許志祥 吳云成
摘 要 卒中后認(rèn)知功能障礙(post-stroke cognitive impairment, PSCI)是指在卒中這一臨床事件發(fā)生后6個(gè)月內(nèi)出現(xiàn)的達(dá)到認(rèn)知功能障礙診斷標(biāo)準(zhǔn)的一種綜合征,對(duì)其進(jìn)行早期診斷及干預(yù)具有重要的臨床意義。了解PSCI的發(fā)病機(jī)制對(duì)干預(yù)和治療PSCI具有重要的指導(dǎo)作用。本文概要介紹有關(guān)PSCI發(fā)病機(jī)制的研究進(jìn)展。
關(guān)鍵詞 卒中后認(rèn)知功能障礙 血管性癡呆癥 發(fā)病機(jī)制
中圖分類號(hào):R749.13 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2018)17-0005-04
The pathogenesis of post-stroke cognitive impairment
XU Zhixiang*, WU Yuncheng**(Department of Neurology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China)
ABSTRACT Post-stroke cognitive impairment (PSCI) generally refers to a syndrome that meet the diagnostic criteria of cognitive impairment within 6 months after stroke. Early diagnosis and intervention are of great significance and understanding its pathogenesis plays an important role in the intervention treatment. We summarize the progress in the pathogenesis of PSCI in this review.
KEy WORDS post-stroke cognitive impairment; vascular dementia; pathogenesis
卒中是臨床上常見的一組綜合征,包括腦梗死和腦出血,具有發(fā)病率高、死亡率高和致殘率高等特點(diǎn),除會(huì)引起軀體功能障礙外,往往還可導(dǎo)致認(rèn)知功能損害,而后者常被忽視,但卻是影響患者生活質(zhì)量和生存時(shí)間的重要因素,且會(huì)給社會(huì)和家庭帶來沉重的經(jīng)濟(jì)負(fù)擔(dān),現(xiàn)已逐漸受到重視,并成為有關(guān)卒中及其干預(yù)的研究熱點(diǎn)。卒中后認(rèn)知功能障礙(post-stroke cognitive impairment, PSCI)是指在卒中這一臨床事件發(fā)生后6個(gè)月內(nèi)出現(xiàn)的達(dá)到認(rèn)知功能障礙診斷標(biāo)準(zhǔn)的一種綜合征,既包括卒中引起的認(rèn)知功能障礙,同時(shí)也包括腦神經(jīng)退行性病變?nèi)绨柎暮D。ˋlzheimers disease, AD)在卒中后6個(gè)月內(nèi)進(jìn)展引起的認(rèn)知功能障礙,涵蓋了從卒中后非癡呆癥的認(rèn)知功能障礙(post-stroke cognitive impairment with no dementia, PSCIND)至卒中后癡呆癥(post-stroke dementia, PSD)或血管性癡呆癥(vascular dementia, VD)的各種程度的認(rèn)知功能障礙,其病因可是腦血管性、腦神經(jīng)退行性或兩者兼有的混合性[1]。PSCI的發(fā)生率很高,>50%的卒中后患者會(huì)出現(xiàn)不同程度的認(rèn)知功能障礙[2-3],但其發(fā)病機(jī)制尚未完全闡明,仍需進(jìn)一步的研究探索。本文概要介紹有關(guān)PSCI的病理生理學(xué)及分子機(jī)制的研究進(jìn)展。
1 發(fā)病機(jī)制
1.1 腦血管性損害機(jī)制
