structure and a new clade of morels[J].Mycologia, 2010, 102(5): 1082-1088.

        [77] Dayi B, Kyzy AD, Abduloglu Y, et al. Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of[J]Dyes and Pigments, 2018, 151: 15-21.

        [78] Papinutti L, Lechner B. Influence of the carbon source on the growth and lignocellulolytic enzyme production bystrains[J]. Journal of Industral Microbiology and Biotechnology, 2008, 35: 1715-1721.

        [79] Thakur N,Tripathi A, Sagar S, et al. Estimation of extracellular ligniolytic enzymes from wildsp. andsp[J]. Internaional Journal of Advanced Research, 2017, 5(10): 968-974.

        [80] 陳國(guó)梁, 張向前, 賀曉龍, 等. 五種羊肚菌液體培養(yǎng)過程胞外酶活性變化研究[J]. 北方園藝, 2010(10): 210- 213.

        [81] Kamal S, Singh S K, Tiwari M. Role of enzymes in initiating sexual cycle in different species of[J]. Indian Phytopathology, 2004, 57: 18-23.

        [82] Thankur M. Qualitative and quantitative screening of vegetative mycelium ofspecies for the activity of extracellular enzymes in North West Himalayas[J]. International Journal of Current Research in Biosciences and Plant Biology, 2016, 3(6): 123-128.

        [83] Tiwari M, Singh S K, Kamal S, et al. Extracellular enzyme polymorphism inand related species[J]. Journal of Mycology and Plant Pathology, 2004, 36: 64-68.

        [84] Chen LJ, Wang F, Zhao YC, et al. Extracellular enzyme activity of sclerotia-forming and non-sclerotia-formingstrains[J]. Agricultural Science & Technology, 2013, 14(10): 1392-1396, 1408.

        [85] Cz?vek P, Király I. Inducible trehalase enzyme activity ofPersoon mycelium[J]. Acta Microbiologica et Immunologica Hungarica, 2011, 58(1 ): 1-11.

        [86] Tan H, Tang J, Li XL, et al. Biochemical characterization of a psychrophilic phytase from an artificially cultivable morel[J]. Journal of Microbiology and Biotechnology, 2017, 27(12): 2180-2189.

        [87] Cavazzoni V, Manzoni M. Extracellular cellulytic complex from: Production and purification[J]. Lebensmttel-Wissenschaft Technologie, 1994, 27: 73-77.

        [88] Baute MA, Deffieus G, Baute R. Bioconversion of carbohydrates to unusua pyrone compounds in fungi: occurrence in micorthecin in morels[J]. Phytochemtry, 1986, 25(6): 1472-1473.

        [89] Hobbie EA, Weber NS, Trappe JM. Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence[J]. New Phytologist, 2001, 150: 601-610.

        [90] Hobbie EA, Rice SF, Smith WN, et al. Isotopic evidence indicates saprotrophy in post-firein Oregon and Alaska[J]. Mycologia, 2016, 108(4): 638-645.

        [91] ?i?ka Z, Gabriel J. Autofluorescence of the fungusvar.[J]. Folia Microbiology, 2011, 56: 166-169.

        [92] Kellner H, Luis P, Buscot F. Diversityof laccase-like multicopperoxidase genes in Morchellaceae: identification of genes potentially involved in extracellularactivities related to plant litter decay[J]. FEMS Microbiology Ecology, 2007, 61: 153-163.

        [93] Fujimura K E, Smith JE, Horton TR, et al. Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinusponderosa) after prescribed fires in eastern Oregon, USA[J]. Mycorrhiza, 2005, 15(2): 79-86.

        [94] Buscot F, Roux J. Association between living roots and ascocarps of[J]. Transactions of the British Mycological Society, 1987, 89 (2): 249-252.

        [95] Buscot F, Kottke I. The association of(Pers.) Boudier with roots of Picea abies(L.) Karst[J]. New Phytologist, 1990, 116: 425-430.

        [96] Buscot F. Ectomycorrhizal types and endobacteria associated with ectomycorrhizas of(Fr.) Boudier with Picea abies (L.) Karst[J]. Mycorrhiza, 1994, 4: 223-232.

