孫慧杰,董 梅,王 迪
1解放軍第309醫(yī)院 檢驗(yàn)科,北京 100091;2河北北方學(xué)院,河北張家口 075000
自噬參與結(jié)核桿菌感染免疫應(yīng)答調(diào)控的研究進(jìn)展
孫慧杰1,2,董 梅1,王 迪1
1解放軍第309醫(yī)院 檢驗(yàn)科,北京 100091;2河北北方學(xué)院,河北張家口 075000
自噬是將細(xì)胞溶質(zhì)中功能不全的蛋白質(zhì)和細(xì)胞器運(yùn)輸?shù)饺苊阁w進(jìn)行降解的一種途徑或方式,在生物進(jìn)化中十分保守,在維持細(xì)胞內(nèi)穩(wěn)態(tài)方面發(fā)揮了重要作用。巨噬細(xì)胞是結(jié)核菌感染的主要靶細(xì)胞,也是機(jī)體感染結(jié)核桿菌后最早起作用的細(xì)胞。自噬能直接清除感染巨噬細(xì)胞的結(jié)核分枝桿菌,同時(shí),結(jié)核分枝桿菌可以干擾自噬體與溶酶體的融合,隱藏在自噬體的雙層膜結(jié)構(gòu)中逃避自噬對(duì)其殺滅,從而在宿主細(xì)胞內(nèi)長(zhǎng)期存活并繁殖。自噬與結(jié)核病的發(fā)生、發(fā)展密切相關(guān),自噬的研究對(duì)提高結(jié)核病的治療和預(yù)后效果具有重要的意義。
自噬;結(jié)核分枝桿菌;巨噬細(xì)胞;免疫應(yīng)答
結(jié)核病是常見的致命性傳染病,全世界約有1/3人口為潛伏感染者,每年約有1 500萬人死于結(jié)核病[1]。結(jié)核分枝桿菌(mycobacterium tuberculosis,Mtb)為結(jié)核病的病原菌,感染人體后主要被巨噬細(xì)胞吞噬。巨噬細(xì)胞會(huì)啟動(dòng)多種免疫防御機(jī)制來對(duì)抗Mtb的入侵,如啟動(dòng)內(nèi)吞作用吞噬并降解Mtb,激活Toll樣受體(toll-like receptors,TLR)介導(dǎo)的免疫殺傷過程,分泌多種炎性細(xì)胞因子,快速激活適應(yīng)性免疫應(yīng)答,誘導(dǎo)吞噬了Mtb的巨噬細(xì)胞凋亡等[2-3]。近期文獻(xiàn)報(bào)道,激活自噬可有效殺滅結(jié)核菌[4]。而另一方面,Mtb能阻止巨噬細(xì)胞自噬溶酶體的酸化和成熟,從而防止溶酶體水解酶對(duì)其降解和破壞,阻斷下游抗原提呈來逃避自噬[5-6]。Mtb感染與自噬的發(fā)生是個(gè)復(fù)雜的動(dòng)態(tài)平衡過程。本文對(duì)自噬在結(jié)核桿菌感染過程中保護(hù)性免疫作用的研究進(jìn)展綜述,以提高對(duì)其機(jī)制的認(rèn)識(shí)。
自噬是將細(xì)胞溶質(zhì)中功能不全的蛋白質(zhì)和細(xì)胞器運(yùn)輸?shù)饺苊阁w進(jìn)行降解的一種方式,在生物進(jìn)化中十分保守,在維持細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)方面發(fā)揮了重要作用[7-10]。在自噬過程中,細(xì)胞質(zhì)被雙層膜結(jié)構(gòu)包裹形成自噬體,自噬體與溶酶體融合形成自噬溶酶體,從而將內(nèi)容物降解。