因腦血管病變引起腦部缺血或出血、進(jìn)而導(dǎo)致腦神經(jīng)解剖結(jié)構(gòu)損害是PSCI發(fā)病的主要機(jī)制。早期Tomlinson等[4]的尸檢研究發(fā)現(xiàn),PSD與腦梗死灶的體積有關(guān),當(dāng)腦梗死軟化灶體積>50 ml時(shí)多可引起癡呆癥,而腦梗死軟化灶體積>100 ml則均會(huì)導(dǎo)致VD。此后更多的研究發(fā)現(xiàn),腦關(guān)鍵部位(如優(yōu)勢(shì)側(cè)的丘腦和角回、額葉深部區(qū)域、左大腦半球等)的梗死在PSCI的發(fā)病過程中起著重要作用,并與癡呆癥的嚴(yán)重程度相關(guān)[5-7]。此外,海馬體是大腦中記憶網(wǎng)絡(luò)的重要組成之一,大腦后動(dòng)脈缺血可引起海馬體損傷,從而導(dǎo)致認(rèn)知功能減退及永久性的記憶損害[8-9]。
腦小血管病是卒中的重要原因之一,其病理學(xué)改變?cè)贛RI等圖像上主要表現(xiàn)為白質(zhì)病變、腦腔隙性梗死和腦微出血等。越來越多的證據(jù)表明,腦小血管病在PSCI的發(fā)病過程中起著重要作用[10]。通過神經(jīng)影像學(xué)檢查發(fā)現(xiàn),無論是白質(zhì)病變、腦腔隙性梗死還是腦微出血,均與PSCI相關(guān)[11-13],但引起PSCI的機(jī)制可能不同[14]。
腦血管病變導(dǎo)致腦解剖結(jié)構(gòu)改變、進(jìn)而導(dǎo)致認(rèn)知功能障礙可能與認(rèn)知功能結(jié)構(gòu)域及回路如Papez環(huán)路、前額皮層和紋狀體環(huán)路等的損害相關(guān)。急性腦缺血可直接導(dǎo)致神經(jīng)元死亡,慢性腦缺血?jiǎng)t可引起白質(zhì)中神經(jīng)纖維軸索變性和髓鞘脫失,進(jìn)而損害神經(jīng)記憶網(wǎng)絡(luò)連接,使得信息無法傳遞,最終導(dǎo)致認(rèn)知功能障礙。
腦血管損害導(dǎo)致的腦低灌注也是引起包括PSCI在內(nèi)的VD的一個(gè)重要發(fā)病機(jī)制[15]。動(dòng)物模型實(shí)驗(yàn)提示,卒中后的慢性腦低灌注可能可通過類淋巴途徑和伴隨的神經(jīng)炎癥而干擾β-淀粉樣蛋白(amyloid β-protein, Aβ)的清除,進(jìn)而導(dǎo)致認(rèn)知功能損害[16]。
1.2 腦神經(jīng)退行性病變機(jī)制
腦神經(jīng)退行性病變是PSCI的一個(gè)重要發(fā)病機(jī)制。AD作為一種典型的腦神經(jīng)退行性病變疾病,其患者腦組織的病理學(xué)改變?yōu)楹qR體和顳葉內(nèi)側(cè)皮層的體積較小或萎縮,組織病理學(xué)上可發(fā)現(xiàn)以淀粉樣斑塊沉積為特征的老年斑、神經(jīng)纖維纏結(jié)和神經(jīng)元脫失。AD患者發(fā)生卒中后,其向癡呆癥的進(jìn)展加速,提示腦神經(jīng)退行性病變也是PSCI的一個(gè)重要發(fā)病機(jī)制。
通??蓱?yīng)用結(jié)構(gòu)性MRI等影像學(xué)手段來檢測(cè)腦萎縮及腦脊液中的蛋白水平,其中腦脊液tau蛋白水平升高反映神經(jīng)纖維變性,腦脊液Aβ42水平降低則表示Aβ沉積[17]。一項(xiàng)對(duì)卒中患者的隨訪研究發(fā)現(xiàn),卒中后1年時(shí)的腦脊液總tau蛋白水平與腦萎縮相關(guān),提示卒中可能可加速或誘發(fā)tau蛋白相關(guān)的神經(jīng)變性過程,并伴有神經(jīng)元丟失[18]。此外,海馬體萎縮與PSCI相關(guān)。尸檢研究發(fā)現(xiàn),與PSCIND患者相比,PSD患者海馬體CA1區(qū)和CA2區(qū)的神經(jīng)元體積減少了10% ~ 20%,CA3區(qū)和CA4區(qū)的神經(jīng)元體積減少了20%[19-20]。但是,近期完成的一項(xiàng)應(yīng)用免疫組織化學(xué)方法檢測(cè)卒中后患者尸體腦組織標(biāo)本中Aβ和磷酸化tau蛋白水平的研究卻發(fā)現(xiàn),PSCIND和PSD患者的Aβ42、Aβ40、可溶性Aβ和tau蛋白的免疫活性水平均無顯著差異,提示PSCIND和PSD患者海馬體的AD病理學(xué)改變未必有差異[21]。認(rèn)知功能表現(xiàn)與海馬體AD病理學(xué)改變的不相關(guān)性提示,在PSCI的發(fā)病機(jī)制中,非AD病理學(xué)的腦神經(jīng)退行性病變和(或)卒中后其他退行性機(jī)制如血管性、免疫/炎癥等機(jī)制可能起了更主要的作用。
