周梅芳,徐建軍,童俊華,俞高紅,趙 雄,解 杰
?
花卉穴盤苗取栽一體式自動(dòng)移栽機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)
周梅芳1,徐建軍1,童俊華2,俞高紅2※,趙 雄2,解 杰2
(1.金華職業(yè)技術(shù)學(xué)院,金華 321017; 2.浙江理工大學(xué)浙江省種植裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,杭州 310018)
為得到一種高效簡便、通用性好的花卉自動(dòng)移栽機(jī)械,設(shè)計(jì)了一種取苗和栽苗一體式花卉自動(dòng)移栽機(jī)構(gòu),通過夾苗針相對移栽臂的運(yùn)動(dòng)規(guī)律設(shè)計(jì),實(shí)現(xiàn)“雙尖嘴”工作軌跡,建立了該機(jī)構(gòu)運(yùn)動(dòng)學(xué)模型,并應(yīng)用自主開發(fā)的計(jì)算機(jī)分析和優(yōu)化軟件,分析了機(jī)構(gòu)參數(shù)變化對“雙尖嘴”軌跡和姿態(tài)的影響,優(yōu)選出符合取栽一體式移栽要求的機(jī)構(gòu)參數(shù),并通過模型仿真和樣機(jī)試驗(yàn)相結(jié)合的方法,對該機(jī)構(gòu)進(jìn)行了驗(yàn)證分析,結(jié)果表明:仿真軌跡、樣機(jī)測試軌跡與理論軌跡三者基本一致,驗(yàn)證了該取栽一體式移栽機(jī)構(gòu)設(shè)計(jì)的正確性和可行性。試驗(yàn)選用“萬壽菊”花卉穴盤苗,苗齡35 d,平均苗高約10 cm,試驗(yàn)設(shè)定機(jī)構(gòu)轉(zhuǎn)速為35 r/min(移栽速度70株/min)時(shí),平均取苗成功率為97.27%,平均栽苗成功率為77.62%,表明該取栽一體式移栽機(jī)構(gòu)具有較好的實(shí)用性。該研究可為自動(dòng)化移栽關(guān)鍵技術(shù)的研究提供參考。
農(nóng)業(yè)機(jī)械;移栽;設(shè)計(jì);花卉;取栽一體
花卉是園林植物中最主要的部分之一,盆栽花卉因其具有良好的觀賞效果和生態(tài)價(jià)值,廣泛用于環(huán)境美化和家庭裝飾?;ɑ芤圃约夹g(shù)可以縮短生長周期,保持品質(zhì)統(tǒng)一,已成為現(xiàn)代溫室盆栽花卉生產(chǎn)中主要的種植措施[1-3]。然而目前中國規(guī)?;ɑ芤圃匀匀徊捎醚ūP工廠育苗、手工移栽至塑料盤的方式,移栽作業(yè)強(qiáng)度大、效率低[4]。國外雖然研制了機(jī)器人技術(shù)為主體的全自動(dòng)移栽機(jī),并實(shí)現(xiàn)產(chǎn)業(yè)化,這但類移栽機(jī)取苗時(shí)苗爪垂直插入穴盤抓苗,對于葉面展幅寬的花卉移栽有較大的局限性[5-7],且整套裝備復(fù)雜、價(jià)格昂貴,一次性投入大,中小型花卉企業(yè)難以承受。
鑒于國內(nèi)花卉穴盤苗自動(dòng)移栽機(jī)的需求以及購買國外機(jī)器成本高、通用性差的現(xiàn)狀,近年國內(nèi)一些科研院校對穴盤苗移栽機(jī)進(jìn)行了探索性研究,提出多種設(shè)計(jì)方案并進(jìn)行相關(guān)試驗(yàn)。田素博等[8-10]研制了溫室瓜果或蔬菜穴盤苗移栽機(jī),但因花卉與蔬菜移栽農(nóng)藝要求不同,技術(shù)無法通用。馮青春等[11-12]針對花卉穴盤苗到花盆移栽作業(yè)環(huán)節(jié),設(shè)計(jì)了花卉幼苗智能移栽機(jī),集成幼苗質(zhì)量識(shí)別、穴盤(花盆)傳輸以及幼苗夾取和移栽等功能,但取苗機(jī)構(gòu)的核心部件及機(jī)理未取得技術(shù)性突破,只有在效率較低時(shí)才能保證移栽成功率,無法取得市場認(rèn)可。胡海軍等[13-15]研究人手從穴盤中將苗取出時(shí)的軌跡及姿態(tài)要求,提出了由5個(gè)全等的橢圓齒輪組成的行星輪系取苗機(jī)構(gòu),與國內(nèi)現(xiàn)有的移栽機(jī)構(gòu)相比,較大幅度縮小了機(jī)構(gòu)尺寸,移栽效率在不增加轉(zhuǎn)速情況下比前述移栽機(jī)增倍,移栽效率可達(dá)80株/min,但由于移栽臂只需完成推苗動(dòng)作,對移栽最低段軌跡形態(tài)要求不高[16-17]。本文基于該類傳動(dòng)機(jī)構(gòu),以花卉取栽一體化移栽為設(shè)計(jì)目標(biāo),通過設(shè)計(jì)夾苗針相對移栽臂的運(yùn)動(dòng)規(guī)律和機(jī)構(gòu)參數(shù)優(yōu)化獲得“雙尖嘴”形工作軌跡,在優(yōu)化得到機(jī)構(gòu)參數(shù)基礎(chǔ)上試制了機(jī)構(gòu)樣機(jī)并通過試驗(yàn)驗(yàn)證所提出取栽一體化方案的有效性。
