亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于最優(yōu)二叉決策樹分類模型的奶牛運(yùn)動(dòng)行為識別

        2018-10-10 06:33:42張海洋趙凱旋
        關(guān)鍵詞:腿部決策樹奶牛

        王 俊,張海洋,趙凱旋,劉 剛

        ?

        基于最優(yōu)二叉決策樹分類模型的奶牛運(yùn)動(dòng)行為識別

        王 俊1,張海洋1,趙凱旋1,劉 剛2

        (1.河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,洛陽 471003;2.中國農(nóng)業(yè)大學(xué)現(xiàn)代精細(xì)農(nóng)業(yè)系統(tǒng)集成研究教育部重點(diǎn)實(shí)驗(yàn)室,北京 100083)

        針對奶牛行為分類過程中決策樹算法構(gòu)建主觀性強(qiáng)、閾值選取無確定規(guī)則,易導(dǎo)致分類精度差的問題,該文提出一種基于最優(yōu)二叉決策樹分類模型的奶牛運(yùn)動(dòng)行為識別方法,首先選取描述奶牛腿部三軸加速度數(shù)值大小、對稱性、陡峭程度、變異程度、不確定性及夾角的24個(gè)統(tǒng)計(jì)特征量,其次通過構(gòu)建ROC(receiver operating characteristic,ROC)曲線獲得各統(tǒng)計(jì)特征量的最佳行為類別分組方式及最優(yōu)閾值,然后利用信息增益作為最優(yōu)二叉決策樹劃分屬性的選擇標(biāo)準(zhǔn),最終構(gòu)建最優(yōu)二叉決策樹分類模型對奶牛運(yùn)動(dòng)行為進(jìn)行分類識別。試驗(yàn)結(jié)果表明,該分類模型能夠有效區(qū)分奶牛的站立、平躺、慢走、快走、站立動(dòng)作、躺臥動(dòng)作6種運(yùn)動(dòng)行為,平均準(zhǔn)確率、平均精度、平均1值分別為76.47%、76.83%、76.57%,相較傳統(tǒng)的ID3(iterative dichotomiser 3,ID3)決策樹算法分別高5.71、5.4和5.61個(gè)百分點(diǎn),分別高于K-means聚類算法7.51、8.02和7.77個(gè)百分點(diǎn),優(yōu)于支持向量機(jī)算法6.77、6.72和6.57個(gè)百分點(diǎn)。該方法可為提高奶牛行為分類精度提供有效的理論支撐。

        數(shù)據(jù)采集;數(shù)據(jù)處理;算法;行為分類;三軸加速度計(jì);無線腿部傳感器;ROC曲線;二叉決策樹

        0 引 言

        奶牛行為是奶牛健康和福利水平的重要指標(biāo),實(shí)時(shí)判別奶牛運(yùn)動(dòng)行為可及早發(fā)現(xiàn)疾病、提升福利水平[1-3]。例如,奶?;继悴r(shí),站立時(shí)間明顯減少[4-6];平躺時(shí)間過長,奶?;疾】赡苄暂^大[7-9];奶牛發(fā)情時(shí),慢走時(shí)間增長,可達(dá)正常狀態(tài)下的6倍,快走行為出現(xiàn)頻次增加,影響產(chǎn)奶量[10-13];站立動(dòng)作、躺臥動(dòng)作行為出現(xiàn)的頻率,與奶牛疾病、舒適度均有較強(qiáng)的關(guān)聯(lián)性[14-15]。實(shí)時(shí)判別上述6類奶牛行為強(qiáng)度(數(shù)量、持續(xù)時(shí)間、頻率),有助于及時(shí)掌握奶牛的健康水平、發(fā)情狀況,為提升奶牛福利水平提供一種參考[16-18]。

        目前,奶牛行為判別主要依靠人工觀測,勞動(dòng)強(qiáng)度大、工作效率低、主觀性強(qiáng)。近十年來,相關(guān)研究人員在奶牛行為自動(dòng)監(jiān)測技術(shù)領(lǐng)域開展了大量研究[19-21],其中,三軸加速度計(jì)以其低廉的價(jià)格、強(qiáng)大的抗干擾能力和準(zhǔn)確的數(shù)據(jù)測量精度,被廣泛應(yīng)用于奶牛運(yùn)動(dòng)行為識別[22-24]。大量研究表明,在奶牛站立、平躺、慢走等動(dòng)作時(shí),加速度計(jì)坐標(biāo)軸的指向不可避免會發(fā)生偏移,但獲取各類行為的數(shù)據(jù)特征仍具有一定的差異性,可應(yīng)用機(jī)器學(xué)習(xí)算法判別奶牛行為類別[25-27]。常用的奶牛行為識別的機(jī)器學(xué)習(xí)算法可分為無監(jiān)督學(xué)習(xí)和監(jiān)督學(xué)習(xí),無監(jiān)督學(xué)習(xí)無需訓(xùn)練樣本,直接對數(shù)據(jù)進(jìn)行建模分類。常用的無監(jiān)督學(xué)習(xí)算法為K-means聚類算法。尹令等[28]采用K-means 聚類算法能夠較好區(qū)分奶牛靜止和動(dòng)態(tài)行為特征,但對于多種動(dòng)態(tài)的行為分類效果不明顯。無監(jiān)督學(xué)習(xí)的優(yōu)點(diǎn)是人為干涉小,缺點(diǎn)是對奶牛行為異常數(shù)據(jù)敏感。監(jiān)督學(xué)習(xí)是通過訓(xùn)練已知奶牛行為數(shù)據(jù)構(gòu)建分類模型,再將此模型用于新數(shù)據(jù)集的預(yù)測。相較于無監(jiān)督學(xué)習(xí),監(jiān)督學(xué)習(xí)具有抗噪聲能力強(qiáng)和行為判別準(zhǔn)確率高等優(yōu)點(diǎn)。常用的監(jiān)督學(xué)習(xí)算法為支持向量機(jī)(support vector machine,SVM)算法和決策樹(decision-tree)算法。Martiskainen等[29]采用脖頸式固定方式,應(yīng)用支持向量機(jī)分類模型,對奶牛的站立、平躺、反芻、進(jìn)食、跛行5種運(yùn)動(dòng)行為進(jìn)行識別,平均精度為78%,但其算法復(fù)雜度高,實(shí)用性較差。與支持向量機(jī)算法相比,決策樹算法具有運(yùn)算復(fù)雜度低、穩(wěn)定性好、直觀易懂等優(yōu)點(diǎn)。Diosdado等[30]采用決策樹分類模型,判別奶牛進(jìn)食、站立、平躺3種運(yùn)動(dòng)行為,分類平均靈敏度與平均精度分別為83.94%、78.56%,然而難以判斷奶牛的發(fā)情情況;Gupta 等[31]采用決策樹算法對奶牛跛足進(jìn)行預(yù)測,靈敏度為79.67%,僅能對單一行為進(jìn)行判斷;Abell等[32]運(yùn)用決策樹算法對奶牛平躺、站立、行走、爬跨4種行為進(jìn)行識別,平均精度為81%,但分類類別數(shù)量有限。已有決策樹模型構(gòu)建時(shí),由于分裂屬性閾值選取無確定規(guī)則、全局優(yōu)化效果差,且隨著分類類別的增加,奶牛行為整體識別率不可避免地會降低。