1.3 炎癥機(jī)制
腦在缺血性損害下可出現(xiàn)炎癥反應(yīng),表現(xiàn)為基質(zhì)細(xì)胞(小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和內(nèi)皮細(xì)胞)的激活,同時(shí)炎癥介質(zhì)會(huì)增加免疫細(xì)胞的募集,加之血腦屏障被破壞,在活性氧、細(xì)胞因子和趨化因子等的作用下,可能導(dǎo)致腦水腫和神經(jīng)元死亡[22]。內(nèi)源性激活的免疫反應(yīng)可引發(fā)神經(jīng)毒性通路,導(dǎo)致神經(jīng)元變性、丟失。受損的神經(jīng)元本身也可能通過趨化因子和活化的小膠質(zhì)細(xì)胞釋放免疫介質(zhì),導(dǎo)致缺血性損害的病灶擴(kuò)大[23]。越來越多的證據(jù)表明,卒中觸發(fā)了一個(gè)包含自身免疫損害機(jī)制在內(nèi)的腦神經(jīng)退行性病變過程,卒中后B淋巴細(xì)胞激活可產(chǎn)生針對(duì)中樞神經(jīng)系統(tǒng)的自身抗體,而激活了的B淋巴細(xì)胞及其產(chǎn)生的自身抗體可能均參與了PSCI的發(fā)病過程[24]。對(duì)炎癥標(biāo)志物與PSD關(guān)系的研究也發(fā)現(xiàn),紅細(xì)胞沉降率以及血清和腦脊液C-反應(yīng)蛋白、白介素-6、白介素-10、白介素-12的水平均與PSCI的發(fā)病相關(guān)[25-27]。
1.4 遺傳機(jī)制
遺傳因素在PSCI的發(fā)病中也起著重要作用,與PSCI相關(guān)的基因多與腦血管病或AD相關(guān)。
Notch3基因突變可引起伴皮質(zhì)下梗死和白質(zhì)腦病的常染色體顯性遺傳性腦動(dòng)脈病,后者可引起腦缺血性事件和癡呆癥。Notch3編碼一種只在血管平滑肌細(xì)胞上表達(dá)的跨膜受體,其突變后會(huì)使編碼產(chǎn)物蓄積于血管平滑肌細(xì)胞和周細(xì)胞的胞質(zhì)膜上,并募集其他蛋白形成胞外沉積物,這些蛋白中的玻璃黏連蛋白和組織金屬蛋白酶抑制因子-3可能與伴皮質(zhì)下梗死和白質(zhì)腦病的常染色體顯性遺傳性腦動(dòng)脈病的發(fā)病相關(guān)[28]。
部分與AD相關(guān)的基因如載脂蛋白E、早老素和淀粉樣蛋白前體蛋白的基因均在Aβ的產(chǎn)生或消除過程中有一定程度的參與。過度表達(dá)的淀粉樣蛋白前體蛋白基因的突變可導(dǎo)致局灶缺血后神經(jīng)變性和神經(jīng)細(xì)胞的興奮性毒性作用增強(qiáng),增加腦組織對(duì)缺血性損害的易感性[29]。ApoEε4等位基因是公認(rèn)的AD危險(xiǎn)因素。有研究發(fā)現(xiàn)ApoEε4與PSCI相關(guān)[30],但也有研究顯示這兩者無相關(guān)性[31-33]。ApoEε4引起血管性認(rèn)知功能障礙的機(jī)制可能與其影響機(jī)體血脂代謝、促進(jìn)動(dòng)脈粥樣硬化、阻止神經(jīng)細(xì)胞功能修復(fù)和影響神經(jīng)突觸的可塑性相關(guān)[34]。
血管緊張素轉(zhuǎn)化酶基因具有多態(tài)性,其DD基因型可能與PSCI相關(guān),機(jī)制可能是DD基因型的血清血管緊張素轉(zhuǎn)化酶活性最高,使得血管緊張素水平升高并抑制了腦內(nèi)乙酰膽堿的釋放,最終影響認(rèn)知功能[33]。Morris等[35]對(duì)內(nèi)皮型一氧化氮合酶基因型與老年P(guān)SCI的關(guān)系進(jìn)行了研究,發(fā)現(xiàn)TT基因型的內(nèi)皮型一氧化氮合酶可增加PSCI的風(fēng)險(xiǎn),機(jī)制推測(cè)可能與一氧化氮產(chǎn)生減少和腦低灌注相關(guān)。
2 分子機(jī)制
2.1 膽堿能遞質(zhì)系統(tǒng)損害機(jī)制
