金 鑫,陳凱康,姬江濤,龐 靖,高 頌,曾欣悅
?
基于模態(tài)置信度準(zhǔn)則的插秧機(jī)支撐臂模態(tài)分析與結(jié)構(gòu)優(yōu)化
金 鑫1,2,陳凱康1,姬江濤1,2※,龐 靖1,高 頌1,曾欣悅1
(1.河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,洛陽(yáng) 471003;2. 機(jī)械裝備先進(jìn)制造河南省協(xié)同創(chuàng)新中心,洛陽(yáng) 471003)
針對(duì)高速插秧機(jī)栽插機(jī)構(gòu)動(dòng)力傳輸過(guò)程中的振動(dòng)問(wèn)題,該文以2ZG-6DK插秧機(jī)為研究對(duì)象,分析了栽插系統(tǒng)動(dòng)力傳輸方式及工作原理;利用SolidWorks軟件對(duì)插秧機(jī)動(dòng)力傳輸系統(tǒng)中關(guān)鍵部件支撐臂進(jìn)行建模,將模型導(dǎo)入ANSYS Workbench并結(jié)合Lanczos Method解算方法求解模態(tài)固有頻率和振型,在此基礎(chǔ)上開(kāi)展基于MAC(modal assurance criterion)準(zhǔn)則優(yōu)化的模態(tài)試驗(yàn),驗(yàn)證了有限元理論分析的準(zhǔn)確性。為使支撐臂固有頻率避開(kāi)外部激振頻率,在分析外部頻率激振特點(diǎn)的基礎(chǔ)上,基于ISIGHT多學(xué)科軟件平臺(tái),采用序列二次規(guī)劃法對(duì)支撐臂結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化。研究結(jié)果表明:優(yōu)化后支撐臂側(cè)壁腔體厚度5.7 mm、橫梁寬度42.0 mm、臂長(zhǎng)497.0 mm,前4階模態(tài)頻率分別調(diào)整至135.17、204.23、483.14和702.32 Hz,均可避開(kāi)插秧機(jī)汽油發(fā)動(dòng)機(jī)激振頻率范圍86.67~120 Hz。優(yōu)化后1階頻率下振動(dòng)幅度衰減最為明顯,振動(dòng)幅值最高下降9.4%,支撐臂低頻振動(dòng)特性得到明顯改善。研究結(jié)果可為插秧機(jī)的振動(dòng)特性分析與減振設(shè)計(jì)提供參考。
農(nóng)業(yè)機(jī)械;振動(dòng);優(yōu)化;模態(tài)分析;MAC準(zhǔn)則
分插機(jī)構(gòu)支撐臂又稱為栽植鏈條箱,是水稻插秧機(jī)動(dòng)力傳輸系統(tǒng)核心工作部件,其工作性能直接影響整機(jī)作業(yè)質(zhì)量和效率[1-3]。插秧機(jī)高速作業(yè)條件下受路面激勵(lì)、內(nèi)燃機(jī)振動(dòng)激勵(lì)、傳動(dòng)系統(tǒng)振動(dòng)激勵(lì)和沖擊載荷等影響,當(dāng)自身固有頻率接近動(dòng)載荷頻率時(shí)易發(fā)生共振現(xiàn)象[4-7]。共振產(chǎn)生的動(dòng)應(yīng)力不僅影響駕駛舒適性,而且會(huì)造成與其配套的零部件因疲勞而發(fā)生脆性斷裂,影響機(jī)械設(shè)備的性能和工作壽命[8-11]。因此,開(kāi)展以減振降噪技術(shù)為核心的插秧機(jī)分插機(jī)構(gòu)支撐臂的振動(dòng)研究具有重要意義,可為深入探究水稻栽插作業(yè)關(guān)鍵部件振動(dòng)機(jī)理提供理論借鑒。
目前,國(guó)內(nèi)外針對(duì)農(nóng)機(jī)裝備作業(yè)工況下振動(dòng)較大等問(wèn)題,在振動(dòng)特性分析、駕駛座椅振動(dòng)與舒適性分析、模態(tài)分析與試驗(yàn)、傳感器測(cè)點(diǎn)優(yōu)化等方面已有相關(guān)研究。李耀明等[9-10]通過(guò)有限元計(jì)算模態(tài)分析與自由模態(tài)驗(yàn)證相結(jié)合的方法求解了履帶聯(lián)合收獲機(jī)機(jī)架的固有頻率和振型,對(duì)機(jī)架進(jìn)行結(jié)構(gòu)優(yōu)化與試驗(yàn)后達(dá)到了減振降噪的目的。姚艷春等[11]分析車架田間振動(dòng)特性,并以提高1階扭轉(zhuǎn)頻率為目標(biāo)優(yōu)化車架結(jié)構(gòu),優(yōu)化后車架無(wú)故障時(shí)間由20 h提高到60 h。Wang JL等[12]利用ANSYS有限元分析軟件,獲得了移栽機(jī)3種關(guān)鍵結(jié)構(gòu)件固有頻率、阻尼比和模態(tài)振型,對(duì)3種結(jié)構(gòu)的模態(tài)參數(shù)進(jìn)行比較,為移栽機(jī)整體結(jié)構(gòu)設(shè)計(jì)提供了理論依據(jù)。張華標(biāo)等[13]以插秧機(jī)分插機(jī)構(gòu)支撐臂為研究對(duì)象,利用有限元分析軟件對(duì)其受力和振動(dòng)模態(tài)進(jìn)行分析得出其6階模態(tài)參數(shù),為分插機(jī)構(gòu)設(shè)計(jì)提供理論基礎(chǔ)。
李復(fù)輝等[14]通過(guò)有限元分析軟件對(duì)插秧機(jī)分插機(jī)構(gòu)行星輪系進(jìn)行模態(tài)計(jì)算,得出行星輪前15階模態(tài)固有頻率和振型云圖,分析證明行星輪工作過(guò)程中不會(huì)發(fā)生共振現(xiàn)象。張翔等[15]以LNC8型插秧機(jī)車架為研究對(duì)象,結(jié)合有限元分析與模態(tài)試驗(yàn)結(jié)果對(duì)影響較大的4個(gè)主要因素進(jìn)行正交試驗(yàn)設(shè)計(jì),優(yōu)化后試驗(yàn)對(duì)象振動(dòng)特性有明顯改善。