        針對傳統(tǒng)決策樹算法無法合理選取最優(yōu)閾值而影響奶牛運(yùn)動(dòng)行為分類準(zhǔn)確率的問題,提出一種最優(yōu)二叉決策樹的奶牛運(yùn)動(dòng)行為識別方法,該方法首先選取奶牛腿部加速度的24個(gè)統(tǒng)計(jì)特征量,其次通過ROC(receiver operating characteristic,ROC)曲線獲得各統(tǒng)計(jì)特征量的最佳行為類別分組方式及最優(yōu)閾值,然后利用信息增益作為最優(yōu)二叉決策樹分類模型劃分屬性的選擇標(biāo)準(zhǔn),最終構(gòu)建最優(yōu)二叉決策樹分類模型,進(jìn)行奶牛運(yùn)動(dòng)行為的分類與決策,有效提升了行為判別的準(zhǔn)確率。

        1 測量裝置與儀器

        1.1 腿部無線傳感器

        腿部無線傳感器由微處理器、三軸加速度計(jì)、無線收發(fā)器、電源模塊組成。通過腿部無線傳感器可以獲取奶牛運(yùn)動(dòng)三軸方向的加速度數(shù)據(jù),并通過無線收發(fā)器將數(shù)據(jù)發(fā)送給接收器,然后經(jīng)串口發(fā)送至上位機(jī)。

        微處理器采用美國TI公司的超低功耗芯片MSP430F149IMP,是一種16位具有精簡指令集的混合型單片機(jī),內(nèi)部含有60 kB的FLASH和2 kB的RAM,QFP封裝;三軸加速度計(jì)采用美國ADI公司的高分辨率芯片ADXL345,因奶牛運(yùn)動(dòng)幅度較小,測量范圍設(shè)置為±2;無線收發(fā)器采用挪威Chipcon公司的CC1101芯片,其最大傳輸數(shù)率達(dá)500 kbps,配置CC1101的工作頻率為433 MHz,此頻段的波長較長,可以增加CC1101的通信距離;電源模塊采用深圳德力普公司生產(chǎn)的18650型鋰電池,容量為2800 mA·h。

        腿部無線傳感器尺寸為75 mm× 48 mm× 30 mm,總質(zhì)量為205 g,采樣頻率設(shè)為4 Hz,整個(gè)腿部無線傳感器封裝在一個(gè)密閉防水盒中,通過尼龍綁帶固定于奶牛右后腿關(guān)節(jié)以下處,令三軸加速度計(jì)的軸、軸、軸分別指向牛腿向下方向、牛腿前進(jìn)方向、垂直牛腿向外方向,奶牛腿部無線傳感器及固定方式如圖1所示。

        圖1 腿部無線傳感器及固定方式

        1.2 傳輸數(shù)據(jù)包格式及工作流程

        腿部無線傳感器的傳輸數(shù)據(jù)包共21字節(jié),包含4字節(jié)前導(dǎo)碼、2字節(jié)同步字、1字節(jié)數(shù)據(jù)長度、1字節(jié)設(shè)備地址、11字節(jié)數(shù)據(jù)信息和2字節(jié)CRC校驗(yàn)碼。前導(dǎo)碼為一個(gè)交互的1、0序列,用于數(shù)據(jù)的位同步;同步字用于數(shù)據(jù)傳輸中對齊數(shù)據(jù),以及判斷數(shù)據(jù)是否有效;數(shù)據(jù)長度設(shè)定為11字節(jié)數(shù)據(jù);數(shù)據(jù)信息的內(nèi)容為三軸加速度計(jì)各方向加速度數(shù)據(jù);CRC是循環(huán)冗余校驗(yàn)碼,保證數(shù)據(jù)的正確傳輸。設(shè)置數(shù)據(jù)包傳輸速率為38.4 kbps。

        在采集試驗(yàn)數(shù)據(jù)過程中,事先為每個(gè)腿部無線傳感器分配唯一地址(ID1,ID2,…,ID)。上電后,接收器依次向各腿部無線傳感器發(fā)送其地址,腿部無線傳感器接收地址后與自身地址相比較,若地址不相同,接收器訪問下一個(gè)傳感器地址;若地址相同,則腿部無線傳感器將加速度數(shù)據(jù)包通過無線收發(fā)器傳輸?shù)浇邮掌鳌?/p>

        1.3 腿部無線傳感器性能測試

        為了驗(yàn)證腿部無線傳感器功耗性能,于2017年9月6日8:00-17:00進(jìn)行時(shí)長9 h的功耗測試。測試前,在傳感器供電端串聯(lián)100 Ω電阻,并通過示波器(RIGOL DS1000Z)記錄工作電壓和休眠電壓波形。分別選取0~3 h、4~6 h、7~9 h 共3個(gè)時(shí)間段中任意2 s內(nèi)的波形,結(jié)果如圖2所示,0~3 h時(shí)間段的工作時(shí)峰值電壓為4.12 V,4~6 h時(shí)間段的工作時(shí)峰值電壓為4.00 V,7~9 h時(shí)間段的工作時(shí)峰值電壓為3.84 V,工作時(shí)峰值電壓僅下降0.28 V;休眠電壓為3.04 V,9 h期間工作電流約為37.60 mA。通過進(jìn)一步測試,在2節(jié)18650鋰電池電量充滿狀態(tài)下,傳感器處于穩(wěn)定工作狀態(tài)下采集加速度數(shù)據(jù)時(shí)長可達(dá)60 h,滿足傳感器試驗(yàn)期間的工作要求。

