關(guān)維國, 鄒林杰, 郝德華, 焦 萌
(遼寧工業(yè)大學(xué) 電子與信息工程學(xué)院,遼寧 錦州 121001)
無線局域網(wǎng)(WiFi)與藍牙技術(shù)因其移動終端支持度高,利用現(xiàn)有的泛在網(wǎng)絡(luò)即可實現(xiàn)定位,因而成為室內(nèi)定位的主流技術(shù)[1,2]。由于室內(nèi)環(huán)境的動態(tài)性很強,WiFi或藍牙單獨定位時,信標覆蓋有限,信號難以完全覆蓋整個定位區(qū)域,造成定位精度較低且穩(wěn)定性差。因此,為彌補單獨定位技術(shù)的局限,研究WiFi與藍牙2種技術(shù)融合,進而提高定位精度及穩(wěn)健性以滿足室內(nèi)定位應(yīng)用需求,已經(jīng)成為當(dāng)前室內(nèi)定位技術(shù)的發(fā)展趨勢。
文獻[3]采用四點測距定位算法實現(xiàn)室內(nèi)定位,選取接收信號強度指示(received signal strength indication,RSSI)平均值最大的4個iBeacon參與定位,未考慮信號穩(wěn)定性,定位誤差較大。文獻[4]提出了基于最小二乘支持向量機(least square support vector machine,LS-SVM)的位置指紋定位方法,在線定位階段采用LS-SVM最優(yōu)分類準則與數(shù)據(jù)庫中的數(shù)據(jù)相匹配,不足之處是計算量比較大。文獻[5]提出了一種基于二維網(wǎng)格特征參數(shù)融合的室內(nèi)匹配定位算法,利用時延參數(shù)的相對穩(wěn)定性,削弱了RSSI隨機抖動引起的誤差,但無法保證時鐘高度同步。文獻[6]提出一種短時路徑記憶輔助的加權(quán)K最近鄰算法(short-term path memory-weighted K nearest neighbor,SPM-WKNN)提高定位效率,但定位效果不夠理想。文獻[7]提出一種基于優(yōu)化貝葉斯的WiFi與藍牙融合定位算法,采用貝葉斯理論實現(xiàn)WiFi和藍牙單獨定位結(jié)果的融合,該算法復(fù)雜且定位優(yōu)勢不明顯。
為提高定位精度和定位穩(wěn)定性,本文提出基于多屬性代價函數(shù)的WiFi與藍牙總體最小二乘(total least squares,TLS) 算法融合定位方法。針對RSSI不穩(wěn)定造成測距誤差較大的問題,以多屬性代價函數(shù)評估信標的定位能力,確定融合定位最佳信標,提高定位效率和定位精度。在解算時,同時考慮測距誤差和信標節(jié)點部署誤差,利用TLS對待定位節(jié)點進行最優(yōu)位置估計。
基于RSSI的室內(nèi)定位技術(shù)主要包括基于傳播模型的定位和基于位置指紋[9]的定位。前者定位方法形式簡單,計算量小,不需要大量的訓(xùn)練,只需選擇符合當(dāng)前定位環(huán)境的室內(nèi)傳播模型即可達到較高的定位精度,滿足室內(nèi)定位需求。典型的信號傳播模型華為模型參考國際電信聯(lián)盟(International Telecommunication Union,ITU)模型和Motley-Keenan模型[7],本文選用更能反映室內(nèi)信號實際衰減特性的華為室內(nèi)傳播模型。修正后的傳播損耗模型為
PL(d)=20×logf+10×n×lgd+P+Xσ-28
(1)
式中f為載波頻率,MHz;n為路徑損耗指數(shù),常取2.5~3.0;d為待定位點到信標節(jié)點之間的距離;P為障礙物的穿透損耗值,dBm,在半開放室內(nèi)環(huán)境(同一樓層)下P=12;Xσ為高斯正態(tài)分布的隨機分布變量;28 dBm為經(jīng)驗修正值。
