文書明,劉建,李成必,夏曉鷗,鄧久帥
礦石碎磨能耗數(shù)學模型
文書明1,劉建1,李成必2,夏曉鷗2,鄧久帥1
(1. 昆明理工大學 國土資源工程學院,云南 昆明,650093;2. 北京礦冶科技集團有限公司,北京,100160)
根據礦石碎磨過程中能量輸入和消耗的一般規(guī)律,以破碎比和磨礦比為自變量,能耗為因變量,經過條件假設,推導出礦石破碎和磨細所需要的能耗與破碎比和磨礦比之間的統(tǒng)一數(shù)學模型。研究結果表明:礦石碎磨能耗與破碎比和磨礦比的次方成正比,對于破碎和磨礦階段,對應的指數(shù)分別為1和1/2;破碎和磨礦的能耗系數(shù)與礦石極限應力、彈性模數(shù)、密度、比表面能等力學性質有關;通過碎礦設備生產能力計算的經驗公式和邦德功指數(shù)經驗公式證明了所推導的數(shù)學模型的正確性;基于該模型和碎磨能耗最低原理,獲得碎磨能耗最低時礦石最佳入磨粒度計算公式。
碎磨能耗;入磨粒度;數(shù)學模型
眾所周知,礦石破碎和磨細的程度可以用破碎比和磨礦比來衡量:破碎比和磨礦比越大,能耗越高;破碎比和磨礦比越小,能耗越低。當?shù)V石性質、設備類型、工藝參數(shù)相同時,根據數(shù)學分析原理,碎磨能耗的這種正相關關系可以用1個連續(xù)、可積、可導的數(shù)學表達式來表示:
根據量綱分析,式中系數(shù)具有能耗的單位,指數(shù)為量綱一指數(shù)。由式(3)可知:將粒度為f的礦石破磨至粒度為0 μm時,需要的能量為無限大,這與實際相符合。
1.2.1 礦石破碎能耗的半經驗公式
在礦石破碎階段,破碎機提供的能量首先使礦石發(fā)生變形,變形至礦石的極限時發(fā)生破裂。由于破裂的發(fā)生,礦石與礦石之間、礦石與破碎機施力部件之間位置突然發(fā)生變化,破碎機對礦石的施力消失,破碎礦塊的變形恢復,對外以聲音、震動、放熱等形式釋放能量,部分能量轉化為新生的表面能,這就完成了1次破碎。隨著破碎機施力部件進一步壓縮礦石,破碎的礦石之間距離縮短,再一次承受壓力,承受壓力的礦石又開始變形,直至破碎,實現(xiàn)第2次破碎。在1個破碎周期內,礦石發(fā)生多次破碎,最終使得礦石的粒度變小,達到要求的破碎比。
根據礦石應力與應變的關系,對于體積為的礦石,第1次破碎需要消耗的能量為[15]
若第1次施力就將體積為的礦石破碎到要求的粒度,則破碎能耗是最低的。若第1次施力只能產生1塊要求粒度的礦石,則要使體積為的礦塊全部破碎到要求的粒度,需要次施力(為破碎比),需要的破碎能耗將是最大的,由此可知礦石破碎需要的最大能耗max為
1.2.2 礦石磨礦能耗的半經驗公式
在礦石磨礦階段,磨機的能量通過磨礦介質傳遞給礦石,首先使礦石變形,變形到達極限時發(fā)生破碎,破碎后的礦石發(fā)生變形恢復,礦石內儲存的能量轉化為振動能、熱能、聲能和儲存在永久變形中的能量,同時部分轉化為新生表面的表面能,這2部分能量構成了磨礦的能耗。
破碎后礦石內儲存的變形能與礦石的體積成正比。
磨礦輸入的能量部分轉化為變形能,即
式中:v為體積球形系數(shù)。
破碎后礦石的表面能與表面積成正比。
設磨礦能耗與礦石變形能和表面能的幾何平均值成正比,則有
由式(8)可知:當f=p時,mk=0的邊界條件不成立。為了使邊界條件成立,在公式中加入系數(shù),使得公式變?yōu)?/p>
由磨礦能耗公式可知:當磨礦比一定時,礦石密度越大,磨礦能耗越低;礦石彈性模量越大,磨礦能耗越低;給礦粒度越大,磨礦能耗越低,即粗磨的能耗比細磨的低;礦石表面能越低,磨礦能耗越低;礦石硬度越小,磨礦能耗越低。該公式從理論上反映出礦石密度、粒度、硬度、彈性、表面能對磨礦能耗的影響規(guī)律和定量關系。當?shù)V石的這些物理性質都確定并已知時,就可以計算礦石磨礦的理論能耗。
通過以上的理論推導,可得礦石碎磨的能耗公式如下。
碎礦階段:
磨礦階段:
通用公式:
在礦石破碎階段,根據大量生產實踐,選礦廠在設計時采用的破碎機生產能力計算的經驗公式[18]為:
式中:為破碎機單位時間內的生產能力;4為礦石硬度系數(shù);5為礦石密度系數(shù);6為礦石給料粒度系數(shù);7為礦石水分系數(shù);s為標準狀態(tài)下破碎機的生產能力;0為單位排礦口的生產能力;e為排礦口寬度與排礦粒度的關系系數(shù)。