        圖2 腿部無線傳感器工作時(shí)電壓變化情況

        為測試牛舍環(huán)境下腿部無線傳感器與接收器間通信的丟包率水平,通過改變腿部無線傳感器距接收器的距離,統(tǒng)計(jì)不同距離時(shí)接收器實(shí)際收取的數(shù)據(jù)包數(shù)量,計(jì)算通信丟包率。腿部無線傳感器與接收器距離分別設(shè)置為 1、15、30、45、60、75、90 m。丟包率測試結(jié)果如表1所示,在45 m的傳輸距離以下時(shí),丟包率保持較低的水平,在2.5%以內(nèi);當(dāng)距離大于45 m時(shí),丟包率迅速增加;傳輸距離為90 m時(shí),丟包率僅為6.33%,整體丟包率較為理想。

        2 最優(yōu)二叉決策樹算法設(shè)計(jì)

        2.1 選取奶牛腿部加速度的統(tǒng)計(jì)特征量

        為深入挖掘奶牛運(yùn)動(dòng)三軸加速度數(shù)據(jù)所蘊(yùn)含的豐富信息,應(yīng)選取具有代表性的統(tǒng)計(jì)特征量,全面反映其數(shù)據(jù)特征,以提高奶牛行為識別率。選取的統(tǒng)計(jì)特征量具體包括加速度傳感器各軸的均值、標(biāo)準(zhǔn)差、偏度、峰度、最大值、最小值,以及總體標(biāo)準(zhǔn)差、能量、幅度(signal magnitude area, SMA)、矢量幅度(signal vector magnitude, SVM)、熵、傾角,共24個(gè)統(tǒng)計(jì)特征量[33],其中,平均值體現(xiàn)奶牛腿部各個(gè)方向運(yùn)動(dòng)變化的趨勢;偏度反映奶牛腿部各個(gè)方向加速度數(shù)據(jù)總體分布的對稱信息;峰度表征奶牛腿部各個(gè)方向加速度數(shù)據(jù)總體分布密度曲線在其峰值附近的陡峭程度;最大值、最小值表示劇烈運(yùn)動(dòng)的瞬間加速度變化量;標(biāo)準(zhǔn)差、總體標(biāo)準(zhǔn)差呈現(xiàn)奶牛腿部運(yùn)動(dòng)的瞬間最大變化趨勢;能量、幅度、矢量幅度綜合反映三軸運(yùn)動(dòng)變化的大??;熵綜合反映三軸運(yùn)動(dòng)變化的不確定性;傾角體現(xiàn)奶牛腿部運(yùn)動(dòng)加速度與自然坐標(biāo)系間夾角大小。

        表1 牛舍環(huán)境下無線腿部傳感器丟包率測試

        2.2 計(jì)算各統(tǒng)計(jì)特征量的最優(yōu)閾值

        1)首先,對于任一統(tǒng)計(jì)特征量,將奶牛運(yùn)動(dòng)行為劃分為2個(gè)行為組,一組為正類行為組,另一組為負(fù)類行為組。將該統(tǒng)計(jì)特征量的最小值與最大值作為閾值取值范圍的下限和上限,并確立閾值個(gè)數(shù)為,在閾值可取范圍內(nèi),通過連續(xù)改變閾值將訓(xùn)練數(shù)據(jù)集中的奶牛運(yùn)動(dòng)行為劃分為預(yù)測正類行為或預(yù)測負(fù)類行為,計(jì)算不同閾值下的真陽性率(true positive rate, TPR)和假陽性率(false positive rate, FPR)。

        式中TP(true positive)表示實(shí)際為正類行為被預(yù)測成正類行為的樣本數(shù);FN(false negative)表示實(shí)際為正類行為被預(yù)測成負(fù)類行為的樣本數(shù);FP(false positive)表示實(shí)際為負(fù)類行為被預(yù)測成負(fù)類行為的樣本數(shù);TN(true negative)表示實(shí)際為負(fù)類行為被預(yù)測成正類行為的樣本數(shù)。

        2)根據(jù)步驟1)得到不同閾值下的TPR與FPR,以FPR為橫坐標(biāo),TPR為縱坐標(biāo)構(gòu)建ROC曲線,并計(jì)算目標(biāo)函數(shù)值。

        式中表示ROC曲線下面積的最大值,為閾值的個(gè)數(shù),為步長,=1/,函數(shù)(?)表示第個(gè)閾值的真陽性率值構(gòu)成的函數(shù),即ROC曲線。目標(biāo)函數(shù)值對應(yīng)的統(tǒng)計(jì)特征量值即為該行為類別分組方式下的最優(yōu)閾值。

        3)最后,依次調(diào)整正類行為、負(fù)類行為2組中的行為類別,改變分組情況,計(jì)算各分組情況下該統(tǒng)計(jì)特征量的目標(biāo)函數(shù)值,通過比較得到最大的目標(biāo)函數(shù)值,則此目標(biāo)函數(shù)值對應(yīng)的分組劃分情況為該統(tǒng)計(jì)特征量的最佳行為類別分組方式,對應(yīng)的閾值為最優(yōu)閾值。

        2.3 計(jì)算各統(tǒng)計(jì)特征量的信息增益

        信息熵表示統(tǒng)計(jì)特征量的不確定度,其定義為

        式中表示訓(xùn)練數(shù)據(jù)集,表示行為類別{=1,2,???,},p表示訓(xùn)練數(shù)據(jù)集中第類行為數(shù)據(jù)所占的比例。

        統(tǒng)計(jì)特征量的信息增益為

        式中表示奶牛腿部三軸加速度的統(tǒng)計(jì)特征量,表示統(tǒng)計(jì)特征量的可能取值{1,2,???,α},統(tǒng)計(jì)特征量中只有“是”與“否”2種分支,則=2,表示訓(xùn)練數(shù)據(jù)集中在統(tǒng)計(jì)特征量上取值為a的樣本。

        2.4 構(gòu)建最優(yōu)二叉決策樹分類模型

        最優(yōu)二叉決策樹分類模型采用自頂向下的遞歸構(gòu)造方法,其構(gòu)造方法如下:

        1)針對6種奶牛運(yùn)動(dòng)行為,根據(jù)ROC曲線獲得奶牛腿部三軸加速度數(shù)據(jù)24個(gè)統(tǒng)計(jì)特征量的最佳行為類別分組方式及最優(yōu)閾值,并計(jì)算24個(gè)統(tǒng)計(jì)特征量的信息增益。