花卉移栽機(jī)構(gòu)在一個(gè)周期內(nèi)需要完成取苗、送苗、栽苗和回程4個(gè)連續(xù)的動(dòng)作,工作要求能模擬人工動(dòng)作從穴盤中取苗,并能將苗運(yùn)送到機(jī)構(gòu)的最低位置后直接將缽苗插入花盆基質(zhì),達(dá)到取栽一體式的效果。綜合多種移栽軌跡的優(yōu)缺點(diǎn)和試驗(yàn)結(jié)果[18-20],提出移栽機(jī)構(gòu)夾苗針尖點(diǎn)運(yùn)動(dòng)軌跡如圖1所示,機(jī)構(gòu)按照逆時(shí)針方向轉(zhuǎn)動(dòng)一周時(shí),依次經(jīng)過以下4個(gè)軌跡段,對應(yīng)的夾苗針工作狀態(tài)及軌跡要求如下。
1)01取苗軌跡段。夾苗針從0點(diǎn)開始向穴盤移動(dòng),接近穴盤時(shí)夾苗針伸出,在苗爪的限制下,接近1點(diǎn)時(shí)迅速收緊,在穴口底部1點(diǎn)時(shí)完全夾緊,整個(gè)夾苗過程要避免夾苗針與穴盤發(fā)生干涉,則夾苗針進(jìn)入穴盤前要形成內(nèi)凹的軌跡段(501);
夾苗針要近似垂直于穴盤將花卉缽苗夾緊取出,且整個(gè)取苗過程要求攪動(dòng)較小,則夾苗針取苗軌跡段(012)為“尖嘴”形狀,且“尖嘴”寬度盡量小,避免傷及花卉缽苗;
2)1234為持苗軌跡段:花卉缽苗被夾緊并退出穴盤往外運(yùn)動(dòng);
3)45栽苗軌跡段:夾苗針到達(dá)軌跡最低點(diǎn)4點(diǎn),其推苗角度(軌跡45)要求接近垂直,軌跡形成第二個(gè)“尖嘴”,夾苗針借助彈簧的推力迅速往上彈起,與缽苗脫離,花卉缽苗能以較好的姿態(tài)豎直栽入到花盆中。
4)50回程軌跡段:移栽臂空運(yùn)行,夾苗針保持回縮狀態(tài),準(zhǔn)備下一次移栽。
注:A0A1為取苗軌跡段;A1A2A3A4為持苗軌跡段;A4 A5栽苗軌跡段;A5A0回程軌跡段。
本文采用橢圓-非圓齒輪行星輪系機(jī)構(gòu)來實(shí)現(xiàn)非勻速傳動(dòng),利用橢圓齒輪與不完全非圓齒輪在凹凸鎖止弧的配合作用下,實(shí)現(xiàn)非勻速間歇傳動(dòng),同時(shí)結(jié)合可彈出式夾苗裝置設(shè)計(jì)來實(shí)現(xiàn)預(yù)期的“雙尖嘴”形工作軌跡。
移栽機(jī)構(gòu)組成包括齒輪傳動(dòng)部分和2個(gè)結(jié)構(gòu)相同的移栽臂,如圖2所示。其中,齒輪傳動(dòng)部分由鉸接在行星架11上的1個(gè)不完全非圓齒輪和4個(gè)相同的橢圓齒輪以及凹、凸鎖止弧組成,包括固定不動(dòng)的中心不完全非圓齒輪1(太陽輪)和兩側(cè)與之嚙合中間橢圓齒輪4、4′(以下簡稱中間輪),以及與4、4′分別嚙合的行星橢圓齒輪5、5′(以下簡稱行星輪),凸鎖止弧2通過銷固聯(lián)在太陽輪1上,凹鎖止弧3、3′分別通過銷固聯(lián)在中間輪4、4′上,凸鎖止弧2與之凹鎖止弧配合和分離,能夠?qū)崿F(xiàn)機(jī)構(gòu)的非勻速間歇運(yùn)動(dòng)[17]。
移栽機(jī)構(gòu)以行星架11回轉(zhuǎn)中心為分界點(diǎn),按空間位置劃分,將移栽機(jī)構(gòu)的行星輪5、中間輪4及與之固聯(lián)的凹鎖止弧3、太陽輪1及與之固聯(lián)的凸鎖止弧2、移栽臂6為第一支臂,對稱布置的太陽輪1、中間輪4′及與之固聯(lián)的凹鎖止弧3′、行星輪5′以及移栽臂6′為第二支臂,機(jī)構(gòu)工作時(shí),2個(gè)支臂所經(jīng)過的空間位置重合,其運(yùn)動(dòng)規(guī)律相位差180°,因此可取單個(gè)支臂運(yùn)動(dòng)進(jìn)行分析說明。
1.太陽輪 2.凸鎖止弧 3, 3′.凹鎖止弧 4, 4′.中間橢圓齒輪 5, 5′.行星橢圓齒輪 6, 6′.移栽臂 7.移栽軌跡 8.穴盤 9.花盆 10.傳送帶 11.行星架
1.Sun gear 2. Cam locking arc 3, 3′. Concave locking arc 4,4′. Middleellipse gears 5, 5′.Planetary ellipse gears 6, 6′. Transplanting arm 7. Transplanting trajectory 8. Plug tray 9. Flowerpot 10. Conveyor belt 11. Planetary carrier
注:1為行星橢圓齒輪5′回轉(zhuǎn)中心;1為中間橢圓齒輪4′回轉(zhuǎn)中心;為太陽輪1(不完全非圓齒輪)回轉(zhuǎn)中心;2為中間橢圓齒輪4回轉(zhuǎn)中心;2為行星橢圓齒輪5回轉(zhuǎn)中心。
Note:1is the rotation center of planetary ellipse gear 5′;1is the rotation center of middleellipse gear 4′;is the rotation center of central ellipse gear 1 (incomplete noncircular planetary gear);2is the rotation center of middleellipse gear 4;2is the rotation center of planetary ellipse gear 5.