自噬作為細(xì)胞對(duì)內(nèi)外環(huán)境變化的一種細(xì)微調(diào)節(jié),其發(fā)生往往十分迅速,被誘導(dǎo)8 min即可觀察到自噬體的形成,而發(fā)生2 h后,自噬溶酶體基本上已經(jīng)降解消失,這有利于細(xì)胞快速適應(yīng)變化的環(huán)境,體現(xiàn)了自噬應(yīng)急性的特點(diǎn)[11-12]。Mtb入侵免疫細(xì)胞后會(huì)誘導(dǎo)促炎和(或)抗炎細(xì)胞因子的釋放,激活鳥苷三磷酸酶(IRG),調(diào)節(jié)自噬相關(guān)蛋白的表達(dá),誘導(dǎo)或抑制細(xì)胞自噬對(duì)Mtb的清除。Ser/Thr酶受體能夠根據(jù)細(xì)胞的營(yíng)養(yǎng)狀況調(diào)節(jié)細(xì)胞的生長(zhǎng),饑餓狀態(tài)會(huì)抑制Ser/Thr酶受體,激活自噬過程[13]。雷帕霉素作為Ser/Thr酶受體抑制劑,同樣能夠激活自噬過程。經(jīng)第三類磷酸肌醇3激酶(又稱hVPS34)途徑產(chǎn)生的磷脂酰肌醇3磷酸(phosphatidylinositol 3-phosphate,PI3P)產(chǎn)物也能促進(jìn)自噬的發(fā)生。Wang等[14]發(fā)現(xiàn)hVPS34在氨基酸缺乏誘導(dǎo)的饑餓細(xì)胞模型中會(huì)促進(jìn)自噬相關(guān)蛋白的水解。這也是胞內(nèi)長(zhǎng)期存活的大分子物質(zhì)發(fā)生程序化降解的主要途徑。γ-干擾素(interferon-gamma,IFN-γ)、腫瘤壞死因子-α(tumor necrosis factor-alpha,TNF-α)為1型輔助T細(xì)胞(T helper cell 1,Th1)型細(xì)胞因子,能夠誘導(dǎo)巨噬細(xì)胞發(fā)生自噬;2型輔助T細(xì)胞(Th2)型細(xì)胞因子白細(xì)胞介素4 (interleukin-4,IL-4)、白細(xì)胞介素13 (IL-13)則起抑制作用。
在天然免疫應(yīng)答過程中,自噬作為細(xì)胞自發(fā)性防御機(jī)制,在病原菌的入侵中發(fā)揮重要作用。在Mtb感染巨噬細(xì)胞中,自噬受體蛋白P62、SQS TM1和自噬相關(guān)基因(autophagy-related gene 5,Atg5)介導(dǎo)自噬小體的形成。在樹突狀細(xì)胞中,自噬標(biāo)志性蛋白微管相關(guān)蛋白輕鏈3 (microtubule-assdciated protein 1 light chain 3,LC3)和自噬受體蛋白P62、SQS TM1以及第二類主要組織相容性復(fù)合體(major histocompatibility complexⅡ,MHCⅡ)都會(huì)與Mtb共定位,說明在樹突狀細(xì)胞中同樣發(fā)生了自噬[15]。其中P62和Atg5主要在Mtb引起的自噬小體形成階段發(fā)揮作用,并且參與了自噬空泡和MHCⅡ的降解運(yùn)輸過程。Zullo和Lee[16]發(fā)現(xiàn),Mtb產(chǎn)生的脂類物質(zhì)還會(huì)引起mTOR信號(hào)轉(zhuǎn)導(dǎo),從而通過mTOR依賴性途徑誘導(dǎo)自噬過程。同時(shí),當(dāng)Mtb入侵宿主巨噬細(xì)胞后,會(huì)阻止吞噬小體與溶酶體的融合,干擾吞噬溶酶體的成熟[4]。由于H+-ATP酶的缺乏,吞噬了Mtb的自噬體會(huì)表現(xiàn)出酸化作用的減弱,阻斷H+ATP酶和溶酶體水解酶的運(yùn)輸。Mtb產(chǎn)生的脂質(zhì)體能模擬哺乳動(dòng)物的磷脂酰肌醇,并抑制PI3P依賴性通路。這也許能部分解釋Mtb能在巨噬細(xì)胞中長(zhǎng)期存活和繁殖,以逃避宿主免疫殺傷的原因。