當(dāng)前,在插秧機(jī)械等農(nóng)業(yè)機(jī)械裝備振動(dòng)測(cè)試與特征分析方面已取得相關(guān)研究成果[16-19],但尚未完全清楚插秧機(jī)分插機(jī)構(gòu)支撐臂作業(yè)過(guò)程中振動(dòng)特性及其振動(dòng)規(guī)律,尤其對(duì)在高速栽插狀態(tài)下支撐臂的振動(dòng)特性、振動(dòng)主頻與模態(tài)振型之間的對(duì)應(yīng)關(guān)系研究相對(duì)較少,缺乏對(duì)于農(nóng)業(yè)機(jī)械振動(dòng)模態(tài)試驗(yàn)傳感器布置位點(diǎn)的研究。
本文在現(xiàn)有研究的基礎(chǔ)上,深入探究插秧機(jī)支撐臂振動(dòng)特性,利用三維建模軟件結(jié)合有限元Lanczos Method解算方法求解出支撐臂模態(tài)參數(shù),通過(guò)模態(tài)試驗(yàn)對(duì)比驗(yàn)證有限元模態(tài)的準(zhǔn)確性。在對(duì)比分析支撐臂固有頻率與外部激振頻率特點(diǎn)的基礎(chǔ)上,基于ISIGHT多學(xué)科軟件平臺(tái),采用序列二次規(guī)劃法對(duì)支撐臂結(jié)構(gòu)參數(shù)進(jìn)行了優(yōu)化。本文旨在為栽植機(jī)械復(fù)雜結(jié)構(gòu)件振動(dòng)特性分析提供方法,以期為高速栽植機(jī)械的振動(dòng)特性分析與減振設(shè)計(jì)提供參考。
高速插秧機(jī)栽插系統(tǒng)結(jié)構(gòu)簡(jiǎn)圖如圖1a所示,主要由插秧支撐臂、插秧旋轉(zhuǎn)箱、推秧裝置等組成。其中支撐臂通過(guò)螺栓固定在機(jī)架上,支撐臂左右兩側(cè)布置2個(gè)插秧旋轉(zhuǎn)箱,插秧旋轉(zhuǎn)箱內(nèi)部行星輪系將動(dòng)力傳輸至推秧裝置,每個(gè)插秧旋轉(zhuǎn)箱體上安裝有2個(gè)推秧裝置。
栽插系統(tǒng)作業(yè)過(guò)程中,動(dòng)力通過(guò)鏈條傳動(dòng)至中心軸,旋轉(zhuǎn)箱內(nèi)部的行星輪和中間輪隨旋轉(zhuǎn)箱繞中心軸作勻速圓周運(yùn)動(dòng)。位于插秧旋轉(zhuǎn)箱兩側(cè)的推秧裝置在行星輪系帶動(dòng)下構(gòu)成相對(duì)運(yùn)動(dòng),完成周期性推秧動(dòng)作。在插秧機(jī)工作過(guò)程中,支撐臂是動(dòng)力傳輸機(jī)構(gòu)的主要承載部件,其工作穩(wěn)定性直接影響插秧的質(zhì)量和效率。支撐臂模型如圖1b所示。
圖1 高速插秧機(jī)栽插試驗(yàn)臺(tái)及插秧機(jī)支撐臂示意圖
南通富來(lái)威2ZG-6DK插秧機(jī)支撐臂外形尺寸長(zhǎng)500 mm,寬98 mm,高131 mm,主要由ZL101鋁合金經(jīng)殼型鑄造后調(diào)質(zhì)處理而成。建立支撐臂有限元模型如圖2所示。
圖2 支撐臂有限元模型
利用三維軟件對(duì)支撐臂進(jìn)行虛擬建模,將模型導(dǎo)入ANSYS Workbench中。因有限元建模直接影響計(jì)算結(jié)果,因此需考慮模型的簡(jiǎn)化、網(wǎng)格數(shù)目、單元類型、網(wǎng)格質(zhì)量等因素。首先對(duì)影響模型精度的關(guān)鍵因素進(jìn)行幾何清理,然后對(duì)支撐臂有限元建模作出如下簡(jiǎn)化:1)不考慮半徑較小倒角和孔對(duì)整體的影響;2)忽略支撐臂上的凸起、側(cè)筋等非承載構(gòu)件影響;3)焊接處材料特性按照周圍構(gòu)件特性計(jì)算。
如圖2所示,在對(duì)所建立的支撐臂模型進(jìn)行劃分時(shí),定義模型材料為鋁,其材料特性設(shè)置彈性模量70 GPa,泊松比0.33,質(zhì)量密度2 680 kg/m3,采用6面體網(wǎng)格,網(wǎng)格尺寸為2 mm。為使模型接近實(shí)際,采用約束模態(tài),根據(jù)實(shí)物結(jié)構(gòu),約束位置為2個(gè)軸心位置和鉸接位置。最終得到單元總數(shù)62 208個(gè),節(jié)點(diǎn)總數(shù)108 698的有限元模型。
模態(tài)分析用于確定結(jié)構(gòu)的模態(tài)參數(shù),即固有頻率和振型。在工程應(yīng)用中,低階模態(tài)對(duì)支撐臂動(dòng)態(tài)特性影響較大,分析支撐臂低階振型對(duì)預(yù)測(cè)結(jié)構(gòu)穩(wěn)定性有重要作用[20]。高頻振動(dòng)一般遠(yuǎn)離支撐臂低階振動(dòng)頻率,對(duì)部件疲勞破壞明顯低于低頻振動(dòng)部分。故選取Lanczos Method解算方法,求解得到前4 階固有頻率及對(duì)應(yīng)振型云圖,如圖3所示。
圖3 插秧機(jī)支撐臂有限元模態(tài)固有頻率及模態(tài)振型
由圖3可知,支撐臂1階模態(tài)振型主要以沿y軸正方向彎曲為主。2階振型主要表現(xiàn)為支撐臂兩端沿y軸負(fù)方向彎曲變形。3階模態(tài)振型主要表現(xiàn)為扭轉(zhuǎn)變形。4階模態(tài)振型主要表現(xiàn)為凸型結(jié)構(gòu)塊和動(dòng)力輸入鏈條箱反向彎曲變形。
模態(tài)試驗(yàn)是基于外界激勵(lì)和系統(tǒng)響應(yīng)的動(dòng)態(tài)測(cè)試,該測(cè)試通過(guò)系統(tǒng)輸入的激振力和輸出的響應(yīng)數(shù)據(jù)經(jīng)信號(hào)處理與參數(shù)識(shí)別來(lái)確定系統(tǒng)模態(tài)參數(shù)。在模態(tài)試驗(yàn)中常用激振器或模態(tài)力錘迫使結(jié)構(gòu)產(chǎn)生強(qiáng)迫振動(dòng),通過(guò)分析2點(diǎn)之間的機(jī)械導(dǎo)納函數(shù),識(shí)別出結(jié)構(gòu)物的的頻率、阻尼和振型等模態(tài)參數(shù),為結(jié)構(gòu)系統(tǒng)的振動(dòng)特性分析以及結(jié)構(gòu)動(dòng)力特性的優(yōu)化設(shè)計(jì)提供依據(jù)。