圖2 花卉穴盤苗取栽一體式自動(dòng)移栽機(jī)構(gòu)示意圖
Fig.2 Schematic diagram of integrated automatic transplanting mechanism for taking and planting of flower plug seedlings
在機(jī)構(gòu)傳動(dòng)部分中,5個(gè)非圓齒輪的旋轉(zhuǎn)中心分別為1、1、、2、2,移栽機(jī)構(gòu)工作時(shí),太陽輪1(中間不完全非圓齒輪)固定不動(dòng),鉸接于行星架11上的中間輪4和行星輪5在行星架11的旋轉(zhuǎn)帶動(dòng)下,實(shí)現(xiàn)行星輪5與中間輪4的非勻速嚙合,以及中間輪4與太陽輪1(不完全非圓齒輪)有齒部分的嚙合,使得行星輪5的絕對運(yùn)動(dòng)是繞中心1的勻速圓周運(yùn)動(dòng)(公轉(zhuǎn))和相對行星架11的非勻速轉(zhuǎn)動(dòng)(自轉(zhuǎn))的2個(gè)運(yùn)動(dòng)的合成,此時(shí)凹鎖止弧3與凸鎖止弧2處于脫離狀態(tài),該行星輪5帶動(dòng)與之相對固定的移栽臂6做同樣的非勻速轉(zhuǎn)動(dòng);當(dāng)凹鎖止弧3與凸鎖止2配合時(shí),移栽臂6相對于行星架11靜止不動(dòng),在這2種運(yùn)動(dòng)結(jié)合下,移栽臂能按要求的角位移和移栽軌跡運(yùn)動(dòng)得到滿足取栽一體式花卉自動(dòng)移栽機(jī)構(gòu)所要求的移栽軌跡012345,如圖2中的軌跡曲線。
機(jī)構(gòu)中2個(gè)結(jié)構(gòu)相同的移栽臂6、6′分別與該行星齒輪5、5′相對固定安裝。移栽臂結(jié)構(gòu)如圖3所示,通過移栽臂把行星輪系的旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為取苗針的直線來回運(yùn)動(dòng),通過其末端2個(gè)夾苗針的張合模擬人工手指抓取和栽插動(dòng)作。取栽一體式自動(dòng)移栽機(jī)構(gòu)把取苗和推苗改成花卉穴盤苗取栽一體化,其移栽軌跡以及取苗點(diǎn)和栽苗點(diǎn)的位置都發(fā)生了變化,為滿足工作需求,論文設(shè)計(jì)可彈出式夾苗裝置,該裝置中苗爪通過螺紋孔固定在移栽臂殼體上,夾苗針通過一塊專門的連接板固定在推桿上,可以自由伸長和縮短,其設(shè)計(jì)不僅能增加軌跡的長度,便于實(shí)現(xiàn)取栽一體化,而且也不容易與秧箱發(fā)生干涉,另一方面有利于取苗和栽苗,取苗時(shí),苗爪移動(dòng)到穴盤苗附近時(shí)以一定的傾角彈出夾苗針插入土坨,可以有效避免傷苗;而栽苗時(shí)夾苗針回縮,與夾苗針粘結(jié)的土可以通過苗爪刮除。如圖4所示為未取苗與夾緊花卉缽苗時(shí)的夾苗針的2種狀態(tài)。
1.凸輪 2.撥叉 3.彈簧座 4.彈簧 5.推桿 6.夾苗針 7.苗爪
圖4 夾苗針的工作狀態(tài)
取栽一體式自動(dòng)移栽機(jī)構(gòu)2個(gè)移栽臂結(jié)構(gòu)對稱,運(yùn)動(dòng)規(guī)律僅相差180°,故取單臂分析。機(jī)構(gòu)工作過程中的運(yùn)動(dòng)關(guān)系如圖5所示,建立直角坐標(biāo)系,已知常量、、、0、0、、、、0、,已知變量為1。本文規(guī)定所涉及的角度逆時(shí)針為正方向。
根據(jù)文獻(xiàn)[21-24]中的機(jī)構(gòu)分析和建模過程,可得行星橢圓齒輪的旋轉(zhuǎn)中心1的位移方程式(1)。
由式(1)對時(shí)間求導(dǎo)可得到行星橢圓齒輪的旋轉(zhuǎn)中心1的速度方程式(2)。
夾苗針尖點(diǎn)的運(yùn)動(dòng)如圖6所示,由圖可知取苗前后夾苗針尖點(diǎn)的長度是變化的。
1.移栽臂 2.行星橢圓齒輪 3.中間橢圓齒輪 4.凹鎖止弧 5.太陽輪 6.凸鎖止弧 7.行星架
1.Transplanting arm 2.Planetary ellipse gear 3.Middleellipse gear 4.Concave locking arc 5.Sun gear 6.Cam locking arc 7.Planetary carrier
注:為行星架7回轉(zhuǎn)中心;為中間橢圓齒輪3回轉(zhuǎn)中心;1為行星橢圓齒輪2回轉(zhuǎn)中心;1為中間橢圓齒輪回轉(zhuǎn)中心從初始位置0轉(zhuǎn)過角位移1后的位置;為太陽輪回轉(zhuǎn)中心與中間橢圓齒輪回轉(zhuǎn)中心的距離,mm;2為中間橢圓齒輪與行星橢圓齒輪中心距, mm;1太陽輪旋轉(zhuǎn)中心到嚙合點(diǎn)的距離,mm;2為中間橢圓齒輪旋轉(zhuǎn)中心1到嚙合點(diǎn)的距離,mm;′2為中間橢圓齒輪旋轉(zhuǎn)中心1到嚙合點(diǎn)的距離,mm;3為行星橢圓齒輪旋轉(zhuǎn)中心1到嚙合點(diǎn)的距離,mm;0為行星架(0線)初始角位移,(°);1為行星架從初始位置轉(zhuǎn)過角位移,(°);2為中間橢圓齒輪相對與行星架轉(zhuǎn)過的角位移,(°);3為行星橢圓齒輪相對于行星架轉(zhuǎn)過角位移,(°);30為行星架相對于行星橢圓齒輪的初始角位移,(°);為不完全非圓齒輪有齒部分節(jié)曲線所對應(yīng)的圓心角,0為行星架0與00的夾角,(°);0為夾苗針尖點(diǎn)與行星橢圓齒輪旋轉(zhuǎn)中心0連線與行星橢圓齒輪軸線之間的夾角,(°);為行星架的角速度,rad/s。
Note:is the rotation center of planetary carrier 7;is the rotation center of middle ellipse gears 3;1is the rotation center of planet ellipse gears 2;1is the position of the middleellipse gears rotation center rotate angle1from the initial position;is the distance between the center of rotation of the sun gear and the center of rotation of the middle ellipse gears, mm; 2is center distance of middle ellipse gears and planetary ellipse gears, mm;1is the distance between the center of rotation of the sun gear and meshing point, mm;2is the distance between the center of rotation of the middle ellipse gears and meshing point, mm;′2is the distance between the center of rotation of the middle ellipse gear1and meshing point, mm;3is the distance between the center of rotation of the planetary ellipse gear1and meshing point, mm;0is initial angular displacement of planetary frame (0line), rad;1is angular displacement that is transferred of planetary frame form installation position, rad;2is transferred angular displacement of middleellipse gears relative to planetary frame, rad;3is transferred angular displacement of planetary ellipse gears relative to planetary frame, rad;30is initial angular displacement of planetary ellipse gears relative to planetary frame, rad;is center angle of the incomplete noncircular gear toothed part of section curve corresponding, rad;0is included angle between planetary frame00and0, rad;0is included angle between ligature from taking the tip of clamp needle to center of rotation0of planetary ellipse gears and axis of planetary ellipse gears,rad;angular velocity of planetary frame, rad.