        [97] Stefani FO, Sokolski S, Wurtz TL, et al.: a unique belowground structure and a new clade of morels[J]. Mycologia, 2010, 102(5): 1082-1088.

        [98] Buscot F. Synthesis of two types of association betweenand Picea abies under controlled culture conditions[J]. Journal of Plant Physiology, 1992, 141: 12-17.

        [99] Dahlstrom JL, Smith JE, Weber NS. Mycorrhiza-like interaction bywith species of the Pinaceae in pure culture synthesis[J]. Mycorrhiza, 2000, 9: 279-285.

        [100] Yu D, Bu FF, Hou JJ, et al. A morel improved growth and suppressedinfection in sweet corn[J]. World Journal of Microbiology and Biotechnology, 2016, 32(12): 192.

        [101] Bala P, Gupta D, Sharma YP. Mycotoxin research and mycoflora in some dried ediblemorels marketed in Jammue and Kashimir, India[J]. Journal of Plant Development Sciences, 2017, 9 (8): 771-778.

        [102] 何培新, 劉偉, 賀新生, 等. 粗柄羊肚菌內(nèi)生真菌多樣性研究[J]. 鄭州輕工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版), 2014, 29(3): 1-6.

        [103] Li CN, Li LH, Liao HJ, et al. Facilitation ofon[J]. Journal of Pure and Applied Microbiology, 2013, 7(4): 2495-2502.

        [104] Beug MW. An overview of mushroom poisonings in North America[J]. Mycophile, 2004, 45(2) : 4.

        [105] Pfab R,Haberl B,Kleber J,et al. Cerebellar effects after consumption of edible morels (,)[J]. Clinical Toxicology, 2008, 46: 259.

        [106] Saviuc P, Harry P, Pulce C, et al. Can morels (sp.) induce a toxic neurological syndrome?[J]. Clinical Toxicology, 2010, 48: 365.

        [107] Zhang N, O’Donnell K, Sutton D A, et al. Members of thespecies complex that cause infections in both humans and plants are common in the environment[J]. Journal of Clinical Microbiology, 2006, 44: 2186-2190.

        [108] Teixeira ABA, Trabasso P, Moretti-Branchini ML, et al. Phaeohyphomycosis caused byin an allogeneic bone marrow transplant recipient[J]. Mycopathologia, 2003, 156: 309-312.

        [109] Ostry V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs[J]. World Mycotoxin Journal, 2008, 1(2): 175-178.

        [110] Bisht V,Singh BP,Arora N,et al.Antigenic and allergenic cross-reactivity ofwith other fungi[J]. Annals of Allergy Asthma and Immunology, 2002, 89(3): 285-291.

        [111] Sushant Sud, Vd Khyati. A review of toxic effects and aphrodisiac action of(wild morel-Guchhi mushroom)-A Himalaya delight[J]. European Journal of Pharmaceutical and medical Research, 2017,4(8): 726-730.

        [112] Rohe M, Meinhardt E. Both open reading frames of the linear plasmid pMC3-2 from the ascomyceteare transcribed in vivo[J]. Current Genettic, 1992, 22: 507-509.

        [113] Meinhardt F, Karl Esser K. Linear extrachromosomal DNA in the morel Morchella conica[J]. Current Genetics, 1984, 8(1): 15-18.

        [114] Volk TJ, Leonard TJ. Cytology of the life-cycle of[J]. Mycological Research, 1990, 94(3): 399-406.

        [115] Alvarado-Gastillo, et al. Understanding the life cycle of morels (spp.)[J]. Revista Mexicana de Micologica, 2014, 40: 47-50.

        [116] 陳立佼. 羊肚菌屬真菌子囊發(fā)育及交配相關(guān)基因研究[D]. 昆明: 云南大學(xué), 2015.

        [117] Chai HM, Chen LJ, Chen WM, et al. Characterization of mating-type idiomorphs suggests that Morchella importuna, Mel-20 and M. sextelata are heterothallic[J]. Mycol Progress, 2017(16): 743-752.