本文模態(tài)試驗(yàn)系統(tǒng)由數(shù)據(jù)采集模塊和模態(tài)分析模塊組成。其中數(shù)據(jù)采集模塊由力錘、三軸加速度傳感器和DH5902數(shù)據(jù)采集儀組成;模態(tài)分析模塊由DH5902動(dòng)態(tài)信號(hào)分析系統(tǒng)和DHMA模態(tài)分析軟件組成。圖4為插秧機(jī)支撐臂模態(tài)試驗(yàn)流程圖。
圖4 插秧機(jī)支撐臂模態(tài)試驗(yàn)流程圖
模態(tài)試驗(yàn)采用DH5902動(dòng)態(tài)信號(hào)測(cè)試分析系統(tǒng)對(duì)2ZG-6DK插秧機(jī)支撐臂振動(dòng)特性進(jìn)行測(cè)試,試驗(yàn)所需儀器設(shè)備及參數(shù)如表1所示。
表1 模態(tài)試驗(yàn)用測(cè)試設(shè)備
如圖5所示,本文模態(tài)試驗(yàn)采用脈沖激勵(lì)法,通過(guò)同時(shí)測(cè)量輸入與輸出信號(hào),即通過(guò)同時(shí)測(cè)量激勵(lì)和響應(yīng),推知系統(tǒng)的固有特性。試驗(yàn)過(guò)程為:利用遠(yuǎn)小于被測(cè)物體剛度的黑色彈簧將支撐臂吊起,保證支撐臂平衡懸置于空中。將三軸加速度計(jì)按要求布置在支撐臂表面,順次用導(dǎo)線連接傳感器及整個(gè)測(cè)試系統(tǒng)。模態(tài)力錘敲擊激振點(diǎn)后,數(shù)據(jù)同時(shí)由模態(tài)力錘和加速度傳感器傳輸至數(shù)據(jù)采集系統(tǒng)中,并得到系統(tǒng)響應(yīng)函數(shù)。模態(tài)分析系統(tǒng)分析整體系統(tǒng)響應(yīng)函數(shù)后得到插秧機(jī)支撐臂整體振動(dòng)特性。
圖5 支撐臂模態(tài)試驗(yàn)
傳統(tǒng)模態(tài)試驗(yàn)依靠經(jīng)驗(yàn)選取測(cè)點(diǎn)或均勻布點(diǎn)時(shí),存在對(duì)經(jīng)驗(yàn)高度依賴且試驗(yàn)效率較低的弊端[21-23]。本文所測(cè)插秧機(jī)支撐臂結(jié)構(gòu)較不規(guī)則,在實(shí)際模態(tài)試驗(yàn)中,由于有限的測(cè)點(diǎn)數(shù)及測(cè)試噪聲引起模態(tài)向量不正交等問(wèn)題易對(duì)試驗(yàn)準(zhǔn)確性產(chǎn)生影響。引入模態(tài)置信度(modal assurance criterion, MAC)矩陣對(duì)測(cè)點(diǎn)布置方案進(jìn)行優(yōu)化設(shè)計(jì),可在保證模態(tài)試驗(yàn)精度的前提下,精簡(jiǎn)測(cè)試點(diǎn)數(shù)量,從而達(dá)到提高試驗(yàn)精度與效率的目的[24-28]。模態(tài)置信度準(zhǔn)則是一種傳感器優(yōu)化配置準(zhǔn)則,其矩陣表達(dá)式為
以支撐臂凸型結(jié)構(gòu)塊為例,在測(cè)點(diǎn)優(yōu)化過(guò)程中,通過(guò)有限元分析獲得前4階模態(tài)振型矩陣,然后根據(jù)MAC矩陣相結(jié)合的方法在Matlab中進(jìn)行迭代計(jì)算,得到MAC矩陣最大非對(duì)角元元素的最大值與自由度數(shù)的變化曲線如圖6所示。
圖6 MAC矩陣最大非對(duì)角元元素的最大值與自由度數(shù)的變化曲線
由圖6可知,當(dāng)自由度為3時(shí),該矩陣非對(duì)角元最大值達(dá)到最小,即最少在凸型結(jié)構(gòu)塊上邊緣布置3個(gè)傳感器測(cè)點(diǎn)方可基本滿足測(cè)試要求。凸型結(jié)構(gòu)塊上邊緣布置3個(gè)傳感器后即可識(shí)別出被測(cè)部件固有頻率,為同時(shí)獲得多階模態(tài)振型,可在MAC置信準(zhǔn)則基礎(chǔ)上結(jié)合香農(nóng)定理適當(dāng)增加測(cè)點(diǎn)以達(dá)到準(zhǔn)確識(shí)別振型的要求。
使用香農(nóng)定理進(jìn)行增設(shè)測(cè)點(diǎn),測(cè)得支撐臂凸型結(jié)構(gòu)塊模態(tài)的最高頻率,估計(jì)該最高頻率的半波長(zhǎng);在半波長(zhǎng)的每個(gè)節(jié)點(diǎn)上布置1個(gè)傳感器;再在半波長(zhǎng)上等均布2個(gè)傳感器。支撐臂凸型結(jié)構(gòu)塊的頂端邊緣長(zhǎng)80 mm,通過(guò)有限元分析獲得第4階固有頻率下滑座的一條長(zhǎng)邊的節(jié)點(diǎn)位移,再將其進(jìn)行曲線擬合得到滑座變形最大的y方向上的位移波形,從波形估計(jì)支撐臂凸型結(jié)構(gòu)塊的波長(zhǎng)為75 mm,需在2節(jié)點(diǎn)之間增設(shè)1個(gè)測(cè)點(diǎn)使得振型更好分辨。同理,對(duì)支撐臂其他關(guān)鍵結(jié)構(gòu)也通過(guò)該種方法進(jìn)行測(cè)點(diǎn)優(yōu)化。
優(yōu)化后測(cè)點(diǎn)分布如圖7所示,共有78個(gè)測(cè)點(diǎn),該模型結(jié)構(gòu)能較好地定義插秧機(jī)支撐臂輪廓形狀。圖中編號(hào)為有限元分析中對(duì)應(yīng)的節(jié)點(diǎn)編號(hào)。圖中紫色節(jié)點(diǎn)為依據(jù)MAC置信準(zhǔn)則得到的節(jié)點(diǎn),綠色節(jié)點(diǎn)為結(jié)合香農(nóng)定理增加的節(jié)點(diǎn)。通過(guò)對(duì)比圖7和圖3的前4階振型,發(fā)現(xiàn)通過(guò)此種方法選擇的測(cè)點(diǎn)大都分布在零件變形較大的部位,因此這樣選擇的測(cè)點(diǎn)對(duì)模態(tài)振型的貢獻(xiàn)最大,且滿足振型識(shí)別的要求。