膽堿能遞質(zhì)系統(tǒng)是與認(rèn)知功能相關(guān)的主要神經(jīng)遞質(zhì)系統(tǒng),其功能異常與認(rèn)知功能障礙相關(guān)。膽堿能遞質(zhì)系統(tǒng)分泌的神經(jīng)遞質(zhì)主要是乙酰膽堿,后者對(duì)記憶和學(xué)習(xí)功能起著至關(guān)重要的作用,而腦缺血性病變可損害膽堿能神經(jīng)元投射通路。一項(xiàng)病例對(duì)照研究發(fā)現(xiàn),急性腦缺血性損害主要影響患者的默認(rèn)網(wǎng)絡(luò)和中央執(zhí)行網(wǎng)絡(luò),而在放射冠、海馬體和后頂葉皮層發(fā)生急性缺血性損害的患者易患VD[36]。該研究認(rèn)為,膽堿能通路的破壞可能是導(dǎo)致急性缺血性卒中患者進(jìn)展為癡呆癥的重要原因。
2.2 興奮性氨基酸的細(xì)胞毒性機(jī)制
谷氨酸是腦組織中含量最高的一種興奮性氨基酸。在腦缺血急性期,缺血、缺氧可增加谷氨酸的釋放并抑制谷氨酸的再攝取,導(dǎo)致胞外谷氨酸水平顯著升高,繼而激活N-甲基-D-天冬氨酸等受體,使得突觸后膜持續(xù)去極化,胞外鈣離子內(nèi)流,引起鈣超載,進(jìn)而導(dǎo)致神經(jīng)元死亡。一項(xiàng)研究發(fā)現(xiàn),PSCI患者的血清谷氨酰胺水平升高,而高水平的血清谷氨酰胺是對(duì)谷氨酸誘發(fā)的神經(jīng)毒性的一種代償表現(xiàn)[37],提示興奮性氨基酸的細(xì)胞毒性作用可能是PSCI的發(fā)病機(jī)制之一。
2.3 氧自由基損害機(jī)制
急性腦缺血和再灌注時(shí)會(huì)產(chǎn)生大量的氧自由基,同時(shí)伴發(fā)氧自由基清除酶活性降低,過多的氧自由基可引發(fā)脂質(zhì)過氧化反應(yīng),損傷腦細(xì)胞膜,導(dǎo)致腦細(xì)胞膜通透性提高而引發(fā)細(xì)胞毒性水腫。腦細(xì)胞溶酶體膜損傷后會(huì)使大量溶酶溢入胞漿,促使腦細(xì)胞發(fā)生自溶,最終導(dǎo)致腦細(xì)胞死亡,并使梗死范圍擴(kuò)大、神經(jīng)元大量丟失,進(jìn)而引起認(rèn)知功能損害。檢測(cè)卒中后患者血清代謝物水平發(fā)現(xiàn),與健康對(duì)照者相比,卒中后患者血清次黃嘌呤和尿酸的水平均顯著升高,而尿酸是嘌呤分解、代謝的最終產(chǎn)物,是強(qiáng)抗氧化劑,提示氧化應(yīng)激與卒中密切相關(guān),且可能是導(dǎo)致PSCI的發(fā)病機(jī)制之一[37]。
3 結(jié)語
PSCI的發(fā)生是腦血管性機(jī)制和腦神經(jīng)退行性機(jī)制相互作用的結(jié)果,其中炎癥、氧化應(yīng)激和興奮性氨基酸的細(xì)胞毒性等機(jī)制在神經(jīng)元損傷和神經(jīng)血管單元功能損害中起了重要作用,而遺傳因素也提示存在遺傳易感性。研究探索PSCI的發(fā)病機(jī)制有助于對(duì)PSCI早期干預(yù)的盡早實(shí)現(xiàn)。
參考文獻(xiàn)
[1] 董強(qiáng), 郭起浩, 羅本燕, 等. 卒中后認(rèn)知障礙管理專家共識(shí)[J]. 中國(guó)卒中雜志, 2017, 12(6): 519-531.
[2] Gottesman RF, Hillis AE. Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke [J]. Lancet Neurol, 2010, 9(9): 895-905.
[3] Mellon L, Brewer L, Hall P, et al. Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study [J/OL]. BMC Neurol, 2015, 15: 31 [2018-05-23]. doi: 10.1186/s12883-015-0288-2.
[4] Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people [J]. J Neurol Sci, 1970, 11(3): 205-242.
[5] Gorelick PB. Status of risk factors for dementia associated with stroke [J]. Stroke, 1997, 28(2): 459-463.