3.1 自噬標(biāo)記物L(fēng)C3、Beclin1與Mtb感染 分子水平上,自噬途徑的很多因子都具有進(jìn)化保守性,其中與自噬關(guān)系最為密切的是Atg5和LC3,它們與自噬早期雙層膜的形成相關(guān)[17-18]。Hanna等[19]報(bào)道,當(dāng)Mtb入侵巨噬細(xì)胞后,會(huì)促進(jìn)LC3-Ⅰ(胞質(zhì)型)轉(zhuǎn)化為L(zhǎng)C3-Ⅱ(胞膜型),此過程也是C端復(fù)合物的蛋白水解和脂質(zhì)化修飾的過程,同時(shí)實(shí)現(xiàn)了從胞質(zhì)到自噬體膜的跨膜定位過程[20]。LC3與吞噬溶酶體共定位標(biāo)志著自噬溶酶體的成熟,它是目前唯一對(duì)自噬高度特異性的標(biāo)記物[21]。BECN1基因編碼的蛋白Beclin1又稱自噬相關(guān)基因6 (autophagy-related gene 6,Atg 6),是磷酸酰肌醇3激酶(phosphatidy-linositol 3-kinase,PI3K)的亞單位,與自噬的發(fā)生密切相關(guān)。Mtb感染激活自噬后,自噬小體與Beclin1共定位,標(biāo)志著自噬小體的成熟[22]。成熟的自噬溶酶體釋放水解酶可以水解Mtb,達(dá)到清除結(jié)核菌的目的[22]。Kim等[23]發(fā)現(xiàn)Mtb感染會(huì)通過c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)特異性磷酸酯酶(DUSP16/MKP-7)激活宿主免疫應(yīng)答,在結(jié)核病的天然免疫防御機(jī)制中起到了重要的作用。
3.2 自噬相關(guān)基因與Mtb感染 基因組學(xué)檢測(cè)表明,自噬相關(guān)基因與慢性炎癥性疾病相關(guān)基因存在著廣泛的交叉[24]。Singh等[25-26]通過基因組技術(shù)在研究克羅恩病的風(fēng)險(xiǎn)基因位點(diǎn)時(shí),發(fā)現(xiàn)了Atg16L1和鳥苷三磷酸酶(IRGM)。IRGM是人類特有的免疫相關(guān)基因,編碼了一種自噬調(diào)節(jié)因子,該位點(diǎn)同時(shí)也是決定不同種族人群Mtb易感性的基因位點(diǎn)[27-30]。IRGM位點(diǎn)在鼠類的基因?yàn)镮RG,大鼠缺乏該位點(diǎn),因此不能有效控制Mtb的感染[31-32]。
小鼠基因組編碼24個(gè)IRG基因,包括22個(gè)完全I(xiàn)RG基因,其中IRG A6可以與微管錨定蛋白3相互作用[33-34]。微管錨定蛋白3是微管錨定蛋白家族的成員,其在自噬小體雙層膜的延伸過程中起到了一定的作用,從而促使吞噬泡吞下大于自身體積的物質(zhì),例如包裹了成簇結(jié)核菌的吞噬小體等[35]。此外,鳥苷三磷酸酶B6、鳥苷三磷酸酶D、鳥苷三磷酸酶M1(IRGM1)在抗胞內(nèi)感染的Mtb中發(fā)揮了重要的作用,尤其IRGM1作為IFN-γ的效應(yīng)因子,在抗結(jié)核感染的自噬過程中尤為重要[2]。