為保證識(shí)別出的頻響函數(shù)具有較好的一致性,并且不遺漏模態(tài),頻響函數(shù)測(cè)試采用自由激振的方法,選用2根彈簧將支撐臂懸掛呈自由狀態(tài)。為保證系統(tǒng)的可辨識(shí)性,模態(tài)試驗(yàn)激振點(diǎn)不能靠近節(jié)點(diǎn)或節(jié)線太近。本試驗(yàn)選取2個(gè)激振點(diǎn),豎直方向(軸方向)激勵(lì)點(diǎn)選取在凸型結(jié)構(gòu)塊頂端,側(cè)向(軸方向)激勵(lì)點(diǎn)選取在回轉(zhuǎn)箱定位塊處。
將經(jīng)由動(dòng)態(tài)信號(hào)采集分析系統(tǒng)收集的數(shù)據(jù)導(dǎo)入DHMA模態(tài)分析軟件進(jìn)行分析,并將模態(tài)參數(shù)數(shù)據(jù)匹配于所建立的試驗(yàn)?zāi)P椭校罱K得到插秧機(jī)支撐臂固有頻率和振型等模態(tài)參數(shù)。一般而言低階振動(dòng)對(duì)結(jié)構(gòu)的動(dòng)態(tài)影響較大,低階振型決定結(jié)構(gòu)的動(dòng)態(tài)特性,故提取插秧機(jī)支撐臂前4階固有頻率和振型,結(jié)果如圖8所示。
注:圖中數(shù)字為試驗(yàn)測(cè)點(diǎn)標(biāo)號(hào)。
將有限元模態(tài)分析與試驗(yàn)?zāi)B(tài)結(jié)果進(jìn)行對(duì)比分析,結(jié)果如表2所示。由表2可知,插秧機(jī)支撐臂有限元模態(tài)與試驗(yàn)?zāi)B(tài)結(jié)果基本一致,前4階模態(tài)振型以彎曲為主,阻尼比均不超過(guò)0.5%,固有頻率相對(duì)誤差最大值為3.2%,有限元模態(tài)分析數(shù)據(jù)可靠。
圖8 插秧機(jī)支撐臂試驗(yàn)?zāi)B(tài)下前4階固有頻率和振型
表2 有限元分析與試驗(yàn)測(cè)試的模態(tài)結(jié)果對(duì)比
本機(jī)型采用的發(fā)動(dòng)機(jī)為風(fēng)冷4沖程2汽缸OHV汽油機(jī),其曲軸曲拐呈180°布置。當(dāng)插秧機(jī)正常工作時(shí),2階慣性力是其激振力,轉(zhuǎn)速達(dá)到2 600~3 600 r/min時(shí),激振頻率為86.67~120 Hz。插秧機(jī)回轉(zhuǎn)箱在工作狀態(tài)下做回轉(zhuǎn)運(yùn)動(dòng),其轉(zhuǎn)動(dòng)速度處于60~110 r/min之間,激振頻率為3~3.6 Hz。實(shí)際測(cè)得插秧機(jī)傳動(dòng)系統(tǒng)主軸正常工作轉(zhuǎn)速為400~600 r/min,激振頻率為13.33~20 Hz。
通過(guò)觀察支撐臂1階模態(tài)振型云圖,結(jié)合模態(tài)試驗(yàn)中物件變形狀態(tài)可知當(dāng)外部激振頻率接近101.29 Hz時(shí),高速插秧機(jī)支撐臂易產(chǎn)生共振。發(fā)動(dòng)機(jī)的激振頻率范圍在86.67~120 Hz,插秧機(jī)支撐臂1階固有頻率恰在該頻率范圍內(nèi),因此在插秧機(jī)完成高速栽插作業(yè)時(shí),發(fā)動(dòng)機(jī)所引起的支撐臂共振現(xiàn)象會(huì)對(duì)秧苗栽插作業(yè)質(zhì)量產(chǎn)生影響。若對(duì)支撐臂結(jié)構(gòu)進(jìn)行減振設(shè)計(jì),需提高支撐臂整體固有頻率,使其1階固有頻率更加遠(yuǎn)離激振頻率。
根據(jù)有限元模態(tài)分析和現(xiàn)場(chǎng)模態(tài)試驗(yàn)結(jié)果,以支撐臂工作狀態(tài)下1階固有頻率為優(yōu)化對(duì)象,對(duì)支撐臂結(jié)構(gòu)進(jìn)行改進(jìn)以避免共振現(xiàn)象發(fā)生。支撐臂振動(dòng)特性優(yōu)化過(guò)程為復(fù)雜的多參數(shù)、跨學(xué)科優(yōu)化設(shè)計(jì),需調(diào)用多軟件協(xié)同設(shè)計(jì)求得最優(yōu)解[29-32]。本文通過(guò)ISIGHT優(yōu)化平臺(tái)快速集成和耦合各種仿真軟件,在ISIGHT優(yōu)化平臺(tái)中集成三維模型和ANSYS源文件,采用NLPQL(序列二次規(guī)劃法),以支撐臂1階固有頻率為優(yōu)化目標(biāo),對(duì)支撐臂側(cè)壁腔體厚度,橫梁寬度,臂長(zhǎng)進(jìn)行優(yōu)化。將系統(tǒng)離散成有限多個(gè)殼體單元,其單元?jiǎng)偠染仃嚍椋?/p>
設(shè)支撐臂材料結(jié)構(gòu)是均勻異性材料,則單元的彈性矩陣為
優(yōu)化過(guò)程為將系統(tǒng)固有頻率求解過(guò)程集成在多學(xué)科優(yōu)化設(shè)計(jì)ISIGHT軟件框架中,并做好輸入與輸出文件的解析。ISIGHT軟件中根據(jù)序列二次規(guī)劃法對(duì)設(shè)計(jì)變量和目標(biāo)響應(yīng)進(jìn)行優(yōu)化,按照設(shè)定次數(shù)進(jìn)行迭代計(jì)算并把過(guò)程集成為一個(gè)可自動(dòng)執(zhí)行的系統(tǒng)。此系統(tǒng)優(yōu)化過(guò)程流程圖如圖9所示。
圖9 ISIGHT優(yōu)化設(shè)計(jì)流程圖
設(shè)計(jì)要求在保證提高支撐臂低階固有頻率的同時(shí),盡量避開(kāi)整機(jī)各總成及部件的振動(dòng)的激振頻率帶。在滿足支撐臂1階固有頻率較大和質(zhì)量較小的條件下,得到支撐臂側(cè)壁腔體厚度5.7 mm、橫梁寬度42.0 mm、臂長(zhǎng)497.0 mm。在此參數(shù)設(shè)置下支撐臂前4階有限元模態(tài)參數(shù)如表3所示。其中支撐臂前4階固有頻率分別調(diào)整至 135.17、204.23、483.14和702.32 Hz,均避開(kāi)了插秧機(jī)汽油發(fā)動(dòng)機(jī)86.67~120 Hz的激振頻率范圍。
