李典鵬,王 輝,孫 濤,劉隋赟昊,李 政,張 凱,賈宏濤
?
機(jī)械壓實(shí)對(duì)新疆綠洲農(nóng)田土壤微生物活性及碳排放的影響
李典鵬,王 輝,孫 濤,劉隋赟昊,李 政,張 凱※,賈宏濤
(新疆農(nóng)業(yè)大學(xué)草業(yè)與環(huán)境科學(xué)學(xué)院,烏魯木齊 830052)
為探究機(jī)械壓實(shí)對(duì)綠洲農(nóng)田土壤微生物活性和碳排放的影響,在參考新疆農(nóng)田耕作層土壤容重分布特征的基礎(chǔ)上,選取1.15(T1.15)、1.30(T1.30)、1.45(T1.45)和1.60 g/cm3(T1.60)4個(gè)容重梯度模擬機(jī)械壓實(shí)土壤程度,測(cè)定不同處理0~120 d內(nèi)土壤有機(jī)碳、微生物生物量碳、氮、酶活性以及碳排放速率變化特征。結(jié)果表明:1)試驗(yàn)周期內(nèi)(0~120 d),土壤微生物生物量碳、氮、脲酶和過(guò)氧化氫酶活性隨試驗(yàn)周期的延長(zhǎng)而降低,隨土壤容重增加呈先升高后降低趨勢(shì),容重為1.45 g/cm3時(shí)最高。2)T1.15、T1.30、T1.45和T1.60處理土壤碳累積排放量分別為557.26、653.48、665.00和522.01 g/m2,也表現(xiàn)出隨容重增加先升高后降低的趨勢(shì),T1.45處理最高。3)土壤碳排放與土壤有機(jī)碳、可溶性有機(jī)碳、微生物生物量碳、氮、脲酶和過(guò)氧化氫酶活性顯著正相關(guān)(<0.05)。綜上,土壤壓實(shí)通過(guò)改變土壤微生物生物量和酶活性影響土壤碳排放速率;當(dāng)綠洲農(nóng)田土壤容重大于1.45 g/cm3時(shí),應(yīng)進(jìn)行適當(dāng)?shù)姆?,使土壤微生物活性達(dá)到最佳水平。
土壤;微生物;碳排放;壓實(shí)作用;微生物生物量;酶活性;新疆農(nóng)田
土壤壓實(shí)是土壤保護(hù)的優(yōu)先研究領(lǐng)域[1]。隨著農(nóng)業(yè)現(xiàn)代化和機(jī)械化的發(fā)展,大型機(jī)械通常會(huì)對(duì)農(nóng)田土壤結(jié)構(gòu)造成一定的損傷[2],其中最明顯的是增加土壤容重、改變土壤孔隙結(jié)構(gòu),造成作物減產(chǎn)。這種現(xiàn)象主要在中國(guó)東北地區(qū)的商品糧食生產(chǎn)基地、新疆棉花種植區(qū)[3],以及美國(guó)[4]和加拿大西部[5]等地區(qū)較為普遍。機(jī)械壓實(shí)對(duì)農(nóng)田土壤物理性質(zhì)造成的負(fù)面影響已經(jīng)有大量研究報(bào)道[6-7],但對(duì)農(nóng)田土壤微生物活性和碳排放的影響研究還相對(duì)較少。
土壤微生物活性是反映土壤生物肥力的重要指標(biāo),但壓實(shí)對(duì)土壤微生物活性的影響還并不明確。部分研究表明,土壤壓實(shí)會(huì)降低土壤微生物活性和微生物生物量[7-8],因?yàn)閴簩?shí)改變了底物的空間分布和有效性,降低土壤水分利用率和通氣量[9],從而影響土壤微生物數(shù)量和活性。但也有研究發(fā)現(xiàn),微生物對(duì)土壤壓實(shí)的響應(yīng)不顯著,因?yàn)閴簩?shí)改變了土壤孔隙度和大孔隙的連續(xù)性,不利于好氧微生物生長(zhǎng)但有益于厭氧微生物生長(zhǎng)[7,10],造成微生物群落結(jié)構(gòu)發(fā)生變化,而微生物生物量無(wú)明顯變化。不同研究結(jié)果的差異可能與土壤性質(zhì)和壓實(shí)程度有關(guān),因此明確不同壓實(shí)程度對(duì)土壤微生物及其活性的影響,將有助于明確不同土壤類型對(duì)壓實(shí)的響應(yīng)及壓實(shí)效應(yīng)閾值。
土壤碳排放是大氣CO2的重要來(lái)源,與土壤結(jié)構(gòu)和微生物活性密切相關(guān)。土壤CO2產(chǎn)生過(guò)程主要為生物所驅(qū)動(dòng),受土壤微生物群落組成、底物和養(yǎng)分的可利用性以及地上地下環(huán)境的共同影響[11]。研究表明,壓實(shí)會(huì)降低土壤總孔隙度,改變孔隙分布狀況,使之朝著小孔隙發(fā)展;增強(qiáng)土壤有機(jī)質(zhì)的物理保護(hù),抑制土壤微生物主導(dǎo)的碳循環(huán)過(guò)程,降低線蟲(chóng)和原生動(dòng)物捕食土壤微生物的能力,從而抑制土壤碳排放[12]。但也有研究表明,壓實(shí)土壤可促進(jìn)土壤有機(jī)碳礦化[13]或不存在顯著影響[14]。不同研究結(jié)果的差異可能與壓實(shí)的程度[15]、土壤耕作制度[16]、放牧以及機(jī)械類型[17]等因素有關(guān),但壓實(shí)對(duì)綠洲農(nóng)田土壤碳排放影響的研究仍無(wú)定論[18]。
本研究以典型綠洲農(nóng)田土壤灰漠土為研究對(duì)象,在整理分析新疆土壤容重分布規(guī)律的基礎(chǔ)上,通過(guò)異位土柱模擬不同機(jī)械壓實(shí)強(qiáng)度(容重1.15、1.30、1.45和1.60 g/cm3),探究了壓實(shí)對(duì)新疆綠洲農(nóng)田灰漠土微生物生物量、酶活性和碳排放的影響,旨在探究壓實(shí)對(duì)影響土壤微生物活性和碳排放的閾值,以及壓實(shí)土壤碳排放與微生物活性的相關(guān)性,以期為綠洲農(nóng)田的經(jīng)營(yíng)管理提供基礎(chǔ)參考。
土壤樣品采自國(guó)家灰漠土肥力與肥料效益觀測(cè)試驗(yàn)站,試驗(yàn)站位于新疆烏魯木齊以北25 km的新疆農(nóng)業(yè)科學(xué)院國(guó)家現(xiàn)代農(nóng)業(yè)科技示范園內(nèi)(43°95′26″N,87°46′45″E)。試驗(yàn)區(qū)屬典型中亞干旱區(qū)山地綠洲生態(tài)系統(tǒng),海拔600 m,年均降雨量310 mm,年均蒸發(fā)量2 570 mm;年平均氣溫7.7 ℃,平均日照時(shí)數(shù)2 590 h,無(wú)霜期156 d。參照土壤發(fā)生分類標(biāo)準(zhǔn),供試土壤類型為典型灰漠土。