圖5 橢圓-不完全非圓齒輪行星輪系運(yùn)動(dòng)示意圖
Fig.5 Movement diagram of planetary gear train with ellipse-incomplete noncircular gear
注:P為移栽臂上夾苗針尖點(diǎn)。
1)取苗之前與栽苗之后夾苗針尖點(diǎn)的位移方程
2)取苗之后與栽苗之前夾苗針尖點(diǎn)的位移方程
式中為行星輪橢圓齒輪旋轉(zhuǎn)中心到夾苗針(未伸長)尖點(diǎn)的距離,mm;為行星輪橢圓齒輪旋轉(zhuǎn)中心到夾苗針(伸長后)尖點(diǎn)的距離,mm;0為夾苗針(伸長后)尖點(diǎn)與行星橢圓齒輪旋轉(zhuǎn)中心連線與行星橢圓齒輪軸線之間的夾角,(°)。
夾苗針尖點(diǎn)的速度和加速度需根據(jù)凸輪與撥叉之間的關(guān)系來確定。
基于文獻(xiàn)[25-27]對優(yōu)化目標(biāo)的研究基礎(chǔ)上,分析取栽一體式花卉移栽機(jī)構(gòu)的運(yùn)動(dòng)過程和機(jī)理,基于花卉缽苗的物理性狀、移栽機(jī)構(gòu)的運(yùn)動(dòng)干涉、運(yùn)動(dòng)軌跡和移栽臂姿態(tài)及機(jī)構(gòu)結(jié)構(gòu)要求等確定了以下優(yōu)化目標(biāo)和約束條件:1)夾苗針在取苗階段軌跡與穴盤接近垂直,即夾苗針從開始的取苗角度(01軌跡傾角)逐漸調(diào)整取苗姿態(tài)到與苗盤成90°(12軌跡)的退出角度,避免移栽臂與穴盤發(fā)生干涉;2)移栽軌跡在穴盤內(nèi)深度達(dá)30 mm,才能順利取出缽苗;3)栽苗角(移栽臂在把花卉缽苗栽入到花盆時(shí),夾苗針與水平面之間的夾角)應(yīng)在75°~90°之間,能使花卉缽苗能以較好的姿態(tài)豎直栽入到花盆中;4)移栽軌跡的高度達(dá)到300 mm左右,才能將所取缽苗輸送到花盆底部;5)2個(gè)移栽臂之間不能發(fā)生干涉。
根據(jù)上述移栽機(jī)構(gòu)運(yùn)動(dòng)特性分析和數(shù)學(xué)建??芍≡砸惑w式自動(dòng)移栽機(jī)構(gòu)的參數(shù)優(yōu)化是一個(gè)多參數(shù)的復(fù)雜優(yōu)化問題,多個(gè)參數(shù)對最終的運(yùn)動(dòng)軌跡和移栽臂姿態(tài)均產(chǎn)生較大影響且各參數(shù)之間也會(huì)相互影響[28-29]?;赩B可視化設(shè)計(jì)軟件,開發(fā)取栽一體式移栽機(jī)構(gòu)輔助分析和優(yōu)化軟件,借助該軟件采用控制變量法分析各個(gè)參數(shù)單獨(dú)變化時(shí)對移栽軌跡的影響,分析可知橢圓長軸半徑橢圓短軸與長軸之比移栽臂的初始安裝角0取值主要影響著移栽軌跡的長度和形狀,而花卉移栽機(jī)構(gòu)的行星架拐角0(圖5中行星架111的夾角)、行星架(1線)初始角位移0、行星輪橢圓齒輪旋轉(zhuǎn)中心到夾苗針尖點(diǎn)的距離等參數(shù)則主要影響取苗角度、軌跡的圓滑度以及栽苗角度等。
基于上述各參數(shù)對移栽軌跡影響分析,通過人機(jī)交互方式優(yōu)化目標(biāo),得到一組滿足取栽一體式自動(dòng)移栽軌跡的機(jī)構(gòu)參數(shù):=25.057 6 mm,=0.995,=275(為不完全非圓有齒部分對應(yīng)的圓心角),0=30°,0=25°,0=?60°,=160 mm,1=276(1為夾苗針回縮的時(shí)間)。該組參數(shù)對應(yīng)的夾苗針尖點(diǎn)運(yùn)動(dòng)軌跡如圖7所示,軌跡形成了“雙尖嘴”形狀,滿足取苗和栽植時(shí)夾苗針垂直進(jìn)出要求;取苗段軌跡與穴盤近似垂直,且在穴盤內(nèi)長度為33 mm,取苗角度約為33.88°;栽苗角度約為80°;軌跡的總高度為247.88 mm,滿足優(yōu)化目標(biāo)。通過優(yōu)化軟件的圖形顯示區(qū)觀察花卉移栽機(jī)構(gòu)的相對運(yùn)動(dòng)模擬如圖8所示,顯示整個(gè)移栽過程2個(gè)移栽臂之間、夾苗針與穴盤之間均未發(fā)生干涉現(xiàn)象,符合約束條件。
圖7 優(yōu)化后的移栽機(jī)構(gòu)運(yùn)動(dòng)軌跡
圖8 移栽機(jī)構(gòu)相對運(yùn)動(dòng)模擬界面
根據(jù)優(yōu)化后的機(jī)構(gòu)參數(shù),完成移栽機(jī)構(gòu)虛擬裝配,對得到的虛擬樣機(jī)夾苗針尖點(diǎn)軌跡進(jìn)行分析。將仿真軌跡(圖9)與理論軌跡(圖7)進(jìn)行對比,理論軌跡與仿真軌跡取苗段存在著一定的差異,其原因是在取栽一體式自動(dòng)移栽機(jī)構(gòu)上加裝了緩沖裝置,以此來減小凹、凸鎖止弧脫離時(shí)產(chǎn)生的較大沖擊;另外仿真軌跡較為圓滑,形成小環(huán)扣,更為符合移栽過程取苗和栽苗的要求。軌跡的其余部分都保持一致,驗(yàn)證了理論設(shè)計(jì)的正確性。
為驗(yàn)證移栽機(jī)構(gòu)夾苗針尖點(diǎn)的實(shí)際工作軌跡是否與仿真軌跡一致,將取栽一體式自動(dòng)移栽機(jī)構(gòu)安裝在試驗(yàn)臺(tái)上進(jìn)行空轉(zhuǎn)試驗(yàn)。試驗(yàn)方法:1)安裝移栽機(jī)構(gòu),調(diào)整機(jī)構(gòu)至運(yùn)轉(zhuǎn)自如;2)將高速攝像機(jī)安裝在合適位置,使機(jī)構(gòu)完整顯示在屏幕中,調(diào)節(jié)燈光位置和強(qiáng)度,使機(jī)構(gòu)夾苗片尖點(diǎn)清晰可見;3)調(diào)節(jié)電機(jī)轉(zhuǎn)速為40 r/min,開始空轉(zhuǎn)試驗(yàn),待運(yùn)轉(zhuǎn)平穩(wěn)后采集圖像(采集2至3個(gè)周期即可);4)利用Bestcam圖像分析軟件進(jìn)行描點(diǎn),得到移栽機(jī)構(gòu)夾苗針尖點(diǎn)的運(yùn)動(dòng)軌跡如圖10所示。