表3 優(yōu)化后支撐臂前4階有限元模態(tài)參數(shù)
為驗(yàn)證支撐臂各參數(shù)優(yōu)化的效果,對(duì)優(yōu)化前后支撐臂關(guān)鍵部位(前進(jìn)方向)、(橫向)、(縱向)的振動(dòng)信號(hào)進(jìn)行采樣分析。選取6個(gè)關(guān)鍵部位測(cè)試優(yōu)化前后振動(dòng)參數(shù),現(xiàn)場(chǎng)試驗(yàn)如圖10所示。
圖10 優(yōu)化前后插秧機(jī)支撐臂振動(dòng)參數(shù)測(cè)試
優(yōu)化前后支撐臂的臂長(zhǎng)變化較小,因此不考慮因臂長(zhǎng)變化而造成傳感器測(cè)點(diǎn)位置發(fā)生變化帶來(lái)的影響。測(cè)試地點(diǎn)為河南科技大學(xué)農(nóng)業(yè)機(jī)械作業(yè)狀態(tài)監(jiān)測(cè)試驗(yàn)室,測(cè)試選用356A16三軸加速度傳感器、DHDAS5902動(dòng)態(tài)信號(hào)分析系統(tǒng)、DH5902多通道信號(hào)采集儀進(jìn)行數(shù)據(jù)采樣與分析,試驗(yàn)時(shí)發(fā)動(dòng)機(jī)轉(zhuǎn)速始終在額定轉(zhuǎn)速(2 800 r/min)以保證各部件工作參數(shù)不變。根據(jù)插秧機(jī)支撐臂的結(jié)構(gòu)特點(diǎn),設(shè)置采樣頻率為2 560 Hz,時(shí)域點(diǎn)數(shù)為4 096,頻域點(diǎn)數(shù)1 600。同種參數(shù)設(shè)置下采集5組振動(dòng)信號(hào)數(shù)據(jù),取數(shù)據(jù)置信度較好一組數(shù)據(jù)分析所得各測(cè)點(diǎn)前4階振動(dòng)幅值如表4所示。
由表4可知,優(yōu)化前支撐臂在測(cè)點(diǎn)3、測(cè)點(diǎn)4、測(cè)點(diǎn)5處振幅較大,優(yōu)化后1階頻率下振動(dòng)幅度衰減最為明顯。其中測(cè)點(diǎn)3處優(yōu)化后135.17 Hz頻率下振幅下降9.4%,說(shuō)明結(jié)構(gòu)優(yōu)化后支撐臂振動(dòng)特性有明顯改善,尤其在低階頻率范圍內(nèi)振動(dòng)得到了很好控制。此方法可推廣至插秧機(jī)整機(jī)振動(dòng)特性優(yōu)化中,通過(guò)改進(jìn)關(guān)鍵部件結(jié)構(gòu)參數(shù),使固有頻率遠(yuǎn)離外部激振頻率范圍即可避免共振發(fā)生。
表4 優(yōu)化前后支撐臂各測(cè)點(diǎn)振動(dòng)幅值與頻率對(duì)比
支撐臂在、、方向上的振動(dòng)幅值均在測(cè)點(diǎn)4處達(dá)到最大值,此時(shí)振動(dòng)頻率約為101 Hz,振動(dòng)幅值分別為2.98、2.60、3.28 m/s2,說(shuō)明測(cè)點(diǎn)4處振動(dòng)最為顯著,結(jié)構(gòu)優(yōu)化后,其在3個(gè)方向振動(dòng)幅值均有所降低,但相較于其他部位振幅仍然較高,說(shuō)明在栽插過(guò)程中外部激振由動(dòng)力傳動(dòng)系統(tǒng)、移箱機(jī)構(gòu)等部件經(jīng)機(jī)架傳至支撐臂,引起了支撐臂明顯振動(dòng)。在設(shè)計(jì)時(shí)可對(duì)測(cè)點(diǎn)4處額外增加阻尼塊使振動(dòng)衰減,也可在傳遞振動(dòng)的機(jī)架與其他部件之間增加隔振裝置以達(dá)到減振目的。
優(yōu)化后測(cè)點(diǎn)6處、、方向振幅衰減均不顯著,在方向1階(135.17 Hz)最大振動(dòng)幅度衰減也僅有1.82%,在部分階次下振動(dòng)幅度略有升高。綜合分析實(shí)際作業(yè)工況下支撐臂測(cè)點(diǎn)6處位置及與其他部件連接關(guān)系,發(fā)現(xiàn)測(cè)點(diǎn)6處為動(dòng)力輸入軸與鏈輪連接部位,其振動(dòng)受動(dòng)力輸入軸穩(wěn)定性影響較大。且測(cè)點(diǎn)6處內(nèi)部結(jié)構(gòu)復(fù)雜,優(yōu)化后其局部模態(tài)特性變化不大,亦有可能其固有頻率仍在外部激振頻率范圍內(nèi),此時(shí)應(yīng)開(kāi)展對(duì)局部模態(tài)的分析與改進(jìn),以降低該部位的振動(dòng)幅值。
圖11 支撐臂應(yīng)力云圖
對(duì)優(yōu)化后的支撐臂進(jìn)行靜力學(xué)分析,支撐臂主要受力有:自身重力52.36 N、插秧旋轉(zhuǎn)箱19.32 N、推秧裝置8.65 N、傳動(dòng)部件重力34.18 N。將優(yōu)化后的支撐臂重新進(jìn)行三維建模與網(wǎng)格劃分,把相應(yīng)作用力施加在特定位置處,并對(duì)支撐臂動(dòng)力輸入連接處和與機(jī)架連接處設(shè)置固定約束,靜力學(xué)應(yīng)力仿真結(jié)果如圖11所示。由圖11可知,支撐臂整體受力較小,參照實(shí)際作業(yè)條件施加壓力與載荷后未產(chǎn)生明顯形變與裂紋。結(jié)構(gòu)優(yōu)化后應(yīng)力最大處出現(xiàn)在回轉(zhuǎn)箱定位塊位置,應(yīng)力值為57 MPa,小于材料屈服極限211 MPa,故改進(jìn)后的支撐臂強(qiáng)度滿足設(shè)計(jì)要求。
1)通過(guò)三維建模軟件建立2ZG-6DK插秧機(jī)支撐臂模型,在ANSYS中選取Lanczos Method解算方法求解出支撐臂前4階模態(tài)固有頻率和振型,并與通過(guò)MAC模態(tài)置信度準(zhǔn)則優(yōu)化后的試驗(yàn)?zāi)B(tài)結(jié)果對(duì)比,驗(yàn)證了理論模型與模態(tài)測(cè)試方法的準(zhǔn)確性。