        2)選取具有最高信息增益的統(tǒng)計(jì)特征量作為最優(yōu)二叉決策樹模型根結(jié)點(diǎn),并由該統(tǒng)計(jì)特征量的最優(yōu)閾值建立2個(gè)分支,分別為具有最高信息增益的統(tǒng)計(jì)特征量的最佳行為類別分組方式中的正類行為組和負(fù)類行為組。

        編制審核報(bào)告是咨詢單位的常態(tài)化工作,但編制報(bào)告的過程并未創(chuàng)造新的價(jià)值,僅僅是為展示工作成果。編制報(bào)告的時(shí)間與做基礎(chǔ)性審核工作的時(shí)間至少應(yīng)該三、七開比較合理,即如果編制報(bào)告的時(shí)間安排三天,則圖紙審核基礎(chǔ)性工作時(shí)間至少應(yīng)為七天。在報(bào)告編制上精益求精固然可取,但在基礎(chǔ)性審核工作上投入的資源也應(yīng)足夠。

        3)分別將各分支內(nèi)奶牛運(yùn)動(dòng)行為劃分為正類行為組和負(fù)類行為組,遞歸調(diào)用步驟1)與2)的方法建立二叉決策樹模型的分支,直到所有分組中僅包含1類行為后停止,最終構(gòu)建泛化能力強(qiáng)的二叉決策樹分類模型。

        3 試驗(yàn)與結(jié)果分析

        試驗(yàn)區(qū)位于河南省南陽市蒲山鎮(zhèn)楊營新村三色鴿奶牛養(yǎng)殖場(33°05′50.64″ N、112°32′25.32″ E),該養(yǎng)殖場共有黑白花類荷斯坦奶牛700余頭,分別飼養(yǎng)在5座雙列半開放式標(biāo)準(zhǔn)化牛舍內(nèi),牛舍長150 m,寬31 m。選取8頭健康成年荷斯坦奶牛(胎次=3±0,泌乳期=50.27±6.35 d,日產(chǎn)奶量=31.05±2.46 kg,體質(zhì)量=678.46±34.18 kg)作為試驗(yàn)對象,飼養(yǎng)區(qū)域?yàn)?5 m ×13 m的獨(dú)立劃分區(qū)域,于2017年9月11日至21日共10 d進(jìn)行數(shù)據(jù)采集,每日每頭牛采集4 h數(shù)據(jù),采集時(shí)間為每天10:00?14:00。

        3.1 奶牛運(yùn)動(dòng)行為數(shù)據(jù)獲取

        采用視頻監(jiān)控錄像比對方式觀察奶牛行為活動(dòng),使用日本Sony公司生產(chǎn)的ILCE-7RM2攝像機(jī)(1920 × 1080像素)進(jìn)行視頻錄制,并同步采集無線腿部傳感器行為信息。此外,通過安裝耳標(biāo)方式對選取的奶牛進(jìn)行標(biāo)號,標(biāo)號與無線腿部傳感器地址一一對應(yīng)。數(shù)據(jù)采集過程中,奶牛的行為改變?yōu)樽匀恍袨?,無外界干擾。

        試驗(yàn)采集奶牛站立、平躺、慢走、快走、站立動(dòng)作、躺臥動(dòng)作6種運(yùn)動(dòng)行為。奶牛運(yùn)動(dòng)行為詳細(xì)描述如表2所示。因試驗(yàn)過程中數(shù)據(jù)丟包及其他因素影響,試驗(yàn)共采集13 954組原始數(shù)據(jù),其中,運(yùn)動(dòng)行為持續(xù)時(shí)間超過4 s的有效數(shù)據(jù)有13 057組數(shù)據(jù),用于決策樹算法模型構(gòu)建及測試。躺臥動(dòng)作和站立動(dòng)作的行為轉(zhuǎn)換時(shí)間通常超過4 s,采用持續(xù)時(shí)間超過4 s的數(shù)據(jù)可有效包含奶牛行為活動(dòng)的整個(gè)過程,保證行為數(shù)據(jù)的完整性和可辨別性。采集的6種運(yùn)動(dòng)行為數(shù)據(jù)詳細(xì)構(gòu)成如表3所示。

        表2 奶牛運(yùn)動(dòng)行為詳細(xì)描述

        表3 試驗(yàn)采集的奶牛腿部加速度數(shù)據(jù)

        3.2 構(gòu)建二叉決策樹分類模型

        訓(xùn)練數(shù)據(jù)集所占比例對樹模型算法的準(zhǔn)確率有較大影響。文獻(xiàn)[35]中分析訓(xùn)練數(shù)據(jù)集所占比例對決策樹模型算法準(zhǔn)確率的影響,得出訓(xùn)練數(shù)據(jù)集的比例選擇為70%~90%時(shí),決策樹算法的準(zhǔn)確率較高。故選取13 057條有效數(shù)據(jù)中9 140條數(shù)據(jù)(占總有效數(shù)據(jù)70%比例)作為訓(xùn)練數(shù)據(jù)集,用于構(gòu)建二叉決策樹模型;3 917條數(shù)據(jù)(占總有效數(shù)據(jù)30%比例)用作測試數(shù)據(jù)集,評估二叉決策樹模型性能。

        構(gòu)建二叉決策樹分類模型時(shí),首先,針對6種奶牛運(yùn)動(dòng)行為,計(jì)算任一統(tǒng)計(jì)特征量的不同行為類別分組方式的目標(biāo)函數(shù)值,則可得目標(biāo)函數(shù)值個(gè)數(shù)。

        比較獲得最大目標(biāo)函數(shù)值,可知此統(tǒng)計(jì)特征量的最佳行為類別分組方式及最優(yōu)閾值。同理,計(jì)算得到24個(gè)統(tǒng)計(jì)特征量最佳行為類別分組方式及最優(yōu)閾值,各統(tǒng)計(jì)特征量的最大目標(biāo)函數(shù)值及最優(yōu)閾值如表4所示,各統(tǒng)計(jì)特征量最大目標(biāo)函數(shù)值對應(yīng)的ROC曲線如圖3所示。