Sharon等報(bào)道,雷帕霉素是Ser/Thr酶受體的抑制劑,Ser/Thr酶能依據(jù)營(yíng)養(yǎng)狀況調(diào)節(jié)細(xì)胞的生長(zhǎng),雷帕霉素抑制其作用可以誘導(dǎo)自噬[36]。在感染Mtb后用雷帕霉素激活自噬,可有效抑制Mtb在細(xì)胞內(nèi)的生長(zhǎng)。同時(shí),相比于Mtb,卡介菌(bacillus calmette-guerin,BCG)感染更能降低自噬對(duì)雷帕霉素的反應(yīng)性,說明BCG有其特有的機(jī)制來限制宿主細(xì)胞的自噬過程。感染相關(guān)免疫信號(hào)能夠誘導(dǎo)自噬的發(fā)生,促進(jìn)依賴PI3K途徑的自噬小體成熟,達(dá)到殺滅Mtb的目的[37]。
Gutierrez等報(bào)道,自噬過程對(duì)PI3K抑制劑渥曼青霉素和3甲基腺嘌呤(3-methyladenine,3-MA)十分敏感,其作用靶點(diǎn)為PI3K-3 hVPS34[38]。BCG感染中應(yīng)用渥曼青霉素和3-MA后,會(huì)明顯降低BCG與自噬酸化標(biāo)記物的共定位,說明渥曼青霉素和3-MA抑制了早期自噬小體的形成。
5.1 針對(duì)自噬的免疫聯(lián)合療法 近年來,臨床上耐多藥結(jié)核和嚴(yán)重耐藥結(jié)核的出現(xiàn)使得結(jié)核病又出現(xiàn)了上升的趨勢(shì)。目前臨床上的一線抗結(jié)核藥物需至少服藥6個(gè)月,不良反應(yīng)明顯且患者依從性差,因而WHO推薦采用化學(xué)療法與免疫療法相結(jié)合的治療方案。自噬激活劑聯(lián)合抗結(jié)核藥物的治療方案,可能大大縮短治療時(shí)間,提高患者依從性,從而保證治療效果。雷帕霉素、歐列姆等自噬激活劑已經(jīng)被獲準(zhǔn)作為移植術(shù)后抗免疫排斥藥物應(yīng)用到臨床中,這提示我們,靶向自噬的藥物具有很好的免疫療效,在抗結(jié)核治療中可能會(huì)有較好的應(yīng)用前景。
Rubinsztein等[39]研究證實(shí),IP3調(diào)節(jié)通路可以誘導(dǎo)自噬的發(fā)生,而抗驚厥和癲癇藥鋰-卡巴咪嗪和鈉-2丙基戊酸鈉會(huì)激活上述通路,從而可以應(yīng)用于免疫輔助療法。針對(duì)巨噬細(xì)胞的納米霧化吸入療法,可使藥效最大化,藥物不良反應(yīng)最小化。臨床上對(duì)耐藥Mtb進(jìn)行免疫聯(lián)合治療,如霧化吸入IFN-γ,已經(jīng)有很多成功的案例[40]。
Ghadimi等[41]證實(shí),減毒Mtb感染外周血單核細(xì)胞后,用乳酸菌處理,會(huì)使IL-4、IL-13、和IL-10分泌減少,而IFN-γ分泌增加,同時(shí)伴有自噬泡增多。攻毒Mtb可以顯著降低大鼠肺部Th2反應(yīng)性,卻會(huì)增強(qiáng)人類肺部的免疫反應(yīng)[42]。自噬激活劑療法可能部分降低由IL-1β等免疫療法引起的呼吸窘迫、氣道狹窄等不良反應(yīng),降低過敏反應(yīng),提高患者對(duì)治療的依從性。
應(yīng)用以上研究成果研發(fā)針對(duì)Mtb的新型疫苗,可以顯著減少結(jié)核病的發(fā)病率。目前應(yīng)用最廣泛結(jié)核疫苗的BCG,其有效率只有50%,且對(duì)潛伏感染的患者沒有治療效果,主要應(yīng)用于新生兒預(yù)防接種疫苗[43]。對(duì)Mtb有效的疫苗應(yīng)具備以下特點(diǎn):對(duì)胞內(nèi)抗原起作用,且必須能將胞內(nèi)抗原提呈給T淋巴細(xì)胞。而自噬正是依靠MHCⅠ和MHCⅡ復(fù)合物將胞內(nèi)Mtb呈遞給T淋巴細(xì)胞,以增強(qiáng)對(duì)Mtb的識(shí)別和殺滅,因而可能具有較好的抗結(jié)核治療前景。