2)對(duì)比分析了支撐臂固有頻率與外部激振頻率之間的關(guān)系,其中支撐臂1階固有頻率101.29 Hz在發(fā)動(dòng)機(jī)激振頻率86.67~120 Hz范圍內(nèi),說(shuō)明在插秧機(jī)高速栽插作業(yè)工況下,發(fā)動(dòng)機(jī)激振會(huì)引起支撐臂產(chǎn)生共振現(xiàn)象。
3)為調(diào)整插秧機(jī)支撐臂的固有頻率以避開(kāi)發(fā)動(dòng)機(jī)的激振頻率范圍,在多學(xué)科優(yōu)化設(shè)計(jì)ISIGHT軟件框架中采用NLPQL方法對(duì)支撐臂結(jié)構(gòu)進(jìn)行了優(yōu)化。優(yōu)化后支撐臂側(cè)壁腔體厚度5.7 mm、橫梁寬度42.0 mm、臂長(zhǎng)497.0 mm,其1階模態(tài)固有頻率135.17 Hz避開(kāi)了發(fā)動(dòng)機(jī)86.67~120 Hz激振頻率范圍,可在插秧機(jī)工作時(shí)有效避免共振的產(chǎn)生。
[1] Xue Zhipeng, Li Ming, Jia Hongguang. Modal method for dynamics analysis of cantilever type structures at large rotational deformations[J]. International Journal of Mechanical Sciences, 2015(93): 22-31.
[2] Morvan O, Emmanuel F. Model correlation and identification of experimental reduced models in vibroacoustical modal analysis[J]. Journal of Sound and Vibration, 2015(342): 200-217.
[3] 高志朋,徐立章,李耀明,等. 履帶式稻麥聯(lián)合收獲機(jī)田間收獲工況下振動(dòng)測(cè)試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):48-55. Gao Zhipeng, Xu Lizhang, Li Yaoming, et al. Vibration measure and analys is of crawler-type rice and wheat combine harvester in field harvesting condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 48 55. (in Chinese with English abstract)
[4] 徐立章,李耀明,孫朋朋,等. 履帶式全喂入水稻聯(lián)合收獲機(jī)振動(dòng)測(cè)試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):49-55. Xu Lizhang, Li Yaoming, Sun Pengpeng, et al. Vibration measurement and analysis of tracked-whole feeding rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 49-55. (in Chinese with English abstract)
[5] 邱白晶,何耀杰,盛云輝,等. 噴霧機(jī)噴桿有限元模態(tài)分析與結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):112-116,105. Qiu Baijing, He Yaojie, Sheng Yunhu, et al.Finite element modal analysis and structure optimization of spray boom[J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 112-116, 105.
[6] 李發(fā)宗,童水光,王相兵. 基于模態(tài)分析的液壓挖掘機(jī)工作裝置動(dòng)態(tài)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(4):28-36. Li Fazong,Tong Shuiguang,Wang Xiangbing.Dynamic optimization design for working device of hydraulic excavator based on modal analysis[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45 (4):28-36.
[7] 陳樹(shù)人,韓紅陽(yáng),盧強(qiáng). 4LZ—2.0型聯(lián)合收獲機(jī)割臺(tái)模態(tài)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(Z1):90-94. Chen Shuren, Han Hongyang, Lu Qiang.Modal analysis of header for type 4LZ—2.0 combine harvester[J]. Transacions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 90-94.
[8] 趙湛,李耀明,梁振偉,等. 基于振動(dòng)模態(tài)分析的籽粒檢測(cè)傳感器結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(Z1):103-106. Zhao Zhan, Li Yaoming, Liang Zhenwei, et al.Structure optimization of grain detecting sensor based on vibration modal analysis[J].Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(1): 103-106.