在接入點(access point,AP)選擇算法中,選出有效提高定位精度的信標是有必要的[10~12]。針對這一問題,僅僅考慮RSSI是不合適的,本文綜合考慮RSSI,SNR和方差(variance,σ2)3個最能反映信標定位性能的參數(shù),采用多屬性代價函數(shù)評估各WiFi信標AP及藍牙信標iBeacon的定位性能,對信標進行最優(yōu)選擇。
AP信標和iBeacon信標的信噪比門限閾值和接收功率門限閾值等參數(shù)不同,待定位節(jié)點接收到的信號強度和信噪比相差很大。為保證WiFi/藍牙信標代價函數(shù)的公平性和有效性,對RSSI,SNR和σ2分別進行歸一化后作為判決參數(shù),從而得到WiFi/藍牙信標多屬性代價函數(shù)。
1)WiFi信標AP多屬性代價函數(shù)RSSI歸一化Rwi為
(2)
SNR的歸一化Swi為
(3)
AP接收信號強度的方差歸一化Vwi為
(4)
由式(2)~式(4)得到WiFi信標AP的代價函數(shù)為
Cwi=wrln (Rwi)+wsln (Swi)+wvln (1/Vwi)
(5)
2)藍牙信標iBeacon的多屬性代價函數(shù)
RSSI歸一化Rbj為
(6)
SNR的歸一化Sbj為
(7)
iBeacon接收信號強度的方差歸一化Vbj為
(8)
由式(6)~式(8)得到藍牙信標iBeacon的代價函數(shù)
Cbj=wrln (Rbj)+wjln (Sbj)+wvln (1/Vbj)
(9)
通過層次分析法[13]計算各參數(shù)的權(quán)重系數(shù)(wr,ws,wv)=[0.8,0.1,0.1],根據(jù)AP代價值Cwi,iBeacon代價值Cbj得到WiFi/藍牙信標代價函數(shù)的均值
(10)
分別利用式(5)、式(9)計算WiFi和藍牙信標的代價函數(shù)值并從大到小排序,選取前N個大于等于Cm的信標參與定位[10],剔除包含定位信息少的信標,選出可提高定位精度和定位穩(wěn)定性的WiFi和藍牙信標。然后利用TLS定位算法進行最終定位估計
利用WiFi/藍牙信標多屬性代價函數(shù)選出融合定位的最優(yōu)信標后,根據(jù)AP/iBeacon發(fā)射功率及華為室內(nèi)信號傳播模型,將接收到RSSI值轉(zhuǎn)換為待定位節(jié)點到對應(yīng)信標的距離dwi(i=1,2,...,m)和dbj(j=1,2,...,n)。信標AP和iBeacon的坐標已知,則可得到WiFi/藍牙融合的偽距觀測超定方程組
(11)
式中 (xwm,ywm),(xbn,ybn)分別為信標AP和iBeacon坐標,(x,y)為待定位節(jié)點位置坐標,m,n(N=m+n)分別為WiFi/藍牙融合定位信標個數(shù)。式(11)為非線性,將觀測圓周方程中的二次未知參數(shù)消去,以圓周方程組中的第一個式子為參考,其余各式分別與其相減[7],對其進行線性化處理可得形如AX=b的融合定位觀測方程
(A+ΔA)X=b+Δb
(13)
式中A∈Rm×n(m=N-1,n=2),b∈Rm×1。式(13)簡化后為
(D+E)Z=0
(14)
(15)
(16)
可得DTDZ=λZ,據(jù)特征值方程原理,λ為矩陣DTD的最小特征值,也是矩陣D最小奇異值的平方根,因此,λ可以通過對D奇異值分解(singular value decomposition,SVD)求得[14]。根據(jù)SVD原理,對增廣矩陣D進行奇異值分解D=[Ab]=UΣVT,U=[u1,u2,…,um]∈Rm×m為由m個DDT的特征向量ui組成的正交矩陣,Σ=diag(σ1,σ2,…,σn+1)∈Rm×(n+1)為由n+1個D的奇異值σi組成的對角矩陣,奇異值按降序排列σ1≥σ2≥…≥σn+1≥0,V=[v1,v2,…,vn+1]∈R(n+1)×(n+1)為由n+1個DTD的特征向量vi組成的正交矩陣。
則DTD、最小特征值、Z可表示為
(17)
將式(17)中參數(shù)代入DTDZ=λZ,可得
(18)
式(18)可轉(zhuǎn)換為
(19)
可求得待定位節(jié)點的最優(yōu)位置估計
(20)
式中In為單位矩陣。