5.2 自噬相關(guān)基因檢測(cè)與結(jié)核病預(yù)后 潛在性結(jié)核感染(latent tuberculous infection,LTBI)反映Mtb的活動(dòng)度,當(dāng)機(jī)體免疫缺陷時(shí),LTBI≥1%,預(yù)示著Mtb潛伏感染或活動(dòng)性結(jié)核病有可能加重。而自噬作為Mtb潛伏感染的指示劑,也可以反映結(jié)核病的進(jìn)展情況[44]?;蛐酒Y(jié)果顯示,自噬相關(guān)基因IRGM-2617與人類免疫功能關(guān)系密切,能夠間接反映LTBI的變化,從而提示潛伏性結(jié)核感染發(fā)展成活動(dòng)性結(jié)核病的可能[27]。
5.3 自噬抗結(jié)核臨床應(yīng)用中存在的問題 免疫療法聯(lián)合自噬增強(qiáng)劑治療可以在一定程度上緩解機(jī)體過度免疫帶來的不良反應(yīng),提高患者免疫治療的依從性,然而自噬是把雙刃劍,低水平的自噬對(duì)細(xì)胞具有保護(hù)作用,而高水平或持久的自噬則加重細(xì)胞損傷,導(dǎo)致細(xì)胞死亡[45]。目前針對(duì)自噬的治療仍處于初步探索階段,有很多問題亟待解決。如何精確控制自噬的程度成為臨床應(yīng)用的關(guān)鍵難題。Deretic等[3]指出,如果治療是通過使用例如能誘導(dǎo)自噬的雷帕霉素殺滅細(xì)菌和病毒,那么首先需要封閉Nef蛋白,它可與液泡內(nèi)的質(zhì)子ATP酶相互作用從而阻斷生物必需的酸化過程使得細(xì)胞器降解。然而目前還不清楚Nef蛋白究竟是如何封閉自噬體阻止其成熟的,臨床尚無成功案例。
自噬在防御細(xì)胞內(nèi)致病菌 Mtb的感染中發(fā)揮了重要作用。一方面,Mtb可被自噬作用內(nèi)化、降解進(jìn)而被清除;另一方面,Mtb可以通過某些機(jī)制逃避宿主細(xì)胞的自噬作用,引起活動(dòng)性結(jié)核病。物理、化學(xué)及相關(guān)免疫信號(hào)能夠誘導(dǎo)自噬的發(fā)生,促進(jìn)自噬小體的成熟,達(dá)到殺滅Mtb的目的。目前,關(guān)于自噬的研究已經(jīng)取得了一定的進(jìn)展,然而在結(jié)核菌感染中,究竟還有哪些因素誘導(dǎo)了自噬的發(fā)生,這些刺激信號(hào)通過哪些具體通路進(jìn)行傳遞,哪些自噬相關(guān)基因參與了抗結(jié)核的過程,又有哪些自噬相關(guān)蛋白去執(zhí)行等,還有很多問題亟待科學(xué)家去探索。對(duì)自噬的深入研究能夠促進(jìn)關(guān)于結(jié)核病發(fā)生、發(fā)展的深入研究,為研發(fā)以自噬為靶標(biāo)的治療性疫苗提供理論依據(jù),對(duì)提高結(jié)核病的治療和預(yù)后效果具有重要的參考價(jià)值。
1 Russell DG, Barry CE, Flynn JL. Tuberculosis: what we don’t know can, and does, hurt us[J]. Science, 2010, 328(5980):852-856.