[9] 李耀明,孫朋朋,龐靖,等. 聯(lián)合收獲機(jī)底盤(pán)機(jī)架有限元模態(tài)分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):38-46. Li Yaoming, Sun Pengpeng, Pang Jing, et al. Finite element mode analysis and experiment of combine harvester chassis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3):38-46. (in Chinese with English abstract)
[10] 李耀明,李有為,徐立章,等. 聯(lián)合收獲機(jī)割臺(tái)機(jī)架結(jié)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):30-37. Li Yaoming, Li Youwei, Xu Lizhang, et al. Structural parameter optimization of combine harvester cutting bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 30-37. (in Chinese with English abstract)
[11] 姚艷春,杜岳峰,朱忠祥,等. 基于模態(tài)的玉米收獲機(jī)車架振動(dòng)特性分析與優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):46-53. Yao Yanchun, Du Yuefeng, Zhu Zhongxiang, et al. Vibration characteristics analysis and optimization of corn combine harvester frame using modal analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 46-53. (in Chinese with English abstract)
[12] Wang J L, John L, Christof D, et al. Dealing with periodical loads and harmonics in operational modal analysis using time-varying transmissibility functions[J]. Mechanical Systems and Signal Processing, 2014(49): 154-164.
[13] 張華標(biāo),朱梅,朱德泉,等. 高速水稻插秧機(jī)分插機(jī)構(gòu)振動(dòng)特性研究[J]. 安徽農(nóng)業(yè)科學(xué),2012,(18):9906-9907,9919.
Zhang Huabiao, Zhu Mei, Zhu Dequan, et al. Study on Vibration Characteristics of High-speed Rice Transplanting Machine[J]. Anhui Agricultural Sciences, 2012, (18): 9906-9907, 9919.
[14] 李復(fù)輝. 高速插秧機(jī)旋轉(zhuǎn)前插式分插機(jī)構(gòu)的研究[D]. 淄博:山東理工大學(xué),2014.
Li Fuhui.Study on the Rotating Front Insertion and Inserting Mechanism of High Speed Rice Transplanter[D].Zibo: Shandong University of Technology, 2014.
[15] 張翔. LNC8型插秧機(jī)車架靈敏參數(shù)優(yōu)化設(shè)計(jì)及試驗(yàn)驗(yàn)證[D]. 杭州:浙江理工大學(xué),2015.
Zhang Xiang. Optimization Design and Experimental Verification of Sensitive Parameters of LNC8 Type Transplanter Frame [D]. Hangzhou: Zhejiang University of Science and Technology, 2015.
[16] 趙曉丹,張中業(yè),駱英. 基于內(nèi)積運(yùn)算與迭代算法的密集模態(tài)阻尼識(shí)別[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(4):206-210. Zhao Xiaodan, Zhang Zhongye, Luo Ying.Damping identification for closely spaced modes based on Inner product calculation and iterative algorithm[J].Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 206-210.
[17] 姚艷春,宋正河,杜岳峰,等. 玉米收獲機(jī)車架應(yīng)力及模態(tài)數(shù)值模擬焊點(diǎn)模型優(yōu)選[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):50-58.Yao Yanchun, Song Zhenghe, Du Yuefeng, et al. Optimum seeking of spot weld model on numerical simulation of stress and modal analysis for corn combine harvester frame[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 50-58.
[18] 姚艷春,趙雪彥,杜岳峰,等. 考慮質(zhì)量時(shí)變的收獲機(jī)械工作模態(tài)分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(9):83-94.Yao Yanchun, Zhao Xueyan, Du Yuefeng, et al. Operating modal analysis and test of harvester induced by mass-varying process[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 83-94.
[19] 張建偉,曹克磊,趙瑜,等. 基于流固耦合模型的U型渡槽模態(tài)分析及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(18):98-104. Zhang Jianwei, Cao Kelei, Zhao Yu, et al. Modal analysis and validation of U-shaped aqueducts based on fluid solid interaction model[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(18): 98-104.
[20] 蔡力鋼,馬仕明,趙永勝,等. 多約束狀態(tài)下重載機(jī)械式主軸有限元建模及模態(tài)分析[J]. 機(jī)械工程學(xué)報(bào),2012, 48(3):165-172. Cai Ligang, Ma Shiming, Zhao Yongsheng, et al. Finite element modeling and modal analysis of heavy-duty mechanical spindle under multiple constraints[J]. Journal of Mechanical Engineering, 2012, 48(3): 165-172. (in Chinese with English abstract)
[21] Kang Tae Hwan, Kaizu Yutaka. Vibration analysis during grass harvesting according to ISO vibration standards[J]. Computers and Electronics in Agriculture, 2011, 79(2): 226-235.
[22] Reza Ebrahimi, Mohsen Esfahanian, Saeed Ziaei-Rad. Vibration modeling and modification of cutting platform in a harvest combine by means of operational modal analysis(OMA)[J]. Measurement, 2013(46): 3959-3967.
[23] Brincker Rune, Ventura Carlos E. Introduction to operational modal analysis[M]. New York:John Wiley & Sons, 2015.
[24] Edwin Reynders. System identification methods for (operational) modal analysis: Review and comparison[J]. Archives of Computational Methods in Engineering, 2012, 19(1): 51-124.
[25] 于天彪,王學(xué)智,關(guān)鵬,等. 超高速磨削機(jī)床主軸系統(tǒng)模態(tài)分析[J]. 機(jī)械工程學(xué)報(bào),2012,48(17):183-188. Yu Tianbiao, Wang Xuezhi, Guan Peng, et al. Modal analysis of spindle system on ultra-high speed grinder[J]. Journal of Mechanical Engineering, 2012, 48(17): 183-188. (in Chinese with English abstract)
[26] 戴光昊,付金波,張海福,等. 齒輪箱有限元模態(tài)分析及試驗(yàn)研究[J]. 艦船科學(xué)技術(shù),2010 (8):167-170,213.
Dai Guangwei,Fu Jinbo,Zhang Haifu, et al. Finite element modal analysis and experimental study of gearbox[J].Ship Science and Technology,2010(8):167-170,213.
[27] 陳鋒,李忠獻(xiàn). 梁橋上移動(dòng)荷載識(shí)別中的測(cè)點(diǎn)優(yōu)化[J]. 振動(dòng)、測(cè)試與診斷,2009,29(2):218-222. Chen feng, Li Zhongxian. Optimization of measurement points in mobile load identification on beam bridge [J]. Vibration, test and diagnosis, 2009,29(2): 218-222.