圖9 ADAMS仿真軌跡
圖10 樣機(jī)試驗(yàn)軌跡
結(jié)果分析:對比圖10和圖7軌跡可得:1)兩者軌跡基本一致,但理論軌跡尖嘴部分不太平滑,其原因是移栽傳動(dòng)機(jī)構(gòu)中增加了一對緩沖裝置,使凹凸鎖止弧脫開過程中減少?zèng)_擊,過渡平順,因此實(shí)際軌跡在尖嘴部分比理論軌跡更圓滑;2)試驗(yàn)證明該機(jī)構(gòu)設(shè)計(jì)滿足移栽軌跡和姿態(tài)等農(nóng)藝要求。
試驗(yàn)選用萬壽菊花卉穴盤苗,穴盤育苗基質(zhì)采用珍珠巖和泥炭土混合而成,含水率為46%,穴盤規(guī)格為8(列)×16(行),穴口長×寬為31 mm×31 mm,深度為43 mm,穴盤數(shù)量為10盤,苗齡為35 d,平均苗高約10 cm。移栽機(jī)構(gòu)轉(zhuǎn)速設(shè)定為35 r/min(移栽速度70株/min)。進(jìn)行連續(xù)移栽試驗(yàn)如圖11所示。
圖11 樣機(jī)移栽試驗(yàn)
移栽試驗(yàn)結(jié)果及性能參數(shù)如表1所示,去除空穴,共連續(xù)取栽1 225株,取出1 192株,栽植961株,平均取出成功率達(dá)到97.27%,平均栽植成功率為77.62%,表明該取栽一體式自動(dòng)移栽機(jī)構(gòu)滿足順利從缽盤取出缽苗的要求,但栽植效果相對偏低,通過試驗(yàn)視頻分析發(fā)現(xiàn),主要原因在于選用的花卉苗葉子伸展距離大于苗爪間的距離,在基質(zhì)不飽滿的情況下,缽苗栽入花盆后夾苗針釋放缽苗并往上運(yùn)動(dòng)時(shí),易把缽苗帶出花盆[30],增加移栽失敗概率。
表1 移栽試驗(yàn)參數(shù)
1)設(shè)計(jì)了一種花卉穴盤苗取栽一體式自動(dòng)移栽機(jī)構(gòu),分析了該移栽機(jī)構(gòu)的設(shè)計(jì)要求、工作原理,建立了機(jī)構(gòu)的運(yùn)動(dòng)學(xué)模型?;赩B可視化平臺(tái)開發(fā)該機(jī)構(gòu)的計(jì)算機(jī)輔助分析與優(yōu)化軟件,運(yùn)用軟件分析機(jī)構(gòu)參數(shù)變化對移栽軌跡和姿態(tài)的影響,優(yōu)選出1組符合取栽一體式自動(dòng)移栽要求的機(jī)構(gòu)參數(shù),橢圓長半軸為25.057 6 mm,橢圓短軸與長軸之比為0.995,移栽臂的初始安裝角為30°,行星架拐角為25°,行星架初始始角位移為?60°,行星齒輪回轉(zhuǎn)中心到夾苗針尖點(diǎn)的距離為160 mm。
2)基于優(yōu)化得到的參數(shù),在ADAMS中完成了移栽機(jī)構(gòu)的三維設(shè)計(jì)與仿真分析,并試制樣機(jī)進(jìn)行取栽試驗(yàn),試驗(yàn)結(jié)果表明:移栽速度為70株/min時(shí),取苗成功率為97.27%,栽苗成功率為77.62%;驗(yàn)證了取栽一體式自動(dòng)移栽機(jī)構(gòu)的設(shè)計(jì)的有效性。
3)運(yùn)動(dòng)學(xué)仿真與高速攝影移栽試驗(yàn)結(jié)果表明:理論軌跡和試驗(yàn)軌跡兩者基本一致,該機(jī)構(gòu)設(shè)計(jì)滿足花卉移栽軌跡和姿態(tài)等農(nóng)藝要求;但兩者取苗段存在著一定的差異,其原因是在移栽機(jī)構(gòu)上加裝了緩沖裝置,以此來減小凹、凸鎖止弧脫離時(shí)產(chǎn)生的較大沖擊。
本文研制的花卉穴盤苗取栽一體式自動(dòng)移栽機(jī)構(gòu),對于葉面寬且密的花卉缽苗,栽苗后苗爪容易把缽苗帶出花盆,使移栽失敗。為有效避免上述機(jī)構(gòu)帶苗現(xiàn)象發(fā)生,后續(xù)將從機(jī)構(gòu)運(yùn)動(dòng)和結(jié)構(gòu)設(shè)計(jì)方面進(jìn)行探索和研究:進(jìn)一步優(yōu)化機(jī)構(gòu)尺寸,增加苗爪之間的距離,避免夾苗針蹭刮缽苗葉面;優(yōu)化栽苗段軌跡,使苗爪能以一定傾角退出花盆,避開葉面;苗針結(jié)構(gòu)優(yōu)化,減少掛葉現(xiàn)象。
[1] 程堂仁,王佳,張啟翔. 發(fā)展我國創(chuàng)新型花卉產(chǎn)業(yè)的戰(zhàn)略思考[J]. 中國園林,2013(2):73-78.
Cheng Tangren, Wang Jia, Zhang Qixiang. Strategic thinking about the development of innovative flower industry in China[J]. Journal of Chinese Landscape Architecture, 2013(2): 73-78. (in Chinese with English abstract)
[2] 2020年新疆設(shè)施農(nóng)業(yè)面積達(dá)到200萬畝[J]. 農(nóng)業(yè)工程技術(shù):溫室園藝,2010(10):76.
The facility agricultural area of XinJiang Will Reach 2 Million Mu in 2020[J]. Agriculture Engineering Technology: Greenhouse & Horticulture, 2010(10):76. (in Chinese with English abstract)