機(jī)械壓實(shí)土壤的直接后果是增加了土壤容重,因此,本研究采用土壤容重反映壓實(shí)程度。農(nóng)田表層土壤的容重一般介于1.20~1.60 g/cm3,剛翻耕過(guò)的農(nóng)田表層土壤容重可能小于1.00 g/cm3,而大型機(jī)械壓實(shí)的表土容重可達(dá)1.80 g/cm3以上。本文所使用土壤容重?cái)?shù)據(jù)主要來(lái)自3個(gè)方面:1)新疆第二次土壤普查數(shù)據(jù)《新疆土壤》;2)通過(guò)在奎屯、昌吉和瑪納斯等地調(diào)查采取的土壤容重?cái)?shù)據(jù);3)公開(kāi)發(fā)表的新疆農(nóng)田土壤容重?cái)?shù)據(jù)[19-20]。篩選條件:(1)測(cè)定土層為耕作層(0~20 cm)土壤容重;(2)土壤容重為烘干法測(cè)定。通過(guò)整理分析新疆農(nóng)田土壤容重?cái)?shù)據(jù)可知(圖1),新疆農(nóng)田土壤容重在數(shù)值上符合正態(tài)分布特征(=0.032),介于0.85~1.60 g/cm3之間,平均值和中值分別為1.27、1.35 g/cm3,峰度和偏度分別為?0.15和?0.75。據(jù)此,本研究設(shè)置1.15(T1.15)、1.30(T1.30)、1.45(T1.45)和1.60 g/cm3(T1.60)4個(gè)壓實(shí)(容重)處理。
圖1 新疆農(nóng)田土壤容重分布特征
2016年5月在國(guó)家灰漠土肥力與肥料效益觀測(cè)試驗(yàn)站采集0~20 cm耕層土壤,帶回實(shí)驗(yàn)室,去除植物殘?bào)w、侵入體和礫石后,過(guò)5 mm樣篩備用。為防止水分噴施對(duì)土壤容重的影響,在重力壓實(shí)前將土壤含水率調(diào)整為田間持水量的60%,然后統(tǒng)一對(duì)土壤進(jìn)行分層壓實(shí)。試驗(yàn)設(shè)置1.15、1.30、1.45和1.60 g/cm34個(gè)壓實(shí)(容重)處理。稱取18.4 kg(相當(dāng)于干土質(zhì)量15.0 kg)土壤置于底部密封的PVC管(高為50cm,直徑為20cm)內(nèi),根據(jù)公式=/(為容重g/cm3;為土壤質(zhì)量 g;為土柱體積cm3)求出不同壓實(shí)下土壤體積,和公式=/(為土壤厚度cm;為體積cm3;為PVC管橫切面面積m2)求出對(duì)應(yīng)容重下土壤厚度后,采用重力將土壤壓至42、37、33和30cm厚,對(duì)應(yīng)容重分別為1.15、1.30、1.45和1.60 g/cm3。
每個(gè)處理設(shè)置8個(gè)重復(fù),編號(hào)為1~8,將裝有土壤的PVC管置于室內(nèi),室溫控制在20 ℃左右(±1.0 ℃),土壤含水量保持在田間持水量(38%)的60%(3.4 L水),因此土與水的質(zhì)量為18.4 kg。每2 d稱取土柱質(zhì)量,采用差減法計(jì)算水分蒸發(fā)量,并用噴施法補(bǔ)充水分,試驗(yàn)用水為蒸餾水。噴水平衡24 h后測(cè)定土壤碳排放,測(cè)定時(shí)段為每天上午09:00-12:00,測(cè)定時(shí)期為2016年6月至10月。試驗(yàn)分為4個(gè)時(shí)期,分別為開(kāi)始試驗(yàn)后的第10、30、60和120天,前10 d土壤碳排放的監(jiān)測(cè)頻率為每2 d一次,10 d后為每10 d一次。分別于第10、30、60和120天破壞第5、6、7和8號(hào)土柱,將土柱中土壤全部倒出后混勻后用四分法采集新鮮土壤樣品,于實(shí)驗(yàn)室進(jìn)行分析。新鮮土壤樣品測(cè)定土壤微生物生物量碳、氮和酶活性,風(fēng)干土樣用于土壤有機(jī)碳和可溶性有機(jī)碳的測(cè)定??杀碚魑⑸锘钚缘闹笜?biāo)較多,包括有機(jī)碳、可溶性有機(jī)碳、微生物生物量碳、氮、脲酶、堿性磷酸酶、過(guò)氧化氫酶活性等[21],本文選取具有代表性且前人研究較多的有機(jī)碳、可溶性有機(jī)碳、微生物生物量碳、氮、脲酶和過(guò)氧化氫酶活性代表土壤微生物活性指標(biāo)。
土壤碳排放速率采用開(kāi)路式土壤碳通量測(cè)量系統(tǒng)LI-COR 8100(Li-COR,Lincoln,NE,USA)測(cè)定,每次測(cè)定1~4號(hào)土柱碳排放速率,數(shù)據(jù)采集頻率為2 s記錄一個(gè)數(shù)據(jù),測(cè)定時(shí)長(zhǎng)為180 s;土壤脲酶活性(URE)采用靛酚藍(lán)比色法測(cè)定,以每克土24 h產(chǎn)生的NH4+-N毫克數(shù)表示;土壤過(guò)氧化氫酶活性(CAT)采用高錳酸鉀滴定法,以每克土消耗0.1 mol/L KMnO4毫升數(shù)表示;全碳全氮采用元素分析儀(Euro EA3000-Single, EuroVector, Milan, Italy)測(cè)定,可溶性有機(jī)碳采用濕氧化法進(jìn)行測(cè)定,土壤pH值用pH計(jì)測(cè)定(水土比為5:1),土壤有機(jī)碳(有機(jī)質(zhì))測(cè)定采用重鉻酸鉀外加熱法,有效磷采用碳酸氫鈉浸提—鉬藍(lán)比色法測(cè)定,速效鉀采用乙酸銨浸提—火焰光度法測(cè)定,速效氮采用堿解擴(kuò)散法,全磷全鉀采用碳酸鈉熔融鉬藍(lán)比色法和火焰光度計(jì)測(cè)定,機(jī)械組成采用吸管法測(cè)定,容重采用環(huán)刀法測(cè)定,土壤微生物生物量碳、氮采用氯仿熏蒸-K2SO4提取法測(cè)定,具體方法步驟參考《土壤農(nóng)業(yè)化學(xué)分析方法》[22],供試土壤基本理化性質(zhì)見(jiàn)表1。
表1 供試土壤基本性質(zhì)
土壤CO2釋放量計(jì)算如公式(1):
×M××(1)
式中為CO2釋放量,g/m2;為CO2釋放速率,mol/(m2·s);為CO2摩爾質(zhì)量,取值為44 g/mol;為時(shí)間, d;在計(jì)算累積排放量時(shí),分別取0~10、10~30、30~60和60~120 d土壤碳排放速率平均值;分別為10、20、30和60 d,最后求各處理0~120 d內(nèi)累積排放通量。