        其次,根據(jù)式(4)和式(5)計(jì)算各統(tǒng)計(jì)特征量的信息增益,計(jì)算結(jié)果如表5所示,其中,總體標(biāo)準(zhǔn)差的信息增益最高為0.52,選取該統(tǒng)計(jì)特征量作為最優(yōu)二叉決策樹的根結(jié)點(diǎn)??傮w標(biāo)準(zhǔn)差所對應(yīng)的最佳行為類別分組方式中正類行為組包括快走、站立動(dòng)作、躺臥動(dòng)作行為,負(fù)類行為組包括慢走、平躺、站立行為,最優(yōu)閾值為0.09,由該屬性閾值建立2個(gè)分支,分別包含所劃分的正類行為組和負(fù)類行為組。

        最后,對2個(gè)分支內(nèi)運(yùn)動(dòng)行為類別遞歸調(diào)用該方法逐步建立最優(yōu)二叉決策樹分類模型的分支,直至所有分支僅包含1類運(yùn)動(dòng)行為為止,最終構(gòu)建最優(yōu)閾值選取的二叉決策樹分類模型。

        構(gòu)造的最優(yōu)二叉決策樹分類模型如圖4所示,對于快走、站立動(dòng)作、躺臥動(dòng)作3種運(yùn)動(dòng)行為特征,具有最高信息增益的統(tǒng)計(jì)特征量為軸均值,最優(yōu)閾值為0.17;對于慢走、平躺、站立3種運(yùn)動(dòng)行為特征,統(tǒng)計(jì)特征量中信息增益最高的是軸標(biāo)準(zhǔn)差,最優(yōu)閾值為0.05;對于站立動(dòng)作、躺臥動(dòng)作2種運(yùn)動(dòng)行為特征,具有最高信息增益的統(tǒng)計(jì)特征量為軸均值,最優(yōu)閾值為-0.21;對于平躺、站立2種運(yùn)動(dòng)行為特征,統(tǒng)計(jì)特征量中信息增益最高的是幅度,最優(yōu)閾值為0.13

        3.3 分類結(jié)果

        采用最優(yōu)二叉決策樹模型對測試數(shù)據(jù)集進(jìn)行分類,分類結(jié)果如表6所示, 846個(gè)站立行為、826個(gè)平躺行為、476個(gè)慢走行為、481個(gè)快走行為、257個(gè)站立動(dòng)作行為、229個(gè)躺臥行為被正確分類,其中,站立、平躺行為的分類正確性較高,但也存在誤判為其他行為的情況;慢走行為主要被誤判為站立、快走行為(占慢走行為觀測總數(shù)的18.79%);快走行為容易被判斷為站立、慢走行為(占快走行為觀測總數(shù)的18.43%);站立動(dòng)作與躺臥動(dòng)作行為容易混淆(分別占站立動(dòng)作行為觀測總數(shù)的15.53%、躺臥動(dòng)作行為觀測總數(shù)的14.92%)。

        表4 6種行為類別下各統(tǒng)計(jì)特征量的最大目標(biāo)函數(shù)值及最優(yōu)閾值

        圖3 各統(tǒng)計(jì)特征量的最大目標(biāo)函數(shù)值對應(yīng)的ROC曲線

        混淆矩陣分類結(jié)果運(yùn)用靈敏度、精度、1值3種性能指標(biāo)來度量,靈敏度、精度、1值的定義如下:

        靈敏度表示通過分類模型各個(gè)行為被正確識別為該行為的比例。站立、平躺行為的靈敏度較高,均超過85%。

        精度反映各行為被正確預(yù)測的比例,站立、平躺、慢走行為的精度均超過80%;站立動(dòng)作、躺臥動(dòng)作行為的精度偏低。6種行為的平均精度為76.83%,且均超過65%。

        1值是靈敏度和精度的調(diào)和平均值,相當(dāng)于靈敏度和精度的綜合評價(jià)指標(biāo),平躺行為的1值最高;站立動(dòng)作、躺臥動(dòng)作行為的1值偏低,分別低于平躺行為18.28個(gè)百分點(diǎn)、20.01個(gè)百分點(diǎn)。

        試驗(yàn)表明,最優(yōu)二叉決策樹模型對行為的識別率與奶牛的運(yùn)動(dòng)狀態(tài)有關(guān),奶牛處于靜止?fàn)顟B(tài)(站立、平躺行為)時(shí),分類的靈敏度、精度、1值較高;奶牛處于運(yùn)動(dòng)狀態(tài)(慢走、快走、站立動(dòng)作、躺臥動(dòng)作行為)時(shí),分類的靈敏度、精度、1值偏低。其次,最優(yōu)二叉決策樹模型的靈敏度、精度、1值和數(shù)據(jù)量有密切聯(lián)系,站立、平躺、慢走、快走行為的數(shù)據(jù)訓(xùn)練量較高,分類的靈敏度、精度、1值偏高;站立動(dòng)作、躺臥動(dòng)作行為的訓(xùn)練數(shù)據(jù)樣本較少,分類的靈敏度、精度、1值較低,因此需要獲取更多的站立動(dòng)作與躺臥動(dòng)作行為的數(shù)據(jù)樣本用于算法學(xué)習(xí)。

        表5 6種行為類別下各統(tǒng)計(jì)特征量的信息增益

        圖4 最優(yōu)二叉決策樹分類模型

        表6 二叉決策樹分類模型分類結(jié)果

        3.4 算法性能比較

        ID3決策樹算法分類的平均靈敏度為70.76%,平均精度為71.43%,平均1值為70.96%,分別低于最優(yōu)二叉決策樹算法5.71、5.4和5.61個(gè)百分點(diǎn)。其中,慢走、站立動(dòng)作行為的靈敏度較低,相較于最優(yōu)二叉決策樹算法,分別低10.56和10.52個(gè)百分點(diǎn)。

        K-means聚類算法判別的平均靈敏度為68.96%,與最優(yōu)二叉決策樹算法相比低7.51個(gè)百分點(diǎn);平均精度為68.81%,低于最優(yōu)二叉決策樹算法8.02個(gè)百分點(diǎn),其中,站立動(dòng)作、躺臥動(dòng)作的精度偏低,分別低于最優(yōu)二叉決策樹算法12.85和11.28個(gè)百分點(diǎn);平均1值為68.8%,低于最優(yōu)二叉決策樹算法7.77個(gè)百分點(diǎn)。