        [118] 賀新生, 張能, 趙苗. 栽培羊肚菌的形態(tài)發(fā)育分析[J]. 食藥用菌, 2016, 24(4): 222-229, 238.

        [119] Schmidt EL. Spore germination of and carbohydrate colonization byat different soil temperatures[J]. Mycologia, 75(5): 870-875.

        [120] 李潔, 張?jiān)葡? 邱德江. 不同因素對(duì)羊肚菌孢子萌發(fā)和菌絲生長(zhǎng)的影響[J]. 河北林業(yè)科技, 2004(2): 1-2.

        [121] 劉偉, 蔡英麗, 何培新, 等. 粗腿羊肚菌子囊孢子萌發(fā)過程及其細(xì)胞核行為[J]. 食用菌學(xué)報(bào), 2017, 24(1): 18-20.

        [122] Singh SK,Tiwari M, Kamal S,Yadav SC, Singh S.Cytology and hyphal interactions to determine mating types in Morchella esculenta[J]. Mushroom Research, 2006, 15(1): 11-17.

        [123] Volk TJ, Leonard TJ. Experimental studies on the morel. I. hetrokaryon formation between monoascosporous strains of[J]. Mycologia, 1989, 81(1): 523-531.

        [124] Kalyoncu F, Oskay M, KalyoncuM. The effects of some environmental parameters on mycelial growth of sixspecies[J]. Journal of Pure and applied Micriobiology, 2009, 3(2): 467-472.

        [125] Kalm E,Kalyoncu F. Mycelial growth rate of some morels (spp.) in four different microbiological media[J]. American-Eurasian Journal of Agricultral and Environmental Sciences, 2008, 3(6): 861-864.

        [126] Buscot F. Mycelial differentiation ofin pure culture[J]. Mycological Research, 1993, 97 (2): 136-140.

        [127] Kalm?? E, Kalyoncu E. The effects of some environmental parameters on mycelial growth of two ectomycorrhizal fungi,and[J]. Mycologia Balcania, 2008, 5: 115-118.

        [128] Güler P, Atkan O. Cultural characteristics ofmycelium on some nutrients[J]. Turkish Journal of Biology, 2000, 24: 783-794.

        [129] Hervey A, Bistis G, Leong I. Cultural studies of single ascospore isolates of Morchella esculenta[J]. Mycologia, 1978, 70(6): 1269-1274.

        [130] 陳立佼, 柴紅梅, 黃興奇, 等. 尖頂羊肚菌單孢菌株群體培養(yǎng)特性研究[J]. 生物技術(shù), 2011, 21(6): 63-70.

        [131] Alvarado-Castillo Mata G, Pérez-Vázquez A, Martínez-Carrera D, et al. Formación de esclerocios eny, in vitro[J]. Revista mexicana de micología, 2012, 35: 35-41.

        [132] Prasher IB, Sharma M, Chandel VC, et al. Effect of physical factors, carbon and nitrogen sources on the growth and sclerotial production in(Sow.) Pers[J]. The Journal of Biological and Chemical Chronicles, 2017, 3(1): 20-27.

        [133] Güler P, Ozkaya EG. Morphological development ofmycelium on different agar media[J]. Journal of Environmental Biology, 2009, 30(4): 601-604.

        [134] Güler P, Ozkaya EG. Sclerotial structures of Morchella conica in agar media with different carbohydrate[J]. Acta Alimentaria, 2008, 37 (3): 347-357.

        [135] Volk TJ, Lenonard TJ. Physiological and environmental studies of sclerotium formation and maturation in isolates of Morchella crassipes[J]. Applied and Environmental Micriobiology, 1989, 55(12): 3095-3100.

        [136] Kanwal HK, Reddy MS. The effect of carbon and nitrogen sources on the formation of sclerotia inspp[J]. Annals of Microbiology, 2012, 62: 165-168.

        [137] Güler P, Bozcuk S, Mutlu F, et al. Propolis effection sclerodial formations of Morchella conica Pers[J]. Pakistan Journal of Botany,2005, 37(4): 1015-1022.