[3] 馬彩雯,王曉冬,吳樂天,等. 新疆設(shè)施農(nóng)業(yè)發(fā)展現(xiàn)狀分析[J]. 農(nóng)機(jī)化研究,2010,32(10):230-232,236.
Ma Caiwen, Wang Xiaodong, Wu Letian, et al. Analyze of facility agriculture present situation in Xinjiang[J]. Journal of Agricultural Mechanization Research, 2010, 32(10): 230-232, 236. (in Chinese with English abstract)
[4] 王榮華,邱立春,田素博. 我國穴盤苗機(jī)械化生產(chǎn)的現(xiàn)狀與發(fā)展[J]. 農(nóng)機(jī)化研究,2008,30(7):230-231.
Wang Ronghua, Qiu Lichun, Tian Subo. Status and development of mechanized processing of plug seedling in China[J]. Journal of Agricultural Mechanization Research, 2008, 30(7): 230-231. (in Chinese with English abstract)
[5] Choi W C, Kim D C, Yu H R. Development of a seedling pick-up device for vegetable transplanting[J]. American Society of Agricultural Engineers, 2002, 45(1): 13-19.
[6] 齊飛,周新群,張躍峰,等. 世界現(xiàn)代化溫室裝備技術(shù)發(fā)展及對中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(10):279-285.
Qi Fei, Zhou Xinqun, Zhang Yuefeng, et al. Development of world greenhouse equipment and technology and some implications to China[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 279-285. (in Chinese with English abstract)
[7] 辜松,楊艷麗,張躍峰. 荷蘭溫室盆花自動(dòng)化生產(chǎn)裝備系統(tǒng)的發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(19):1-8.
Gu Song, Yang Yanli, Zhang Yuefeng. Development status of automated equipment systems for greenhouse potted flowers production in Netherlands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 1-8. (in Chinese with English abstract)
[8] 田素博,邱立春,張?jiān)? 基于PLC的穴盤苗移栽機(jī)械手控制系統(tǒng)設(shè)計(jì)[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2007(38):122-124.
Tian Subo, Qiu Lichun, Zhang Shi. Control system of transplanting potted seedlings manipulator based on PLC[J]. Journal of Shenyang Agricultural University, 2007(38): 122-124. (in Chinese with English abstract)
[9] 韓長杰,徐陽,張靜,等. 半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):54-61.
Han Changjie, Xu Yang, Zhang Jing, et al. Design and experiment of semi-automatic transplanter for watermelon seedlings raised on compression substrate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 54-61. (in Chinese withEnglish abstract)
[10] 孫國祥,汪小旵,何國敏,等. 穴盤苗移栽機(jī)末端執(zhí)行器設(shè)計(jì)與虛擬樣機(jī)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(10):48-53.
Sun Guoxiang, Wang Xiaochan, He Guomin, et al. Design of the end-effector for plug seedlings transplanter and analysis on virtual prototype[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 48-53. (in Chinese with English abstract)
[11] 馮青春,王秀. 花卉幼苗智能移栽機(jī)設(shè)計(jì)與仿真分析[J].農(nóng)機(jī)化研究,2013,35(12):78-81.