        支持向量機(jī)分類的平均靈敏度為69.7%,平均精度為70.11%,平均1值為69.82%,分別低于最優(yōu)二叉決策樹算法6.77、6.72和6.57個(gè)百分點(diǎn)。其中,站立、平躺行為的分類效果較好,相較最優(yōu)二叉決策樹算法,分別提升了1.57、0.53個(gè)百分點(diǎn)。慢走、快走、躺臥動(dòng)作行為識別率偏低,慢走、躺臥動(dòng)作行為的精度分別低于最優(yōu)二叉決策樹算法18.4和12.21個(gè)百分點(diǎn);與最優(yōu)二叉決策樹相比,快走、躺臥動(dòng)作的靈敏度分別低14.49和12.21個(gè)百分點(diǎn)。

        通過對比可知,ID3決策樹算法在慢走、站立動(dòng)作行為上判別效果不佳;K-means聚類算法在站立動(dòng)作、躺臥動(dòng)作行為分類效果不理想;支持向量機(jī)算法盡管在站立、平躺行為的分類效果較好,但是在慢走、快走、躺臥動(dòng)作行為的識別效果偏差。試驗(yàn)結(jié)果表明,與其他3種分類算法相比,本文提出的最優(yōu)二叉決策樹分類模型具有更高的行為識別率,可實(shí)現(xiàn)奶牛運(yùn)動(dòng)行為的準(zhǔn)確識別。

        4 結(jié) 論

        本文開發(fā)一種無線腿部傳感器設(shè)備,該傳感器集成微處理器MSP430F149IMP、三軸加速度計(jì)ADXL345、無線收發(fā)器CC1101,具有功耗低、運(yùn)行穩(wěn)定、傳輸可靠的優(yōu)點(diǎn),滿足采集奶牛腿部加速度數(shù)據(jù)的工作要求。

        1)提出了一種最優(yōu)二叉決策樹屬性閾值選擇方法,該方法基于ROC(receiver operating characteristic,ROC)曲線原理獲取各統(tǒng)計(jì)特征量的最大目標(biāo)函數(shù)值,得到各統(tǒng)計(jì)特征量的最佳行為類別分組方式及最優(yōu)閾值,實(shí)現(xiàn)奶牛運(yùn)動(dòng)行為的高效分類。

        2)該算法能夠有效區(qū)分奶牛站立、平躺、慢走、快走、站立動(dòng)作、躺臥動(dòng)作6類運(yùn)動(dòng)行為,分類的平均準(zhǔn)確率、平均精度、平均1值分別為76.47%、76.83%、76.57%,相較傳統(tǒng)的ID3決策樹算法分別高5.71、5.4和5.61個(gè)百分點(diǎn)。該算法具有分類規(guī)則簡單、分類準(zhǔn)確率高等優(yōu)點(diǎn),可為提升奶牛行為分類水平提供參考。

        [1] Zehner N, Umst?tter C, Niederhauser J J, et al. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows[J]. Computers and Electronics in Agriculture, 2017, 136: 31-41.

        [2] Gonzalez L A, Bishop-Hurley G J, Handcock R N, et al. Behavioral classification of data from collars containing motion sensors in grazing cattle[J]. Computers and Electronics in Agriculture, 2015, 110: 91-102.

        [3] 田富洋,王冉冉,劉莫塵,等. 基于神經(jīng)網(wǎng)絡(luò)的奶牛發(fā)情行為辨識與預(yù)測研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):277-281. Tian Fuyang, Wang Ranran, Liu Mochen, et al. Oestrus detection and prediction in dairy cows based on neural networks[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.1): 277-281. (in Chinese with English abstract)

        [4] Mattachini G, Riva E, Bisaglia C, et al. Methodology for quantifying the behavioral activity of dairy cows in freestall barns[J]. Journal of Animal Science, 2013, 91(10): 4899-4907.

        [5] Khanh P C P, Chinh N D, Cham T T, et al. Classification of cow behavior using 3-DOF accelerometer and decision tree algorithm[C]// International Conference on Biomedical Engineering, 2016: 45-50.

        [6] Arcidiacono C, Porto S M C, Mancino M, et al. Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data[J]. Computers and Electronics in Agriculture, 2017, 134: 124-134.

        [7] Thorup V M, Munksgaard L, Robert P E, et al. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms[J]. Animal An International Journal of Animal Bioscience, 2015, 9(10): 1704-1712.

        [8] 沈維政,鄭爽,初永良,等. 基于ADXL345的奶?;顒?dòng)量采集系統(tǒng)設(shè)計(jì)[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2014, 45(10):80-85. Shen Weizheng, Zheng Shuang, Chu Yongliang, et al. Design of cow activity data acquisition system based on ADXL345[J]. Journal of Northeast Agricultural University, 2014, 45(10): 80—85. (in Chinese with English abstract)

        [9] 溫長吉,王生生,趙昕,等. 基于視覺詞典法的母牛產(chǎn)前行為識別[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(1):266-274. Wen Changji, Wang Shengsheng, Zhao Xin, et al. Visual dictionary for cows sow behavior recognition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 266-274. (in Chinese with English abstract)

        [10] Smith D, Dutta R, Hellicar A, et al. Bag of class posteriors: A new multivariate time series classifier applied to animal behaviour identification[J]. Expert Systems with Applications, 2015, 42(7): 3774-3784.

        [11] Dutta R, Smith D, Rawnsley R, et al. Cattle behaviour classification using 3-axis collar sensor and multi-classifier pattern recognition[C]//2014 IEEE Sensors, 2014: 1272-1275.

        [12] 尹令,洪添勝,劉漢興,等. 結(jié)構(gòu)相似子序列快速聚類算法及其在奶牛發(fā)情檢測中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):107-112. Yin Ling, Hong Tiansheng, Liu Hanxing, et al. Subsequence clustering algorithm based on structural similarity and its application in cow estrus detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 107-112. (in Chinese with English abstract)

        [13] Nielsen L R, Pedersen A R, Herskin M S, et al. Quantifying walking and standing behaviour of dairy cows using a moving average based on output from an accelerometer[J]. Applied Animal Behaviour Science, 2010, 127(1/2): 12-19.

        [14] Nadimi E S, J?rgensen R N, Blanes-Vidal V, et al. Monitoring and classifying animal behavior using zigbee-based mobile ad hoc wireless sensor networks and artificial neural networks[J]. Computers and Electronics in Agriculture, 2012, 82: 44-54.

        [15] Leroy T, Guarino M, Vranken E, et al. Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis[J]. Computers and Electronics in Agriculture, 2008, 64(1): 53-60.