為評(píng)價(jià)壓實(shí)對(duì)土壤和環(huán)境的影響以及探究壓實(shí)度與微生物活性指標(biāo)(microbial activities indictor,MAI)和碳排放指標(biāo)(carbon emission indictor,CEI)與容重的相關(guān)性,采用min-max 標(biāo)準(zhǔn)化min-max標(biāo)準(zhǔn)化方法是對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化[23]。設(shè)min和max分別為屬性的最小值和最大值,將的一個(gè)原始值N通過(guò)min-max標(biāo)準(zhǔn)化映射成在區(qū)間[0,1]的值(公式(2))。表征微生物活性指標(biāo)包括土壤有機(jī)碳(SOC)、可溶性有機(jī)碳(DOC)、微生物生物量碳(MBC)、微生物生物量氮(MBN)、脲酶(URE)和過(guò)氧化氫酶(CAT)活性,對(duì)每個(gè)指標(biāo)單獨(dú)標(biāo)準(zhǔn)化,最后通過(guò)求其平均值代表微生物活性指標(biāo)(公式(3))。微生物活性指標(biāo)一般為正效應(yīng),而碳排放指標(biāo)一般為負(fù)效應(yīng),因此N為正值,N為負(fù)值。微生物活性指標(biāo)(MAI)標(biāo)準(zhǔn)化(N)計(jì)算公式為:
碳排放指標(biāo)()標(biāo)準(zhǔn)化(N)公式如下:
使用Excel 2016對(duì)數(shù)據(jù)進(jìn)行記錄和預(yù)處理,使用SPSS 20.0對(duì)其進(jìn)行描述性統(tǒng)計(jì)分析,并對(duì)數(shù)據(jù)進(jìn)行-正態(tài)分布檢驗(yàn)。采用單因素方差分析和多重比較(LSD),分析不同壓實(shí)下土壤碳排放與微生物生物量碳、氮、酶活性之間的差異。采用Pearson檢驗(yàn)土壤碳排放、微生物生物量碳、氮、酶活性變量間的相關(guān)性,采用Origin 2017(Origin Lab, Northampton, MA 01060, USA)繪圖。
壓實(shí)對(duì)土壤有機(jī)碳、微生物生物量碳和可溶性有機(jī)碳的影響不同(圖2、3)。試驗(yàn)周期內(nèi),土壤有機(jī)碳含量呈下降趨勢(shì),不同時(shí)期處理間有機(jī)碳差異不顯著。T1.45土壤可溶性有機(jī)碳差異顯著高于其他處理(<0.05);60~120 d 時(shí)段T1.15、T1.30、T1.45和T1.60處理可溶性有機(jī)碳含量與0~10 d分別降低了35.8%、29.4%、28.7%和32.4%。土壤微生物生物量碳、氮介于127.97~283.66和18.73~36.84 mg/kg之間,不同時(shí)期T1.45處理微生物生物量碳、氮最高。壓實(shí)處理顯著改變了土壤脲酶和過(guò)氧化氫酶活性,即隨容重的增加土壤酶活性呈先增加后下降的趨勢(shì),T1.45處理酶活性顯著高于其他處理。隨試驗(yàn)周期的延長(zhǎng),土壤酶活性呈下降趨勢(shì)(圖2)。T1.30與T1.60處理過(guò)氧化氫酶活性差異顯著(<0.05),但脲酶不存在顯著差異(圖3)。T1.45土壤微生物生物量碳/氮顯著高于其他處理(圖3),T1.15、T1.30和T1.60處理間不存在顯著性差異。
圖2 不同壓實(shí)程度土壤有機(jī)碳、微生物生物量碳氮和酶活性動(dòng)態(tài)變化
注:不同小寫(xiě)字母表示在0.05水平存在顯著差異,下同。
試驗(yàn)期間內(nèi)(0~120 d)土壤碳排放速率呈下降趨勢(shì)(圖4)。0~10 d不同處理間差異顯著,表現(xiàn)為T(mén)1.45>T1.30>T1.15>T1.60;30~120 d不同處理間雖存在一定差異,表現(xiàn)為T(mén)1.45和T1.30顯著高于T1.15和T1.60;但T1.45與T1.30,T1.15與T1.60不存在顯著差異。相同處理0~10 d土壤碳排放下降速率高于其他3個(gè)時(shí)期。通過(guò)計(jì)算不同處理0~120 d內(nèi)土壤碳排放釋放的CO2累積量(圖5),T1.15、T1.30、T1.45和T1.60處理土壤碳累積排放量分別為557.26、653.48、665.00和522.01 g/m2。T1.30與T1.45,T1.15與T1.60處理不存在顯著性差異,但T1.30、T1.45顯著高于T1.15和T1.60(<0.05)。
圖4 土壤碳排放動(dòng)態(tài)變化
圖5 土壤CO2累積排放量
土壤碳排放與土壤因子相關(guān)分析結(jié)果表明,土壤因子間存在顯著或不顯著的關(guān)系(表2),其中微生物生物量碳、氮和可溶性有機(jī)碳、微生物生物量氮的顯著相關(guān)性(<0.01),相關(guān)系數(shù)達(dá)0.98;微生物生物量碳/氮與有機(jī)碳等因子間不存在顯著相關(guān)性。土壤有機(jī)碳與可溶性有機(jī)碳、微生物生物量碳、氮存在顯著相關(guān),脲酶與過(guò)氧化氫酶顯著相關(guān)(<0.05)。土壤碳排放速率與微生物生物量碳/氮不存在相關(guān)性,與脲酶活性、過(guò)氧化氫酶活性顯著相關(guān)(<0.05),與土壤有機(jī)碳、可溶性有機(jī)碳、微生物生物量碳、氮均呈顯著相關(guān)(<0.01),土壤碳排放與可溶性有機(jī)碳的相關(guān)性最高(0.87),其次分別為微生物生物量碳、氮、土壤有機(jī)質(zhì)、脲酶活性、過(guò)氧化氫酶活性。
表2 土壤微生物生物量碳氮、酶活性與碳排放速率的相關(guān)分析
注:表中SOC為土壤有機(jī)碳、URE為脲酶活性、CAT為過(guò)氧化氫酶活性、 DOC為可溶性有機(jī)碳、MBC為微生物生物量碳、MBN為微生物生物量氮、C為土壤碳排放速率。*表示顯著相關(guān)<0.05,**表示極顯著相關(guān)<0.01,雙尾檢驗(yàn)。