[6] Leys D, Hénon H, Mackowiak-Cordoliani MA, et al. Poststroke dementia [J]. Lancet Neurol, 2005, 4(11): 752-759.
[7] Munsch F, Sagnier S, Asselineau J, et al. Stroke location is an independent predictor of cognitive outcome [J]. Stroke, 2016, 47(1): 66-73.
[8] Szabo K, F?rster A, J?ger T, et al. Hippocampal lesion patterns in acute posterior cerebral artery stroke: clinical and MRI findings [J]. Stroke, 2009, 40(6): 2042-2045.
[9] Gemmell E, Bosomworth H, Allan L, et al. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias [J]. Stroke, 2012, 43(3): 808-814.
[10] Teng Z, Dong Y, Zhang D, et al. Cerebral small vessel disease and post-stroke cognitive impairment [J]. Int J Neurosci, 2017, 127(9): 824-830.
[11] Edwards JD, Jacova C, Sepehry AA, et al. A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke [J]. Neurology, 2013, 80(3): 315-322.
[12] Kang HJ, Stewart R, Park MS, et al. White matter hyperintensities and functional outcomes at 2 weeks and 1 year after stroke [J]. Cerebrovasc Dis, 2013, 35(2): 138-145.
[13] Poels MM, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study [J]. Neurology, 2012, 78(5): 326-333.
[14] Love S, Miners JS. Small vessel disease, neurovascular regulation and cognitive impairment: post-mortem studies reveal a complex relationship, still poorly understood [J]. Clin Sci (Lond), 2017, 131(14): 1579-1589.
[15] Duncombe J, Kitamura A, Hase Y, et al. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia [J]. Clin Sci (Lond), 2017, 131(19): 2451-2468.
[16] Back DB, Kwon KJ, Choi DH, et al. Chronic cerebral hypoperfusion induces post-stroke dementia following acute ischemic stroke in rats [J/OL]. J Neuroinflammation, 2017, 14(1): 216 [2018-05-23]. doi: 10.1186/s12974-017-0992-5.
[17] Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimers disease: an updated hypothetical model of dynamic biomarkers [J]. Lancet Neurol, 2013, 12(2): 207-216.