為分析驗證算法性能,定位仿真實驗選取長寬為20 m×20 m的室內(nèi)定位區(qū)域。在定位區(qū)域內(nèi)設(shè)置4個WiFi信標AP,5個藍牙信標iBeacon,WiFi和藍牙信號能夠覆蓋整個定位區(qū)域,實驗定位仿真環(huán)境如圖1所示。
圖1 室內(nèi)定位仿真環(huán)境
為驗證華為室內(nèi)損耗模型與實際定位環(huán)境中信號擬合度,在教學(xué)樓7層室內(nèi)大廳,利用華為手機實際測量RSSI值,實際信號測試界面如圖2所示。并比較分析自由空間損耗、對數(shù)路徑損耗、華為室內(nèi)路徑損耗模型4種模型與真實環(huán)境中信號的擬合度。圖3表明,華為模型更加符合實際室內(nèi)定位環(huán)境下無線信號的傳播情況。
圖2 實際信號測試界面
圖3 華為修正模型擬合對比
在RSSI高斯噪聲標準差Noise=3 dBm環(huán)境下,對WiFi定位、藍牙定位、優(yōu)化貝葉斯融合和TLS融合定位進行仿真對比,其定位性能對比如圖4所示。實驗結(jié)果表明,TLS算法平均定位精度達到1.21 m,優(yōu)于WiFi單獨定位的2.85 m、藍牙2.27 m和優(yōu)化貝葉斯融合1.76 m??梢姡疚乃惴ㄏ鄬τ谄渌惴ǘㄎ痪蕊@著提高,定位性能最優(yōu)。
圖4 不同算法的定位估計誤差對比
為測試算法在不同噪聲環(huán)境下的定位性能,在定位區(qū)域中隨機選取任意位置作為測試點對各算法進行仿真對比,在高斯噪聲標準差Noise=2~6 dBm環(huán)境下,各算法的均方根誤差如圖5所示。實驗結(jié)果表明,當(dāng)Noise=6 dBm的惡劣信道環(huán)境下,TLS算法的均方根誤差為1.95 m,優(yōu)于WiFi單獨定位4.45 m、藍牙3.9 m和優(yōu)化貝葉斯融合算法3.01 m。在不同噪聲標準差環(huán)境下,TLS融合定位算法的定位誤差受影響最小,而單獨定位以及優(yōu)化貝葉斯融合的定位誤差較大??梢奣LS算法抗噪性能良好,定位精度優(yōu)于其他3種算法。
圖5 不同噪聲環(huán)境下的定位估計誤差
在噪聲標準差Noise=2~6 dBm環(huán)境下,在定位區(qū)域內(nèi)進行500次蒙特卡羅定位實驗,對TLS融合定位算法進行仿真測試,定位誤差的累積分布函數(shù)(cumulative distribution function,CDF)曲線如圖6所示。當(dāng)噪聲標準差Noise=3 dBm條件下,在95 %的概率下定位精度達到1.9 m。當(dāng)高斯噪聲標準差Noise=4 dBm時,定位精度優(yōu)于2 m的概率為85.6 %。當(dāng)高斯噪聲標準差Noise=6 dBm時,定位精度優(yōu)于3m的概率達到91.2 %。在噪聲標準差2~6 dBm的信道環(huán)境中,其平均定位精度均能保持在2 m以內(nèi),可滿足大多數(shù)室內(nèi)定位精度的需求。因此,TLS融合定位算法具有較高的定位精度和較好的魯棒性。
圖6 定位誤差累積概率分布函數(shù)
在RSSI噪聲標準差Noise=3 dBm的條件下,對比4種算法的定位誤差累積分布函數(shù)CDF曲線如圖7所示。本文算法定位精度優(yōu)于2 m的概率為95.4 %,優(yōu)化貝葉斯融合算法定位精度優(yōu)于2 m的概率為89 %,單獨定位優(yōu)于 2 m的概率均在50 %以下。可見,TLS融合定位算法的定位精度和定位魯棒性優(yōu)于其他3種算法。
圖7 定位誤差累積概率分布函數(shù)對比
為解決室內(nèi)單獨定位技術(shù)定位誤差較大及抗噪聲性能較差的問題,本文提出基于多屬性代價函數(shù)的WiFi與藍牙TLS融合定位算法。實驗結(jié)果表明,相比于單獨定位和其他融合算法,該算法不僅定位精度顯著提高,而且削弱了高斯噪聲對定位算法的影響,具有較好的魯棒性。在下一步的工作中將對本文算法在動態(tài)環(huán)境下的連續(xù)定位進行研究。