Feng Qingchun, Wang Xiu. Design and simulation of automatic transplanter for flower seedling[J]. Journal of Agricultural Mechanization Research, 2013, 35(12): 78-81. (in Chinese with English abstract)
[12] 馮青春,王秀,姜?jiǎng)P,等. 花卉幼苗自動(dòng)移栽機(jī)關(guān)鍵部件設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(6):21-27.
Feng Qingchun, Wang Xiu, Jiang Kai, et al. Design and test of key parts on automatic transplanter for flower seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 21-27. (in Chinese with English abstract)
[13] 胡海軍. 橢圓齒輪行星輪系蔬菜缽苗取苗機(jī)構(gòu)的研究與設(shè)計(jì)[D]. 杭州:浙江理工大學(xué),2014.
Hu Haijun. Study and Design on Vegetable Plug Seedling Pick-up Mechanism of Planetary Gear Train with Planetary Elliptic Gears[D]. Hangzhou: Zhejiang Sci-Tech University, 2014. (in Chinese with English abstract)
[14] 周梅芳,俞高紅,趙勻,等. 橢圓齒輪行輪系蔬菜缽苗取苗機(jī)構(gòu)的參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):13-21.
Zhou Meifang, Yu Gaohong, Zhao Yun, et al. Parameters optimization and test on pick-up mechanism of planetary gear train with ellipse gears for vegetable plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering, (Transactions of the CSAE), 2014, 30(18): 13-21. (in Chinese with English abstract)
[15] 吳國環(huán),俞高紅,項(xiàng)筱潔,等. 三移栽臂水稻缽苗移栽機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):15-22.
Wu Guohuan, Yu Gaohong, Xiang Xiaojie, et al. Design and test of rice potted-seedling transplanting mechanism with three transplanting arms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 15-22. (in Chinese with English abstract)
[16] 俞騰飛. 非圓-橢圓齒輪行星系取苗機(jī)構(gòu)的參數(shù)優(yōu)化與設(shè)計(jì)[D]. 杭州:浙江理工大學(xué),2013.
Yu Tengfei. Parameters Optimization and Design of Picking Seeding Mechanism of Planetary Gear Train With Non-Circular and Elliptical Gear[D]. Hangzhou: Zhejiang Sci-Tech University, 2013. (in Chinese with English abstract)
[17] 祝廣輝. 蔬菜缽苗旋轉(zhuǎn)式取苗機(jī)構(gòu)的參數(shù)優(yōu)化與試驗(yàn)研究[D].杭州:浙江理工大學(xué),2015.
Zhu Guanghui. Parameters Optimization and Experimental Research of Rotary Pick-up Mechanism for Vegetable Pot-seedling[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. (in Chinese with English abstract)
[18] 張振國,呂權(quán)貴,陳青云,等. 盆栽花卉移栽機(jī)取苗機(jī)構(gòu)的現(xiàn)狀分析[J]. 江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2016,37(4):409-417.
Zhang Zhenguo, Lü Quangui, Chen Qingyun, et al. Staus analysis of picking seeding transplanting mechanism automatic mechanism for potted flower[J]. Journal of Jiangsu University: Natural Science Edition, 2016, 37(4): 409-417. (in Chinese with Englishabstract)
[19] 吳有特. 蔬菜缽苗取苗機(jī)構(gòu)的優(yōu)化設(shè)計(jì)與試驗(yàn)分析[D]. 杭州:浙江理工大學(xué),2016.
Wu Youte. Optimize Design and Test Analysis on Pick-up Mechanism for Vegetable Plug Seedling[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. (in Chinese with English abstract)
[20] Jin Xin, Li Daoyi, Ma Hao, et al. Development of single row automatic transplanting device for potted vegetable seedings[J]. Int J Agric & Biol Eng, 2018, 11(3): 67-75.
[21] 俞高紅,黃小艷,葉秉良. 旋轉(zhuǎn)式水稻缽苗移栽機(jī)構(gòu)的機(jī)理分析與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):16-22.
Yu Gaohong, Huang Xiaoyan, Ye Bingliang, et al. Principle analysis and parameters optimization of rotary rice pot seedling transplanting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 16-22. (in Chinese with English abstract)
[22] 李革,趙勻,俞高紅. 橢圓齒輪行星系分插機(jī)構(gòu)的機(jī)理分析和計(jì)算機(jī)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(4):78-81.
Li Ge, Zhao Yun, Yu Gaohong. Theoretical analysis and parameters optimizing of separating-planting mechanism with planetary ellipse gears[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(4): 78-81. (in Chinese with English abstract)
[23] 趙勻. 農(nóng)業(yè)機(jī)械分析與綜合[M]. 北京:機(jī)械工業(yè)出版社,2009.
[24] 王永維,何焯亮,王俊,等. 旱地蔬菜缽苗自動(dòng)移栽機(jī)栽植性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):19-25.
Wang Yongwei, He Zhuoliang, Wang Jun, et al. Experiment on transplanting performance of automatic vegetable pot seedling transplanter for dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 19-25. (in Chinese with English abstract)
[25] 俞高紅,劉炳華,趙勻,等. 橢圓齒輪行星系蔬菜缽苗自動(dòng)移栽機(jī)構(gòu)運(yùn)動(dòng)機(jī)理分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(4):53-57.
Yu Gaohong, Liu Binghua, Zhao Yun, et al. Kinematic principle analysis of transplanting mechanism with planetary elliptic gears in automatic vegetable transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 53-57. (in Chinese with English abstract)
[26] 俞亞新,駱春曉,俞高紅,等. 橢圓-不完全非圓齒輪行星系取苗機(jī)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(6):62-68.
Yu Yaxin, Luo Chunxiao, Yu Gaohong, et al. Parameters optimization of pick-up mechanism of planetary gear train with ellipse gears and incomplete non-circular gear[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 62-68. (in Chinese with English abstract)
[27] 俞高紅,何琰,陳建能,等. 旋轉(zhuǎn)式分插機(jī)構(gòu)運(yùn)動(dòng)學(xué)多目標(biāo)非劣解群自動(dòng)尋求[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(6):47-52.