        [138] Alvarado-Castillo G, Vázquez AP, Martínez-Carrera D, et al.sclerotia production through grain supplementation[J]. Interciencia, 2011, 36(10): 768-773.

        [139] Király I, Cz?vek P. Oxidative burst induced pseudosclerotium formation ofZerova on different malt agar media[J]. Canadian Journal of Microbiology, 2007, 53(8): 975-982.

        [140] Kanwal HK, Reddy MS. Influence of sclerotia formation on ligninolytic enzyme production in[J]. Journal of Basic Microbiology, 2014, 54 (Suppl1): 63-69.

        [141] Amir R, Levanon D, HadarY, et al. Morphology and physiology ofduring sclerotial formation[J]. Mycological Research, 1993, 97 (6): 683-689.

        [142] Chen LJ, Chai HM, Chen WM, et al. Expressing difference in sclerotial formation of[J]. Indian Journal of Microbiology, 2014, 54(3): 274-283.

        [143] Miller SL, Torres P, McClean TM. Persistence of basidiospores and sclerotia of ectomycorrhizal fungi andin soil[J]. Mycologia, 1994, 86(1): 89-95.

        [144] 賀新生, 張能, 趙苗, 等. 栽培羊肚菌的形態(tài)發(fā)育分析[J]. 食藥用菌, 2016, 24(4): 222-229, 238.

        [145] 劉偉, 蔡英麗, 何培新, 等. 棱羊肚菌無性孢子形態(tài)及顯微結(jié)構(gòu)觀察[J]. 菌物研究, 2016, 14(3): 157-161.

        [146] 譚昊, 甘炳成, 彭衛(wèi)紅, 等. 羊肚菌單孢菌株采用“人工授粉”進(jìn)行栽培[P]. 中國(guó): CN 106416751A,2017-03-22.

        (完)

        猜你喜歡
        研究
        FMS與YBT相關(guān)性的實(shí)證研究
        2020年國(guó)內(nèi)翻譯研究述評(píng)
        遼代千人邑研究述論
        視錯(cuò)覺在平面設(shè)計(jì)中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        關(guān)于遼朝“一國(guó)兩制”研究的回顧與思考
        EMA伺服控制系統(tǒng)研究
        基于聲、光、磁、觸摸多功能控制的研究
        電子制作(2018年11期)2018-08-04 03:26:04
        新版C-NCAP側(cè)面碰撞假人損傷研究
        關(guān)于反傾銷會(huì)計(jì)研究的思考
        焊接膜層脫落的攻關(guān)研究
        電子制作(2017年23期)2017-02-02 07:17:19
        亚洲精品97久久中文字幕无码| 国产精品熟女视频一区二区三区| 日本在线一区二区三区不卡| 粉嫩被粗大进进出出视频| 欧美人与物videos另类xxxxx| 国产在线观看免费一级| av毛片亚洲高清一区二区 | 国产国产人免费人成免费视频 | 91九色人妻精品一区二区三区| 久久精品国产亚洲av无码娇色| 馬与人黃色毛片一部| 免费福利视频二区三区| 中文字幕有码人妻在线| 亚洲va中文字幕无码毛片| 免费人成黄页在线观看视频国产 | 中文无码日韩欧| 爱我久久国产精品| 中文字幕一区二区三区在线乱码| 19款日产奇骏车怎么样| 成人午夜性a级毛片免费| 澳门毛片精品一区二区三区| 成人激情视频一区二区三区 | 91精品手机国产在线能| 亚洲中文字幕不卡一区二区三区| 看日本全黄色免费a级| 国产成人av片在线观看| 2021国产最新无码视频| 人妻丰满少妇一二三区| 日本高清一区二区三区在线观看| 丰满爆乳在线播放| 国产香蕉尹人综合在线观| 日日麻批视频免费播放器| 人妻熟妇乱又伦精品视频| 中文字幕乱码人妻一区二区三区 | 日韩精品一区二区三区中文9| 一区二区三区四区中文字幕av | 18级成人毛片免费观看| av熟女一区二区久久| 国产av精品一区二区三区久久 | 日本三级欧美三级人妇视频| 欧美人与动牲交片免费播放|