Note: SOM, EU, CAT, DOC, MBC, MBN, MBC/MBN andCrepresent soil organic matter, urease activity, catalase activity, dissolved organic carbon, microbial biomass carbon, microbial biomass nitrogen and soil C emission rate, respectively. * shows significant differences at<0.05, ** shows significant differences at<0.01.
二次函數(shù)能較好的擬合土壤容重()與生物活性指標(biāo)(MAI)和碳排放指標(biāo)(CEI)間的關(guān)系(圖6)。當(dāng)土壤容重小于1.45 g/cm3時(shí),土壤微生物活性隨容重的增加而增加,大于1.45 g/cm3時(shí)呈下降趨勢(shì)。壓實(shí)對(duì)土壤碳排放的影響與微生物活性相反,容重小于1.45 g/cm3碳排放增加,大于1.45 g/cm3呈降低趨勢(shì)??傃灾?dāng)土壤容重小于閾值時(shí),生物活性和碳排放均呈增加趨勢(shì),大于閾值時(shí)呈下降趨勢(shì),生物活性指標(biāo)相對(duì)較低。
圖6 土壤微生物活性和碳排放指標(biāo)與容重的關(guān)系
土壤酶活性能反映微生物內(nèi)部化學(xué)反應(yīng)歷程的有序性,是表征微生物活性的一個(gè)重要指標(biāo)。本研究中,模擬機(jī)械壓實(shí)改變了土壤微生物生物量碳、氮和酶活性,但土壤有機(jī)碳含量差異不顯著(圖2、3)。這與前人試驗(yàn)結(jié)果一致,即適當(dāng)增加土壤容重,土壤微生物生物量碳和酶活性會(huì)有所提升[24]。這是因?yàn)閴簩?shí)后土壤孔隙度、顆粒排列、溫度和持水性均會(huì)發(fā)生改變,從而影響微生物生物量和酶活性[25-27]。土壤微生物生物量碳/氮可反映微生物群落結(jié)構(gòu),其變化預(yù)示著微生物群落結(jié)構(gòu)變化。本研究通過(guò)模擬土壤容重的改變,不同處理微生物生物量碳/氮均在5以上(圖3),一般情況下細(xì)菌、放線菌和真菌的碳氮比分別在5:1、6:1和10:1,這可能是土壤經(jīng)壓機(jī)械實(shí)后細(xì)菌不是唯一的優(yōu)勢(shì)菌,真菌和放線菌也占有相當(dāng)大的比重,這與Hartmann等[18]研究結(jié)果一致。綜上,模擬機(jī)械壓實(shí)通過(guò)改變孔隙結(jié)構(gòu)從而影響微生物生物量碳、氮和酶活性。
壓實(shí)對(duì)土壤微生物活性的影響存在梯度效應(yīng)原因主要包括兩方面。一方面,壓實(shí)土壤降低微生物活性主要表現(xiàn)在對(duì)微生物生物量碳、氮的影響。研究表明,當(dāng)森林土壤容重低于1.70 g/cm3時(shí),微生物生物量隨土壤容重增加而升高,當(dāng)土壤容重大于1.70 g/cm3時(shí)微生物生物量碳、氮均顯著低于輕度壓實(shí)土壤[28-29];同時(shí),大型運(yùn)輸機(jī)械的壓實(shí)對(duì)土壤干擾能顯著影響微生物群落結(jié)構(gòu)多樣性及其功能[29]。因此,當(dāng)土壤容重大于壓實(shí)梯度中某一閾值時(shí),微生物生物量碳、氮會(huì)發(fā)生顯著變化。另一方面,壓實(shí)降低土壤微生物活性主要表現(xiàn)在對(duì)土壤酶活性的影響,原位研究結(jié)果表明,不同壓實(shí)區(qū)土壤轉(zhuǎn)化酶、多酚氧化酶、酸性磷酸酶和堿性磷酸酶存在顯著差異,較高壓實(shí)處理相對(duì)較低[30]。這與本研究結(jié)果一致,即壓實(shí)對(duì)土壤微生物生物量碳/氮和酶活性的影響存在閾值,但其閾值(1.70 g/cm3)高于本研究結(jié)果(1.45 g/cm3),當(dāng)土壤容重變化導(dǎo)致孔隙和空氣成為限制微生物生長(zhǎng)的因子時(shí),底物的可利用性可能是提升微生物活性的重要因子[31]。此外,也可能是由于森林土壤有機(jī)碳密度(4.24 kg/m2)普遍地高于農(nóng)田(2.56 kg/m2)[32],可被微生物直接礦化分解的底物相對(duì)較多,從而提高了壓實(shí)影響微生物生物量和酶活性的閾值。
土壤碳排放是一個(gè)復(fù)雜的生物化學(xué)過(guò)程,受較多環(huán)境因子(溫度、含水量和底物濃度等)影響,而外力機(jī)械壓實(shí)在很大程度上影響微生物呼吸以及土壤與外界氣體交換速率[33-34]。本研究中,容重的變化顯著改變了土壤碳排放速率,這與前人原位控制試驗(yàn)結(jié)果相似[35]。這是因?yàn)橥寥缐簩?shí)后結(jié)構(gòu)內(nèi)部形成厭氧環(huán)境,CO2是由微生物分解有機(jī)物質(zhì)產(chǎn)生的,在氧氣充足條件下CO2產(chǎn)生量大于缺氧條件,土壤厭氧條件形成后,厭氧微生物會(huì)相對(duì)占據(jù)優(yōu)勢(shì),但相對(duì)而言厭氧微生物的呼吸速率相對(duì)較低;此外,壓實(shí)后土壤結(jié)構(gòu)更為緊密,微生物可接觸到的有機(jī)物增加,可能會(huì)加快了底物的礦化速率[36]。長(zhǎng)期(3至7 a)壓實(shí)試驗(yàn)表明,與未壓實(shí)土壤相比,壓實(shí)土壤碳排放降低而有機(jī)碳含量顯著增加[37],這與本研究結(jié)果不一致,試驗(yàn)期間內(nèi),不同處理土壤有機(jī)碳均不存在顯著性差異,雖T1.45處理可溶性有機(jī)碳相對(duì)較高,但其變化對(duì)總有機(jī)碳含量的影響相對(duì)較??;此外,也有可能是因?yàn)楸驹囼?yàn)周期僅為120 d相對(duì)較短,長(zhǎng)期效應(yīng)未能體現(xiàn)。