破碎機輸出的能量是一定的,排礦粒度越小,破碎機處理能力就越小,單位礦石破碎能耗就越高。如果破碎機的輸入能量為z,則單位礦石破碎能耗為
上述公式在f=p時,=0的邊界條件不成立。為了使邊界條件成立,在公式加入1個系數(shù),使公式變?yōu)?/p>
對比式(11)和式(6)可知:碎礦能耗公式(式(11))與理論推導的碎礦能耗模型(式(6))具有相同的形式,式(11)表示礦石破碎需要的實際能耗,而式(6)表示礦石破碎需要的理論能耗,由此證明數(shù)學模型是正確的。
邦德通過大量的生產實踐數(shù)據獲得礦石磨礦能耗的經驗公式為
式中:i為礦石磨碎的功指數(shù)。
在給礦粒度一定的情況下,邦德磨礦能耗經驗公式可轉化為
由此可知,邦德公式是碎磨能耗通用模型式(10)的特殊形式。磨礦能耗的生產實踐表明,磨礦能耗的數(shù)學模型是正確的。
令2=2,由此可得邦德磨礦功指數(shù)為
式(13)為邦德功指數(shù)的理論計算式,在測定了礦石的表面能、極限應力、應力與應變的關系指數(shù)、彈性模數(shù)、密度后,就能計算出邦德功指數(shù)的理論值,而這些力學性能是可以檢測的。此前,邦德功指數(shù)只能通過試驗測定,且并無實際的物理意義,通過磨礦數(shù)學模型的推導,明確了邦德功指數(shù)的物理意義及其影響因素,且能通過物理參數(shù)計算獲得功指數(shù)。
根據式(6)和(14),令碎礦的排礦粒度等于磨礦的給礦粒度,用1表示,由此可得碎礦和磨礦的總能 耗為
式中:bg為碎礦和磨礦總能耗,kW?h/t;1為入磨粒度(80%礦石通過的篩孔寬度),μm;f為碎礦機給礦粒度(80%礦石通過的篩孔尺寸);p為磨機排礦粒度(80%礦石通過的篩孔尺寸)。
對式(15)求偏導數(shù)可得
式中:1為碎磨能耗最低時的入磨粒度。
由式(18)可知:碎磨能耗最低時的入磨粒度與碎礦給礦粒度、礦石彈性模量、礦石極限應力和單位表面能相關。在選礦廠設計中,在選定碎磨礦設備之前,可以通過式(18)計算礦石的最佳入磨粒度。
4) 通過數(shù)學推導、實踐驗證,獲得了碎磨能耗的統(tǒng)一模型。
[1] CHAPMAN N A, SHACKLETON N J, MALYSIAK V, et al. The effect of using different comminution procedures on the flotation of Platinum-Group Minerals[J]. Minerals Engineering, 2011, 24(8): 731?736.
[2] GRUJI? M M. Technology improvements of crushing process in Majdanpek Copper Mine[J]. International Journal of Mineral Processing, 1996, 44/45(3): 471?483.
[3] POTHINA R, KECOJEVIC V, KLIMA M, et al. A gyratory crusher model and impact parameters related to energy consumption[J]. Minerals & Metallurgical Processing, 2007, 24(3): 170?180.
[4] TROMANS D. Mineral comminution: energy efficiency considerations[J]. Minerals Engineering, 2008, 21(8): 613?620.
[5] LEGENDRE D, ZEVENHOVEN R. Assessing the energy efficiency of a jaw crusher[J]. Energy, 2014, 74(5): 119?130.
[6] JESWIET J, SZEKERES A. Energy consumption in mining comminution[J]. Procedia CIRP, 2016, 48: 140?145.