        [16] Zhao K, Bewley J M, He D, et al. Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique[J]. Computers and Electronics in Agriculture, 2018, 148: 226-236.

        [17] Smith D, Rahman A, Bishop-Hurley G J, et al. Behavior classification of cows fitted with motion collars: Decomposing multi-class classification into a set of binary problems[J]. Computers and Electronics in Agriculture, 2016, 131: 40-50.

        [18] 何東健,劉冬,趙凱旋. 精準(zhǔn)畜牧業(yè)中動(dòng)物信息智能感知與行為檢測研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):231-244. He Dongjian, Liu Dong, Zhao Kaixuan. Review of perceiving animal information and behavior in precision livestock farming[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 231-244. (in Chinese with English abstract)

        [19] 屈東東,劉素梅,吳金杰,等. 群養(yǎng)奶牛體溫實(shí)時(shí)監(jiān)測系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(增刊1):408-412. Qu Dongdong, Liu Sumei, Wu Jinjie, et al. Design and implementation of monitoring system for multiple cows body temperature[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Supp.1):408-412. (in Chinese with English abstract)

        [20] Thompson A J, Weary D M, von Keyserlingk M A G. Technical note: Mining data from on-farm electronic equipment to identify the time dairy cows spend away from the pen[J]. Journal of Dairy Science, 2017, 100(5): 3975-3982.

        [21] Nielsen P P, Fontana I, Sloth K H, et al. Technical note: Validation and comparison of 2 commercially available activity loggers[J]. Journal of Dairy Science, 2018, 101(6): 5449-5453.

        [22] Watanabe N, Sakanoue S, Kawamura K, et al. Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer[J]. Grassland Science, 2008, 54(4): 231-237.

        [23] Resheff Y S, Rotics S, Harel R, et al. Accelerater: A web application for supervised learning of behavioral modes from acceleration measurements[J]. Movement Ecology, 2014, 2(1): 27-33.

        [24] Brown D D, Kays R, Wikelski M, et al. Observing the unwatchable through acceleration logging of animal behavior[J]. Animal Biotelemetr, 2013, 1(1): 20-36.

        [25] Shahriar M S, Smith D, Rahman A, et al. Detecting heat events in dairy cows using accelerometers and unsupervised learning[J]. Computers and Electronics in Agriculture, 2016, 128: 20-26.

        [26] Langrock R, King R, Matthiopoulos J, et al. Flexible and practical modeling of animal telemetry data: Hidden markov models and extensions[J]. Ecology, 2012, 93(11): 2336-2342.

        [27] 何東健,孟凡昌,趙凱旋,等. 基于視頻分析的犢?;拘袨樽R別[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):294-300. He Dongjian, Meng Fanchang, Zhao Kaixuan, et al. Recognition of calf basic behaviors based on video analysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 294-300. (in Chinese with English abstract)

        [28] 尹令,劉財(cái)興,洪添勝,等. 基于無線傳感器網(wǎng)絡(luò)的奶牛行為特征監(jiān)測系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):203-208. Yin Ling, Liu Caixing, Hong Tiansheng, et al. Design of system for monitoring dairy cattle’s behavioral features based on wireless sensor networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 203-208. (in Chinese with English abstract)

        [29] Martiskainen P, J?rvinen M, Sk?n J-P, et al. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines[J]. Applied Animal Behaviour Science, 2009, 119(2): 32-38.

        [30] Diosdado J A V, Barker Z E, Hodges H R, et al. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system[J]. Animal Biotelemetry, 2015, 3(1): 15-28.

        [31] Gupta R K, Lathwal S S, Ruhil A P, et al. Lameness prediction in Karan Fries cross-bred cows using decision tree models[C]// International Conference on Computing for Sustainable Global Development. IEEE, 2015: 1166-1171.

        [32] Abell K M, Theurer M E, Larson R L, et al. Predicting bull behavior events in a multiple-sire pasture with video analysis, accelerometers, and classification algorithms[J]. Computers and Electronics in Agriculture, 2017, 136: 221-227.

        [33] Alvarenga F A P, Borges I, Palkovic L, et al. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture[J]. Applied Animal Behaviour Science, 2016, 181: 91-99.

        [34] 于文婧,劉曉娜,孫丹峰,等.基于HJ-CCD數(shù)據(jù)和決策樹法的干旱半干旱灌區(qū)土地利用分類[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):212-219.Yu Wenjing, Liu Xiaona, Sun Danfeng, et al. Land use classification in arid and semi-arid irrigated area based on HJ-CCD data and decision tree method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 212-219. (in Chinese with English abstract)

        [35] 程華,李艷梅,羅謙,等. 基于C4.5決策樹方法的到港航班延誤預(yù)測問題研究[J]. 系統(tǒng)工程理論與實(shí)踐,2014,34(增刊1):239-247.Cheng Hua, Li Yanmei, Luo Qian, et al. Study on flight delay with C4.5 decision tree based prediction method[J]. Systems Engineering--Theory & Practice, 2014, 34(Supp.1): 239-247. (in Chinese with English abstract)

        [36] Steensels M, Antler A, Bahr C, et al. A decision-tree model to detect post-calving diseases based on rumination, activity, milk yield, bw and voluntary visits to the milking robot[J]. Animal, 2016, 10(9): 1493-1500.

        [37] Schwager M, Anderson D M, Butler Z, et al. Robust classification of animal tracking data[J]. Computers and Electronics in Agriculture, 2007, 56(1): 46-59.