[28] 王民,牛煥煥,高相勝,等. 電火花機(jī)床主軸頭的模態(tài)分析與減振設(shè)計(jì)[J]. 振動(dòng)、測(cè)試與診斷,2017,(5):905-909. Wang Min, Niu Huanhuan, Gao Xiangsheng, et al. Modal analysis and vibration damping design of spindle head of edm [J]. Vibration, test and diagnosis, 2017,(5): 905-909.
[29] 于存貴,卓艾寶,徐合剛. 復(fù)合材料定向管剛度優(yōu)化設(shè)計(jì)[J].南京理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,36(6):1042-1046. Yucungui, Chao Aibao, Xu Hagang. Optimum design of the stiffness of the directional tube of composite materials [J]. Journal of Nanjing University of Science and Engineering (Natural Sciences Edition), 2012, 36(6): 1042-1046.
[30] 左曙光,蔣維旭,吳旭東,等. 基于ISIGHT的電動(dòng)汽車扭桿梁懸架振動(dòng)傳遞特性優(yōu)化[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版),2015,(5):1381-1387. Zuo Shuguang, Jiang Weixu, Wu Xudong, et al. Optimization of vibration transmission characteristics of electric car torsion beam suspension based on ISIGHT [J]. Journal of jilin university (Engineering Edition), 2015,(5): 1381-1387.
[31] 張維峰,范傳帥. 車架結(jié)構(gòu)動(dòng)力修改與力響應(yīng)模擬技術(shù)研究[J]. 力學(xué)與實(shí)踐,2012,34(4):19-23. Zhang Weifeng, Fan Chuanshuai. Study of dynamic modification and FRs technology in vehicle frame design[J]. Mechanics in Engineering, 2012,34(4): 19-23. (in Chinese with English abstract)
[32] 廖宇蘭,劉世豪,孫佑攀,等. 基于靈敏度分析的木薯收獲機(jī)車架結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(12):56-62. Liao Yulan, Liu Shihao, Sun Youpan, et al. Structural optimization for rack of cassava harvester based on sensitivity analysis[J]. Transactions of Chinese Society for Agricultural Machinery, 2013,44(12): 56-62. (in Chinese with English abstract)
Modal analysis and structure optimization of transplanter support arm based on modal assurance criterion
Jin Xin1,2, Chen Kaikang1, Ji Jiangtao1,2※, Pang Jing1, Gao Song1, Zeng Xinyue1
(1.,,471003,; 2.,471003,
In recent years, with the rapid development of agricultural mechanization in China, rice transplanter has been widely used. Because the transplanting parts of the transplanter have a large vibration in the working process, it will have a great impact on the operation of the machine and the operating environment of the driver. At present, the analysis of the vibration of the support arm of the transplanter and the research on how to reduce the vibration and noise are still in initial stage. In the working process, the support arm bears a variety of dynamic loads, including the working load of various parts, engine and road surface stimulation. When the frequency of the dynamic load is close to the natural frequency of the support arm, the resonance phenomenon will occur. The mechanical resonance affects the normal operation of the transplanter, reduces the service life of the transplater, and seriously affects the comfort of the working environment. Therefore, it is of great of significance to study the vibration and noise reduction of rice transplanter. In view of the vibration and noise problems in the power transmission process of high-speed rice transplanter planting mechanism, 2ZG-6DK rice transplanter was taken as the research object in this paper, and the power transmission mode and working principle of planting system were analyzed. The 3D software was used to standardize the support arm which is the key components in the power transmission system of the transplanter, and the model was imported into the ANSYS Workbench and combined with the Lanczos Method to solve the modal natural frequency and mode shape. In order to optimize the structure of the support arm based on the finite element model, it is necessary to verify the accuracy of the finite element model of the support arm. The modal test of the supporting arm of Nantong 2ZG-6DK transplanter was carried out by using DH5902 Dynamic Data acquisition and modal analysis system, the first 4-order modal frequency and mode of the support arm of the transplanter were obtained by signal analysis and parameter identification. The accuracy of the finite element model of the support arm was verified by the comparison between the modal test results and the finite element analysis results. Based on this, MAC-based (modal assurance) was carried out and the accuracy of finite element analysis was verified. The criterion test optimized the modal test to verify the accuracy of the finite element theory analysis. In order to avoid the external excitation frequency of the support arm, based on the analysis of the external frequency excitation characteristics, and on account of the ISIGHT multidisciplinary software platform, the structural parameters of the support arm were optimized by the sequential quadratic programming method. The results showed that the thickness of the optimized support arm sidewall cavity was 5.7 mm, the beam width was 42.0 mm, the arm length was 497.0 mm, and the first 4–order modal frequencies were adjusted to 135.17, 204.23, 483.14 and 702.32 Hz respectively, which all avoided the gasser engine excitation frequency range 86.67-120 Hz. After the optimization, the vibration amplitude attenuation was the most obvious at the 1-order frequency, the vibration amplitude was decreased by 9.4%, and the low-frequency vibration characteristics of the support arm were significantly improved. The research results can provide reference for the vibration characteristics analysis and vibration reduction design of the rice transplanter.
agricultural machinery; vibration; optimization; modal analysis; MAC criterion
10.11975/j.issn.1002-6819.2018.18.012
S223.91
A
1002-6819(2018)-18-0093-09
2018-05-21
2018-08-02
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700801);國(guó)家自然科學(xué)基金項(xiàng)目(51505130);河南省科技創(chuàng)新杰出人才項(xiàng)目(184200510017)
金 鑫,副教授,主要從事種苗高速栽插裝備與智能化技術(shù)研究。Email:jx.771@163.com
姬江濤,教授,博士生導(dǎo)師,主要從事田間作物高效生產(chǎn)關(guān)鍵技術(shù)與裝備研發(fā)工作。Email:jjt0907@163.com
金 鑫,陳凱康,姬江濤,龐 靖,高 頌,曾欣悅. 基于模態(tài)置信度準(zhǔn)則的插秧機(jī)支撐臂模態(tài)分析與結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):93-101. doi:10.11975/j.issn.1002-6819.2018.18.012 http://www.tcsae.org
Jin Xin ,Chen Kaikang, Ji Jiangtao, Pang Jing, Gao Song, Zeng Xinyue. Modal analysis and structure optimization of transplanter support arm based on modal assurance criterion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 93-101. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.18.012 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2018年18期