[7] BALLANTYNE G R, POWELL M S. Benchmarking comminution energy consumption for the processing of copper and gold ores[J]. Minerals Engineering, 2014, 65(65): 109?114.
[8] FUERSTENAU D W, ABOUZEID A Z M. The energy efficiency of ball milling in comminution[J]. International Journal of Mineral Processing, 2002, 67(1): 161?185.
[9] 肖慶飛, 羅春梅, 石貴明, 等. 多碎少磨的理論依據及應用實踐[J]. 礦山機械, 2009, 37(21): 51?53. XIAO Qingfei, LUO Chunmei SHI Guiming, et al. Theoretical basis and application practice of multi and broken sharpening [J]. Mining Machine,2009, 37(21): 51?53.
[10] 肖慶飛, 康懷斌, 肖琿, 等. 碎磨技術的研究進展及其應用[J]. 銅業(yè)工程, 2016, 137(1): 15?27. XIAO Qingfei, KANG Huaibin, XIAO Hui, et al. Research progress and application of grinding and grinding technology[J]. Copper Engineering, 2016, 137(1): 15?27.
[11] NORGATE T, HAQUE N. Energy and greenhouse gas impacts of mining and mineral processing operations[J]. Journal of Cleaner Production, 2010, 18(3): 266?274.
[12] NGUYEN A Q, HUSEMANN K, OETTEL W. Comminution behaviour of an unconfined particle bed[J]. Minerals Engineering, 2002, 15(1/2): 65?74.
[13] REFAHI A, MOHANDESI J A, REZAI B. Comparison between bond crushing energy and fracture energy of rocks in a jaw crusher using numerical simulation[J]. Journal of the Southern African Institute of Mining & Metallurgy, 2009, 109(12): 709?717.
[14] ZENG Yigen, FORSSBERG E. Effects of mill feed size on product fineness and energy consumption in coarse grinding[J]. Minerals Engineering, 1991, 4(5/6): 599?609.
[15] 段希祥. 碎礦與磨礦[M]. 2版. 北京: 冶金工業(yè)出版社, 2012: 47?122. DUAN Xixiang. Crushing and grinding[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2012: 47?122.
[16] 周東琴, 代淑娟, 賀政, 等. 金礦石粉碎特性對半自磨?球磨功耗的影響研究[J]. 礦冶, 2017, 26(1): 7?10. ZHOU Dongqin, DAI Shujuan, HE Zheng, et al. Effect of smashing characteristics of gold ore on power consumption of semi-autogenous milling and ball milling[J]. Mining & Metallurgy, 2017, 26(1): 7?10.
[17] BOND F C. The third theory of comminution[J]. Transactions on AIME Mining Engineering, 1952, 193: 484?494.
[18] 王毓華, 王化軍. 礦物加工工程設計[M]. 長沙: 中南大學出版社, 2012: 86?90. WANG Yuhua, WANG Huajun. Engineering design of mineral processing[M]. Changsha: Central South University Press, 2012: 86?90.
(編輯 伍錦花)
A mathematical model describing energy consumption of crush and grinding
WEN Shuming1, LIU Jian1, LI Chengbi2, XIA Xiaoou2, DENG Jiushuai1
(1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. Beijing General Research Institute of Mining & Metallurgy Technology Group, Beijing 100160, China)
According to the common law of energy input and consumption of ore’s crush and grinding, a unified mathematical model describing energy consumption of crush and grinding was deduced based on certain assumptions, in which the size reduction ratio of crush and grinding and energy consumption were used as independent and dependent variables, respectively. The results show that energy consumption is in proportion to theth power of size reduction ratio of crush and grinding stage, andis 1 and 1/2 for the crushing and grinding stage, respectively. Energy consumption coefficient in the model is related to the properties of ore, such as ultimate stress, modulus of elasticity, density of ore, specific surface energy and etc. The model validity is confirmed by the results calculated by the widely used empirical formulas of crushing equipment production capacity and the Bond work index. Based on the model and the lowest energy consumption principle, the optimal particle size which is fed to grinding at lowest energy consumption is determined.
crushing energy consumption; grinding particle size; mathematical model
10.11817/j.issn.1672-7207.2018.09.001
TD-05
A
1672?7207(2018)09?2115?06
2017?10?09;
2017?11?11
國家自然科學基金資助項目(51764037,51704135) (Projects(51764037, 51704135) supported by the National Natural Science Foundation of China)
劉建,博士,副教授,從事礦物加工工程理論與工藝研究;E-mail: vacation2008@126.com