        Cow movement behavior classification based on optimal binary decision-tree classification model

        Wang Jun1, Zhang Haiyang1, Zhao Kaixuan1, Liu Gang2

        (1.,,471003,; 2.,,,100083,)

        Changes in behavioral activity are increasingly recognized as a useful indicator of dairy cows’ health and welfare. The classifying of changes in behavioral activity can be useful in early detection and prevention of diseases, and monitoring dairy cows’ behavioral activity helps farmers to take a comprehensive view of the dairy cows’ estrus time. The aim of this study is to automatically measure and distinguish several behavior activities of dairy cows from accelerometer data. The study consists of 2 parts, namely, wireless leg sensor and binary decision-tree algorithm. The wireless leg sensor was designed to collect test data, which integrates microcontroller MSP430F149IMP, tri-axial accelerometer ADXL345, and radio frequency module CC1101 to meet the requirements of accurately collecting data of the acceleration of dairy cows, and long-term reliable transmission of data. The binary decision-tree algorithm was designed to classify the behavior of dairy cows. Firstly, 24 statistical features describing the magnitude, symmetry, steepness, variability, uncertainty and angle of the three-axis acceleration of cow legs were selected. Secondly, the best classification behavior category and optimal threshold of each statistical feature were obtained by constructing ROC(receiver operating characteristic) curve. Then the information gain is used as the selection criterion for the split attribute of the binary decision-tree model. Finally, a optimal binary decision tree classification model is constructed to classify and recognize the dairy cow motion behavior. Compared with the traditional binary decision-tree algorithm, the innovation of the algorithm is as follows: Firstly, the ROC curve principle is used to ensure the classification and threshold of each statistical feature to select the local optimal. Then the information gain is used as the split attribute selection standard, and the binary decision-tree classification model is constructed to realize the overall optimal classification of the behavior characteristics of the dairy cows. The results illustrate that the optimal binary decision-tree algorithm can accurately classify 6 types of biologically relevant behavior: standing (88.59% sensitivity, 83.35% precision, and 85.89%1 score ), lying (85.59% sensitivity, 86.04% precision, and 86%1 score), normal walking (73.91% sensitivity, 84.25% precision, and 78.74%1 score), active walking (75.75% sensitivity, 74.46% precision, and 75.1%1 score), standing up (67.63% sensitivity, 67.81% precision, and 67.72%1 score), and lying down (66.96% sensitivity, 65.06% precision, and 65.99%1 score). The highest sensitivity was 88.59% for standing and the sensitivity was good for all classes of behavior except standing up and lying down. The best precision was achieved for standing, lying, and normal walking. The precision for active walking classification was slightly lower but substantially better than those for standing up and lying down. Standing and lying behavior were classified correctly to a high degree, but were also misclassified as other behavior. Normal walking was mainly misclassified as either standing or active walking (18.79% of the cases). Active walking was misclassified most often as standing or normal walking (18.43% of the cases). Standing up and lying down were mostly confused with each other (15.53% and 14.92% of the cases, respectively). The average sensitivity, the average precision and the average1 score of the classification are 76.47%, 76.83%, and 76.57% respectively. Compared with the traditional ID3 (iterative dichotomiser 3) decision-tree algorithm, they are increased by 5.71 percentage points, 5.4 percentage points and 5.61 percentage points respectively; they are increased by 7.51 percentage points, 8.02 percentage points and 7.77 percentage points respectively compared with the K-means clustering algorithm, and 6.77 percentage points, 6.72 percentage points and 6.57 percentage points respectively compared with the support vector machine algorithm. The experimental results show that the optimal binary decision-tree algorithm has the characteristics of simple classification rules and high classification accuracy. This research of the method can provide an effective theoretical support for improving the classification accuracy of dairy cow behavior.

        data aqusition; data processing;algorithms; behavior classification; tri-axial accelerometer; wireless leg sensor; receiver operating characteristic curve; binary Decision-tree

        10.11975/j.issn.1002-6819.2018.18.025

        S24;TP274.2

        A

        1002-6819(2018)-18-0202-09

        2018-06-04

        2018-08-10

        “十三五”國家重點(diǎn)研發(fā)計(jì)劃課題(2018YFD0500705);國家自然科學(xué)基金(61771184);河南省科技攻關(guān)項(xiàng)目(172102210040);河南省創(chuàng)新型科技人才建設(shè)項(xiàng)目(184200510017)

        王 俊,男,山西晉中人,系主任,博士,主要從事精細(xì)農(nóng)業(yè)系統(tǒng)集成研究。Email:wj@haust.edu.cn

        王 俊,張海洋,趙凱旋,劉 剛. 基于最優(yōu)二叉決策樹分類模型的奶牛運(yùn)動(dòng)行為識別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):202-210. doi:10.11975/j.issn.1002-6819.2018.18.025 http://www.tcsae.org

        Wang Jun, Zhang Haiyang, Zhao Kaixuan, Liu Gang. Cow movement behavior classification based on optimal binary decision-tree classification model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 202-210. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2018.08.025 http://www.tcsae.org

        猜你喜歡
        腿部決策樹奶牛
        乍暖還寒時(shí)奶牛注意防凍傷
        分體式腿部氣動(dòng)按摩裝置設(shè)計(jì)
        玩具世界(2022年2期)2022-06-15 07:35:58
        夏季奶牛如何預(yù)防熱應(yīng)激
        一種針對不均衡數(shù)據(jù)集的SVM決策樹算法
        奶牛吃草
        決策樹和隨機(jī)森林方法在管理決策中的應(yīng)用
        電子制作(2018年16期)2018-09-26 03:27:06
        基于決策樹的出租車乘客出行目的識別
        腳下放靠墊睡覺更解乏
        腳下放靠墊睡覺更解乏
        基于肺癌CT的決策樹模型在肺癌診斷中的應(yīng)用
        日韩内射美女人妻一区二区三区| 国产片在线一区二区三区| 丝袜美腿亚洲一区二区| 亚洲精品午夜无码电影网| 99ri国产在线观看| 国内精品熟女一区二区| 在线精品首页中文字幕亚洲| 亚洲精品无码久久久久去q| 66lu国产在线观看| 久久精品综合国产二区| 亚洲精品国产一区二区免费视频 | 国产日韩欧美亚洲精品中字| 日本一区二区三区中文字幕视频| 一区二区高清免费日本| 真实国产精品vr专区| 老熟女多次高潮露脸视频| 日本熟妇精品一区二区三区| 久久国产在线精品观看| 亚洲精品成人无码中文毛片| 99久久久久国产| 亚洲天堂av免费在线| 亚洲成av人片一区二区密柚| 毛片24种姿势无遮无拦| 对白刺激的老熟女露脸| 中文字幕亚洲五月综合婷久狠狠| 婷婷丁香五月激情综合| 美女胸又www又黄的网站| av熟女一区二区久久| 美丽的小蜜桃在线观看| 中文字幕在线观看亚洲日韩| 国产在线无码免费视频2021| 视频在线亚洲视频在线| 99无码精品二区在线视频 | 亚洲国产精品无码专区| 亚洲视频在线看| av天堂一区二区三区精品| 亚洲av片无码久久五月| 吸咬奶头狂揉60分钟视频| 少妇高潮无码自拍| 一本之道久久一区二区三区| a级毛片免费观看网站|