Yu Gaohong, He Yan, Chen Jianneng, et al. Automatic search of pareto solutions of multi-objective for rotary transplanting mechanism kinematics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(6): 47-52. (in Chinese with English abstract)
[28] 裘利鋼,俞高紅. 蔬菜缽苗自動(dòng)移栽機(jī)送苗裝置的設(shè)計(jì)與試驗(yàn)[J]. 浙江理工大學(xué)學(xué)報(bào),2012,29(5):683-687.
Qiu Ligang, Yu Gaohong. Design and test of a seedling- delivering device on an automatic transplanter for pots of vegetable seedlings[J]. Journal of ZheJiang Sci-Tech University, 2012, 29(5): 683-687. (in Chinese with English abstract)
[29] 胡建平,靳合琦,常燕超,等. 基于Delta并聯(lián)機(jī)構(gòu)缽苗移栽機(jī)器人尺度綜合與軌跡規(guī)劃[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):28-35.
Hu Jianping, Jin Heqi, Chang Yanchao, et al. Dimensional synthesis and trajectory planning of plug seedling transplanting robot based on delta parallel mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 28-35. (in Chinese with English abstract)
[30] 高國華,馬帥. 基于離散單元分析與物場分析的盆花移栽手爪優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):35-42.
Gao Guohua, Ma Shuai. Improvement of transplanting manipulator for potted flower based on discrete element analysis and Su-field analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 35-42. (in Chinese with English abstract)
Design and experiment of integrated automatic transplanting mechanism for taking and planting of flower plug seedlings
Zhou Meifang1, Xu Jianjun1, Tong Junhua2, Yu Gaohong2※, Zhao Xiong2, Xie Jie2
(1.,321017,; 2.,,310018,)
In order to develop a more efficient and universal flower auto-transplantation technique, an auto-transplantation mechanism with the integrated function of seedling pick-up and transplanting has been designed. This mechanism involves gear driving and two transplanting arms of the same structure. The gear driving system is made up of one semi-circle gear, four oval planet gears and concave-convex lock-up arc. It aims to move with the non uniform speed through the operation of planet gears and pulling and imbedding of concave-convex lock-up arc. The auto-transplantation arm includes the transplanting claw, convex gear and removing gear-gap parts. It transfers the whirling operation of planet gear into straight-line operation of pick-up seedling. The manual finger scratching and planting were simulated by two pins at the end of the seedling arm. The auto-transplantation mechanism combines the pick-up and planting. The transplanting trajectory and the location of pick-up and planting were special. Thus, it is essential to design new mechanism accordance with the movement of pick-up clip and achieve “Double beak sharp” trajectory. In this paper, we designed a device of bouncing clip to lengthen the trajectory to realize the function of pick-up and planting, and it could facilitate the integration of the planting. At the same time, when the claw moves nearly to the pot seedling, the seedling needle was inserted into the soil with a certain angle of inclination, which could effectively avoid the injury of the seedlings and the interference with the seedling box. Based on the kinematics characteristics of the mechanism, a corresponding mathematic model was established, and the Visual Basic 6.0 software was used to optimize the mechanism parameters. The program was used to analyze the influence of the parameters of mechanism on the trajectory and attitude of the “Double beak sharp". Finally, the best group of mechanism parameters was selected, and then the 3D design and components assembly were carried out based on SolidWorks 2015 software. Importing the 3D model to Adams, the trajectories of seedling needle could be obtained by the kinematics simulation. Finally, the prototype test was carried out and the test trajectory of the prototype was obtained by the test platform. Through the platform, the operation process was recorded by high-speed camera. Therefore, the trajectories of seedling needle could be tracked through the Bestcam picture analysis software. The results were basically the same among the simulation trajectory, the test trajectory of the prototype and the theoretical trajectory, which verified the correctness and feasibility of the design in this paper. Experimental research was carried out using the prototype, “Marigold chrysanthemum” seedlings were selected in the experiment, the basic composition of the pot seedling combines the pearl cave and peat mud, with the water component of 46%, the seedling tray were eight lines and 16 rows, both the length and width of seedling were 31 mm, and depth was 43 mm, and the test seedlings of marigold were 35 days, with the average height of 10 cm. The rotation speed of the mechanism was set as 35 r/min, its mean efficiency was 70 stems per minute. The obtained seedling success rate was 97.27%, while the transplanting success rate was 77.62%. It reflected the practicality of the integrated transplanting mechanism; the research could provide a reference for the key technology of automatic transplanting.
agricultural machinery; transplants; design; flowers; integration of taking and planting
10.11975/j.issn.1002-6819.2018.20.006
S223.9
A
1002-6819(2018)-20-0044-08
2018-06-15
2018-08-01
國家自然科學(xué)基金項(xiàng)目(51505429,51575495);浙江省科技廳基礎(chǔ)公益研究計(jì)劃項(xiàng)目(LGN18E050003);金華市科學(xué)技術(shù)農(nóng)業(yè)類重點(diǎn)項(xiàng)目(2014-2-005)
周梅芳,副教授,主要從事農(nóng)業(yè)機(jī)械和機(jī)電一體化研究。Email:984752073@qq.com
俞高紅,教授、博導(dǎo),主要從事種植機(jī)械與機(jī)構(gòu)學(xué)研究。Email:yugh@zstu.edu.cn
周梅芳,徐建軍,童俊華,俞高紅,趙 雄,解 杰. 花卉穴盤苗取栽一體式自動(dòng)移栽機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):44-51. doi:10.11975/j.issn.1002-6819.2018.20.006 http://www.tcsae.org
Zhou Meifang, Xu Jianjun, Tong Junhua, Yu Gaohong, Zhao Xiong, Xie Jie. Design and experiment of integrated automatic transplanting mechanism for taking and planting of flower plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 44-51. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.006 http://www.tcsae.org