本研究中T1.45土壤碳排放的速率最快,當(dāng)容重高于1.45 g/cm3時(shí),碳排放速率呈下降趨勢(shì)。土壤微生物對(duì)干擾事件的反應(yīng)模式可稱為“hump-back”理論[38-39],當(dāng)土壤物理、化學(xué)性質(zhì)在受到輕微擾動(dòng)后將刺激微生物達(dá)到最高活性,過(guò)度(大于閾值)的擾動(dòng)將限制微生物的生長(zhǎng)和活性,但會(huì)產(chǎn)生極為少數(shù)的優(yōu)勢(shì)種,而土壤微生物多樣性和碳排放速率都將有所降低[40]。本研究土壤容重閾值低于前人研究結(jié)果,這可能是由于試驗(yàn)條件不一致造成的,例如Conlin等[41]對(duì)長(zhǎng)期壓實(shí)森林土壤研究結(jié)果表明,未去除凋落物重度壓實(shí)處理土壤碳排放速率顯著高于常規(guī)壓實(shí)和對(duì)照處理,與本研究結(jié)果不一致。這可能由以下2個(gè)原因?qū)е拢谝?,該試?yàn)僅設(shè)置對(duì)照、常規(guī)壓實(shí)和重度壓實(shí),而在此較高壓實(shí)處理下,土壤通透性和微生物活性仍可能維持在一個(gè)較為適宜的水平。第二,該試驗(yàn)處理土壤中的凋落物未去除,凋落物是土壤有機(jī)質(zhì)的重要來(lái)源,可作為微生物的直接能量來(lái)源,從而改變土壤微生物活性和碳排放速率。此外,壓實(shí)梯度水平(組距)設(shè)置不同也有可能會(huì)影響土壤微生物活性和碳排放[42]。
土壤微生物和酶活性等是評(píng)價(jià)微生物活性的綜合性指標(biāo),微生物生物量和酶活性是其研究核心,而環(huán)境效應(yīng)主要指土壤碳排放效應(yīng)。本研究中,土壤微生物活性和碳排放指標(biāo)與土壤容重之間存在較好的二次函數(shù)關(guān)系(圖6),且在一定容重范圍內(nèi)(1.15~1.45 g/cm3)土壤微生物活性指標(biāo)隨壓實(shí)的增加而上升,碳排放效應(yīng)增大;大于1.45 g/cm3時(shí),微生物活性降低,碳排放效應(yīng)也降低。這與大部分研究壓實(shí)對(duì)土壤微生物和溫室氣體排放的研究結(jié)果相同[43],但從微生物活性指標(biāo)和碳排放方面的研究相對(duì)較少,在評(píng)價(jià)體系和方法方面仍存在許多不足,而本文通過(guò)生物效應(yīng)和環(huán)境效應(yīng)對(duì)壓實(shí)土壤進(jìn)行考慮,確定了農(nóng)田較為適合的土壤容重(1.45 g/cm3),可為農(nóng)田土壤管理和綜合評(píng)估提供基礎(chǔ)參考。在中國(guó)開(kāi)展大范圍高精度的土壤地力評(píng)價(jià)相對(duì)困難,2006年農(nóng)業(yè)部將耕地地力評(píng)價(jià)作為測(cè)土配方施肥補(bǔ)貼項(xiàng)目重要內(nèi)容之一在全國(guó)全面展開(kāi)[44],但各地在構(gòu)建耕地地力評(píng)價(jià)指標(biāo)體系時(shí),仍有較大的主觀性和不確定性。例如,如廣東省2007年未能將障礙層、容重、CEC等作為耕地評(píng)價(jià)的基礎(chǔ)指標(biāo)[45],不僅忽略容重等對(duì)土壤的綜合影響,也未能履行《耕地地力調(diào)查與質(zhì)量評(píng)價(jià)技術(shù)規(guī)程》所提出的指標(biāo)選取原則[46],因此,該評(píng)價(jià)方法可能會(huì)對(duì)土壤耕地評(píng)價(jià)產(chǎn)生較大偏差。鑒于前人及本研究土壤容重對(duì)微生物活性和碳排放效應(yīng)的研究結(jié)果,建議將土壤容重納入耕地地力評(píng)價(jià)指標(biāo)。
通過(guò)對(duì)新疆綠洲農(nóng)田不同壓實(shí)度(1.15(T1.15)、1.30(T1.30)、1.45(T1.45)和1.60 g/cm3(T1.60))灰漠土微生物活性和碳排放研究的結(jié)論如下:
1)壓實(shí)改變了土壤微生物活性和碳排放速率。T1.45處理土壤酶活性、可溶性有機(jī)碳、微生物生物量碳、氮和微生物生物量碳/氮顯著高于其他處理;土壤碳排放速率隨試驗(yàn)周期的延長(zhǎng)而降低,T1.45處理碳排放速率顯著高于T1.15和T1.60,不同時(shí)期各處理土壤有機(jī)碳含量均不存在顯著差異。
2)土壤碳排放速率與脲酶活性、過(guò)氧化氫酶活性顯著相關(guān)(<0.05),與土壤有機(jī)碳、可溶性有機(jī)碳、微生物生物量碳、氮均顯著相關(guān)(<0.01),與微生物生物量碳/氮不相關(guān);各生物活性指標(biāo)間存在一定的相關(guān)性或不相關(guān)。
3)土壤壓實(shí)的容重閾值為1.45 g/cm3。當(dāng)土壤容重小于1.45 g/cm3時(shí),土壤酶活性、可溶性有機(jī)碳、微生物生物量碳、氮和碳排放速率呈增加趨勢(shì);當(dāng)土壤容重為1.45 g/cm3時(shí),生物活性指標(biāo)最高,碳排放速率最大;當(dāng)土壤容重大于1.45 g/cm3時(shí),土壤生物活性和碳排放速率呈下降趨勢(shì)。
綜合考慮土壤微生物活性和碳排放,新疆綠洲農(nóng)田灰漠土容重應(yīng)當(dāng)保持在較適宜的范圍,即當(dāng)土壤高于1.45 g/cm3時(shí)應(yīng)進(jìn)行適當(dāng)?shù)姆跃S持土壤最大生物活性。
[1] Van-Camp L, Bujarrabal B, Gentile A R, et al. Reports of the technical working groups established under the thematic strategy for soil protection[R]. Luxembourg, Office for Official Publication of the European Communities, 2004.
[2] Horn R, Vossbrink J, Peth S, et al. Impact of modern forest vehicles on soil physical properties [J]. Forest Ecology & Management, 2007, 248(1/2): 56-63.
[3] 王恩姮,趙雨森,陳祥偉. 前期含水量對(duì)機(jī)械壓實(shí)土壤結(jié)構(gòu)特征的影響[J]. 水土保持學(xué)報(bào),2009,23(1):159-163.
Wang Enheng, Zhao Yusen, Chen Xiangwei. Effect of antecedent moisture content on soil structure compacted by machinery[J]. Journal of Soil and Water Conservation, 2009, 23(1): 159-163. (in Chinese with English abstract)