[18] Ihle-Hansen H, Hagberg G, Fure B, et al. Association between total-tau and brain atrophy one year after first-ever stroke[J/OL]. BMC Neurol, 2017, 17(1): 107 [2018-05-23]. doi: 10.1186/s12883-017-0890-6.
[19] Selnes P, Grambaite R, Rincon M, et al. Hippocampal complex atrophy in poststroke and mild cognitive impairment[J]. J Cereb Blood Flow Metab, 2015, 35(11): 1729-1737.
[20] Gemmell E, Tam E, Allan L, et al. Neuron volumes in hippocampal subfields in delayed poststroke and aging-related dementias [J]. J Neuropathol Exp Neurol, 2014, 73(4): 305-311.
[21] Akinyemi RO, Allan LM, Oakley A, et al. Hippocampal neurodegenerative pathology in post-stroke dementia compared to other dementias and aging controls [J/OL]. Front Neurosci, 2017, 11: 717 [2018-05-23]. doi: 10.3389/ fnins.2017.00717.
[22] Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells [J]. J Leukoc Biol, 2010, 87(5): 779-789.
[23] Zhang L, Yang L. Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: a review of the literature[J/OL]. Molecules, 2014, 20(1): 335-347 [2018-05-23]. doi: 10.3390/molecules20010335.
[24] Doyle KP, Quach LN, Solé M, et al. B-lymphocyte-mediated delayed cognitive impairment following stroke [J]. J Neurosci, 2015, 35(5): 2133-2145.
[25] Narasimhalu K, Lee J, Leong YL, et al. Inflammatory markers and their association with post stroke cognitive decline [J]. Int J Stroke, 2015, 10(4): 513-518.
[26] Kliper E, Bashat DB, Bornstein NM, et al. Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume [J]. Stroke, 2013, 44(5): 1433-1435.
[27] Kulesh A, Drobakha V, Kuklina E, et al. Cytokine response, tract-specific fractional anisotropy, and brain morphometry in post-stroke cognitive impairment [J]. J Stroke Cerebrovasc Dis, 2018, 27(7): 1752-1759.
[28] Monet-Leprêtre M, Haddad I, Baron-Menguy C, et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL[J]. Brain, 2013, 136(Pt 6): 1830-1845.
[29] Zhang F, Eckman C, Younkin S, et al. Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein [J]. J Neurosci, 1997, 17(20): 7655-7661.
[30] Wagle J, Farner L, Flekk?y K, et al. Association between ApoEε4 and cognitive impairment after stroke [J]. Dement Geriatr Cogn Disord, 2009, 27(6): 525-533.
[31] Rowan E, Morris CM, Stephens S, et al. Impact of hypertension and apolipoprotein E4 on poststroke cognition in subjects >75 years of age [J]. Stroke, 2005, 36(9): 1864-1868.
[32] Bour AM, Rasquin SM, Baars L, et al. The effect of the APOE-epsilon4 allele and ACE-I/D polymorphism on cognition during a two-year follow-up in first-ever stroke patients [J]. Dement Geriatr Cogn Disord, 2010, 29(6): 534-542.
[33] Arpa A, del Ser T, Goda G, et al. Apolipoprotein E, angiotensin-converting enzyme and alpha-1-antichymotrypsin genotypes are not associated with post-stroke dementia [J]. J Neurol Sci, 2003, 210(1-2): 77-82.
[34] Chen Y, Durakoglugil MS, Xian X, et al. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling [J]. Proc Natl Acad Sci U S A, 2010, 107(26): 12011-12016.
[35] Morris CM, Ballard CG, Allan L, et al. NOS3 gene rs1799983 polymorphism and incident dementia in elderly stroke survivors [J]. Neurobiol Aging, 2011, 32(3): 554.e1-554.e6.
[36] Lim JS, Kim N, Jang MU, et al. Cortical hubs and subcortical cholinergic pathways as neural substrates of poststroke dementia [J]. Stroke, 2014, 45(4): 1069-1076.
[37] Liu M, Zhou K, Li H, et al. Potential of serum metabolites for diagnosing post-stroke cognitive impairment [J]. Mol Biosyst, 2015, 11(12): 3287-3296.