[4] Mari G R, Ji Changying, Zhou Jun. Effects of soil compaction on soil physical properties and nitrogen, phosphorus, potassium uptake in wheat plants[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1): 74-79.
Mari G R,姬長(zhǎng)英,周俊. 土壤壓實(shí)對(duì)土壤物理性質(zhì)及小麥氮磷鉀吸收的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(1):74-79. (in English with Chinese abstract)
[5] Lapen D R, Topp G C, Gregorich E G, et al. Least limiting water range indicators of soil quality and corn production, eastern Ontario, Canada [J]. Soil & Tillage Research, 2004, 78(2): 151-170.
[6] Schack-Kirchner H, Fenner P T, Hildebrand E E. Different responses in bulk density and saturated hydraulic conductivity to soil deformation by logging machinery on a Ferralsol under native forest [J]. Soil Use & Management, 2007, 23(3): 286-293.
[7] Shestak C J, Busse M D. Compaction alters physical but not biological indices of soil health[J]. Soil Science Society of America Journal, 2005, 69(1): 236-246.
[8] Tan X, Chang S X, Kabzems R. Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study[J]. Forest Ecology & Management, 2005, 217(2): 158-170.
[9] Chen C R, Xu Z H, Blumfield T J, et al. Soil microbial biomass during the early establishment of hoop pine plantation: Seasonal variation and impacts of site preparation[J]. Forest Ecology & Management, 2003, 186(1/3): 213-225.
[10] Bauer P J, Frederick J R, Novak J M, et al. Soil CO2, flux from a Norfolk loamy sand after 25 years of conventional and conservation tillage[J]. Soil & Tillage Research, 2006, 90(1): 205-211.
[11] Carey J C, Tang J, Templer P H, et al. Temperature response of soil respiration largely unaltered with experimental warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13797-13802.
[12] Breland T A, Hansen S. Nitrogen mineralization and microbial biomass as affected by soil compaction[J]. Soil Biology & Biochemistry, 1996, 28(4): 655-663.
[13] Rasiah V, Kay B D. Legume N mineralization: Effect of aeration and size distribution of water-filled pores[J]. Soil Biology & Biochemistry, 1998, 30(1): 89-96.
[14] De Neve, Hofman G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues[J]. Biology & Fertility of Soils, 2000, 30(5/6): 544-549.
[15] Ball B C, Crichton I, Horgan G W. Dynamics of upward and downward N2O and CO2, fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence[J]. Soil & Tillage Research, 2008, 101(1/2): 20-30.
[16] Rochette P. No-till only increases N2O emissions in poorly-aerated soils[J]. Soil & Tillage Research, 2008, 101(1): 97-100.
[17] Ruser R, Flessa H, Russow R, et al. Emission of N2O, N2, and CO2, from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting[J]. Soil Biology & Biochemistry, 2006, 38(2): 263-274.
[18] Hartmann M, Niklaus P A, Zimmermann S, et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction[J]. ISME Journal, 2014, 8(1): 226-244.
[19] 馮錦,崔東,孫國(guó)軍,等.新疆土壤有機(jī)碳與土壤理化性質(zhì)的相關(guān)性[J].草業(yè)科學(xué),2017,34(4):692-697.
Feng Jin, Cui Dong, Sun Guojun, et al. Soil organic carbon in relation to soil physicochemical properties in Xinjiang [J]. Pratacultural Science, 2017, 34(4): 692-697.(in Chinese with English abstract)
[20] Wang X J, Xu M G, Wang J P, et al. Fertilization enhancing carbon sequestration as carbonate in arid cropland: Assessments of long-term experiments in northern China[J]. Plant & Soil, 2014, 380(1/2): 89-100.
[21] 王傳杰,肖婧,蔡岸冬,等. 不同氣候與施肥條件下農(nóng)田土壤微生物生物量特征與容量分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2017,50(6):1067-1075.
Wang Chuanjie, Xiao Jing, Cai Andong, et al. Capacity and characteristics of soil microbial biomass under various climate and fertilization conditions across China croplands[J]. Scientia Agricultura Sinica, 2017, 50(6): 1067-1075. (in Chinese with English abstract)
[22] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000.
[23] 李梅. 岷江上游輻射松人工林種質(zhì)資源及土壤微生物肥力評(píng)價(jià)[D]. 成都:四川農(nóng)業(yè)大學(xué),2009.
Li Mei. Evaluation on Germplasm Resources ofPlantation and Soil Bio-Fertility in the Upper Reaches of the Minjiang River[D]. Chengdu: Sichuan Agriculture University, 2009. (in Chinese with English abstract)
[24] Pengthamkeerati P, Motavalli P P, Kremer R J. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a clay pan soil[J]. Applied Soil Ecology, 2011, 48(1): 71-80.
[25] 劉寧,李新舉,郭斌,等. 機(jī)械壓實(shí)過(guò)程中復(fù)墾土壤緊實(shí)度影響因素的模擬分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):183-190.
Liu Ning, Li Xinju, Guo Bin, et al. Simulation analysis on influencing factors of reclamation soil compaction in mechanical compaction process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 183-190. (in Chinese with English abstract)
[26] Hamza M A, Anderson W K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions[J]. Soil and Tillage Research, 2005, 82(2): 121-145.
[27] 王慧杰,郝建平,馮瑞云,等. 微孔深松耕降低土壤緊實(shí) 度提高棉花產(chǎn)量與種籽品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):7-14.
Wang Huijie, Hao Jianping, Feng Ruiyun, et al. Microhole subsoiling decreasing soil compaction, and improving yield and seed quality of cotton [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 7-14. (in Chinese with English abstract)
[28] Anneke B, Hans R, Stefan S, et al. Evaluation of soil compaction effects on soil biota and soil biological processes in soils[J]. Soil & Tillage Research, 2010, 109: 133-143.
[29] Cambi M, Certini G, Neri F, et al. The impact of heavy traffic on forest soils: A review[J]. Forest Ecology & Management, 2015, 338: 124-138.
[30] Atwell B J. The effect of soil compaction on wheat during early tillering[J]. New Phytologist, 1990, 115(1): 37-41.
[31] Kuzyakov Y. Priming effects: Interactions between living and dead organic matter[J]. Soil Biology & Biochemistry, 2010, 42: 1363-1371.
[32] 解憲麗,孫波,周慧珍,等. 不同植被下中國(guó)土壤有機(jī)碳的儲(chǔ)量與影響因子[J]. 土壤學(xué)報(bào),2004,41(5):687-699.
Xie Xianli, Sun Bo, Zhou Huizhen, et al. Soil carbon stocks and their influencing factors under native vegetations in China[J]. Acta Pedologica Sinica, 2004, 41(5): 687-699. (in Chinese with English abstract)
[33] Peng Y, Li F, Zhou G, et al. Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe[J]. Environmental Research Letters, 2017, 12(2): 024018. DOI: 10.1088/1748-9326/aa5ba6.
[34] 任志勝,齊瑞鵬,王彤彤,等. 風(fēng)化煤對(duì)晉陜蒙礦區(qū)排土場(chǎng)新構(gòu)土體土壤碳排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):230-237.
Ren Zhisheng, Qi Ruipeng, Wang Tongtong, et al. Effect of weathered coal on soil respiration of reconstructed soils on mining area’s earth disposal sites in Shanxi-Shaanxi-Inner Mongolia adjacent area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2015, 31(23): 230-237. (in Chinese with English abstract)
[35] Pengthamkeerati P, Motavalli P P, Kremer R J, et al. Soil carbon dioxide efflux from a clay pan soil affected by surface compaction and applications of poultry litter[J]. Agriculture Ecosystems & Environment, 2005, 109(1/2): 75-86.
[36] Novara A, Armstrong A, Gristina L, et al. Effects of soil compaction, rain exposure and their interaction on soil carbon dioxide emission[J]. Earth Surface Processes & Landforms, 2012, 37(9): 994-999.
[37] Beylich A, Oberholzer H R, Schrader S, et al. Evaluation of soil compaction effects on soil biota and soil biological processes in soils[J]. Soil & Tillage Research, 2010, 109(2): 133-143.
[38] Mariani L, Chang S X, Kabzems R. Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration, and N availability in a boreal aspen forest in British Columbia[J]. Soil Biology & Biochemistry, 2006, 38(7): 1734-1744.
[39] Epron D, Plain C, Ndiaye F K, et al. Effects of compaction by heavy machine traffic on soil fluxes of methane and carbon dioxide in a temperate broadleaved forest[J]. Forest Ecology & Management, 2016, 382: 1-9.
[40] Wardle D A, Wardle D A. Communities and Ecosystems:
Linking the Aboveground and Belowground Components[M]. New Jersey: Princeton University Press, 2013.
[41] Conlin T S S, van den Driessche R. Response of soil CO2and O2concentrations to forest soil compaction at the Long-term soil productivity sites in central British Columbia [J]. Canadian Journal of Soil Science, 2000, 80(4): 625-632.
[42] Li C H, Ma B L, Zhang T Q. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (L.) planted in large pots under field exposure[J]. Canadian Journal of Soil Science, 2002, 82(2): 147-154.
[43] Ampoorter E, Frenne P D, Hermy M, et al. Effects of soil compaction on growth and survival of tree saplings: A meta-analysis[J]. Basic & Applied Ecology, 2011, 12(5): 394-402.
[44] 趙彥鋒,程道全,陳杰,等. 耕地地力評(píng)價(jià)指標(biāo)體系構(gòu)建中的問(wèn)題與分析邏輯[J]. 土壤學(xué)報(bào),2015,52(6):1197-1208.
Zhao Yanfeng, Cheng Daoquan, Chen Jie, et al. Problems and analytical logic in building cultivated land productivity evaluation index system[J]. Acta Pedologica Sinica, 2015, 52(6): 1197-1208. (in Chinese with English abstract)
[45] 湯建東. 廣東省耕地地力評(píng)價(jià)指標(biāo)的選取與優(yōu)化[J]. 廣東農(nóng)業(yè)科學(xué),2009(4):89-91.
Tang Jiandong. Indicators selection and optimizing about cultivated land productivity evaluation of Guangdong Province[J]. Guangdong Agriculture Science, 2009(4): 89-91. (in Chinese with English abstract)
[46] 中華人民共和國(guó)農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn). 耕地地力調(diào)查與質(zhì)量評(píng)價(jià)技術(shù)規(guī)程:NY/T 1634-2008[S]. 2008.
Effects of mechanical compaction on soil microbial activities and carbon emission of oasis agricultural soils in Xinjiang
Li Dianpeng, Wang Hui, Sun Tao, Liu Suiyunhao, Li Zheng, Zhang Kai※, Jia Hongtao
(830052)
The impact of structural deformations on soil properties controls its function as habitat. Soil compaction is widespread but tends to be most prevalent where heavy machinery is used in forestry and agriculture.Untimely traffic with heavy logging machinery often leads to irreversible damage of soil structure, restricting plant growth, reducing crop yield or decreasing the greenhouse gas emissionsmitigation potential from the farmland.Avoiding soil compaction caused by agricultural management is a key aim of sustainable land management; however, limited understanding exists on how compaction affects the soil carbon process and microbial activities. Thus, we conducted a 120-day laboratory incubation to evaluate the effects of soil compaction mainly in agricultural soils on soil organisms and soil biological processes to identify relevant parameters which are helpful for assessing soil compaction from the soil biological and environmental point of view. We evaluated if threshold values of soil bulk density correspond to impacts on soil microbial fertility and environmental effect on soil. Our literature review showed that bulk density of Xinjiang farmland soil ranges from 0.85-1.60 g/cm3. In this study we usedi) non-compacted reference 1.15 g/cm3T1.15,ii) Treatment 1.30 g/cm3(T1.30), where soil was the median value of bulk density, iii) T1.45, with was 75% of the value, iv) T1.60was the maximum bulk density of the Xinjiang oasis farmland. In this study, we measured the soil carbon emission rate under different bulk density conditions using a Li-8100 automated soil CO2flux system ( LI-COR, Lincoln,Nebraska,USA) from June to October 2016, and soil organic carbon (SOC), urease activity (URE), catalase activity (CAT), dissolved organic carbon (DOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) were also measured. The result showed that during the laboratory incubation time (0-120 d) treatment T1.15, T1.30, T1.45and T1.60, MBC, MBN, URE and CAT decreased with the extension of the test period. Under different bulk density levels, soil MBC, MBN, URE and CAT increased rapidly and then decreased with the increase of soil bulk density, and was the highest when the bulk density was 1.45 g/cm3. Cumulative carbon emission from T1.15, T1.30, T1.45and T1.60treatments was 557.26, 653.48, 665.00 and 522.01 g/m2,respectively. There was a trend of increasing first and then decreasing with increasing soil bulk density, and the highest was T1.45. The correlation analysis showed that soil carbon emissions were significantly correlated with urease and catalase activity (<0.05), and very significantly correlated with soil organic carbon, dissolved organic carbon, and microbial biomass carbon and nitrogen (<0.01). The effects of compaction on soil microbial activities and carbon emissions were weighed. Combined effects of trade-offs and compactions on soil biological activity and carbon emissions revealed that soil carbon emissions were the highest when the microbial activity is the highest, and therefore, the maximum microbial activities will also produce greater environmental effects. In summary, mechanical compaction directly affected microbial activities and carbon emissions by changing soil bulk density and pore structure. Therefore, when the soil capacity of oasis farmland was greater than or equal to or less than 1.45 g/cm3, proper overturning or repression should be carried out to make the soil biologically active at the best level.
soils; microorganisms; carbon emission; mechanical compaction; microbial biomass; enzyme activity; Xinjiang farmland
10.11975/j.issn.1002-6819.2018.20.016
S154.1
A
1002-6819(2018)-20-0124-08
2018-04-15
2018-08-20
國(guó)家大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃項(xiàng)目(201610758009);國(guó)家自然科學(xué)基金(41761067);新疆維吾爾自治區(qū)自然科學(xué)基金(2017D01A37)資助
李典鵬,主要從事土壤生態(tài)與物質(zhì)循環(huán)方面研究。Email:lldp05120@126.com
張 凱,博士,主要從事農(nóng)田土壤養(yǎng)分循環(huán)等研究。Email:zhangkai4595241@163.com
李典鵬,王 輝,孫 濤,劉隋赟昊,李 政,張 凱,賈宏濤. 機(jī)械壓實(shí)對(duì)新疆綠洲農(nóng)田土壤微生物活性及碳排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):124-131. doi:10.11975/j.issn.1002-6819.2018.20.016 http://www.tcsae.org
Li Dianpeng, Wang Hui, Sun Tao, Liu Suiyunhao, Li Zheng, Zhang Kai, Jia Hongtao. Effects of mechanical compaction on soil microbial activities and carbon emission of oasis agricultural soils in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 124-131. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.016 http://www.tcsae.org