2 侯江厚, 李琦. 自噬在結(jié)核病免疫應(yīng)答中的作用[J]. 結(jié)核病與胸部腫瘤, 2012, (2): 137-140.
3 Deretic V, Singh S, Master S, et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism[J]. Cell Microbiol, 2006, 8(5): 719-727.
4 Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages[J]. Cell, 2004, 119(6): 753-766.
5 Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis[J]. J Clin Immunol, 2007, 27(4): 347-362.
6 Baena A, Porcelli SA. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis[J]. Tissue Antigens, 2009, 74(3):189-204.
7 Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1): 27-42.
8 Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182):1069-1075.
9 Mortensen M, Ferguson DJ, Edelmann M, et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo[J]. Proc Natl Acad Sci U S A, 2010, 107(2):832-837.
10 Ezaki J, Matsumoto N, Takeda-Ezaki M, et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels[J]. Autophagy, 2011, 7(7): 727-736.
11 Kinhikar AG, Verma I, Chandra D, et al. Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells[J]. Mol Microbiol, 2010, 75(1): 92-106.
12 Greco E, Santucci MB, Sali M, et al. Natural lysophospholipids reduce Mycobacterium tuberculosis-induced cytotoxicity and induce anti-mycobacterial activity by a phagolysosome maturationdependent mechanism in A549 type II alveolar epithelial cells[J]. Immunology, 2010, 129(1): 125-132.
13 Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks[J]. Biochem J, 2012, 441(1):1-21.
14 Wang RC, Wei Y, An Z, et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation[J]. Science,2012, 338(619): 956-959.
15 Seto S, Tsujimura K, Horii T, et al. Autophagy adaptor protein p62/ SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells[J]. PLoS One, 2013, 8(12): e86017.
16 Zullo AJ, Lee S. Mycobacterial induction of autophagy varies by species and occurs independently of mammalian target of rapamycin inhibition[J]. J Biol Chem, 2012, 287(16): 12668-12678.
17 Klionsky DJ, Cregg JM, Dunn WA, et al. A unified nomenclature for yeast autophagy-related genes[J]. Dev Cell, 2003, 5(4): 539-545.
18 Yoshimori T. Autophagy: a regulated bulk degradation process inside cells[J]. Biochem Biophys Res Commun, 2004, 313(2): 453-458.
19 Hanna RA, Quinsay MN, Orogo AM, et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J]. J Biol Chem, 2012, 287(23): 19094-19104.
20 He H, Dang Y, Dai F, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B[J]. J Biol Chem, 2003, 278(31):29278-29287.
21 Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human[J]. Autophagy, 2007, 3(3):181-206.
22 De Souza PS, Da Cunha Vasconcelos F, Silva LF, et al. Cyclosporinea enables vincristine-induced apoptosis during reversal of multidrug resistance phenotype in chronic myeloid leukemia cells[J]. Tumour Biol, 2012, 33(4): 943-956.
23 Kim KH, An DR, Song J, et al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7[J]. Proc Natl Acad Sci U S A, 2012, 109(20):7729-7734.
24 Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124.
25 Singh SB, Davis AS, Taylor GA, et al. Human IRGM induces autophagy to eliminate intracellular mycobacteria[J]. Science,2006, 313(5792): 1438-1441.
26 劉志勇, 王曉健. 自噬參與免疫應(yīng)答調(diào)控的研究進(jìn)展[J]. 中國(guó)免疫學(xué)雜志, 2013, 29(7): 779-781.
27 Intemann CD, Thye T, Niemann S, et al. Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains[J]. PLoS Pathog, 2009, 5(9): e1000577.
28 Che N, Li S, Gao T, et al. Identification of a novel IRGM promoter single nucleotide polymorphism associated with tuberculosis[J]. Clin Chim Acta, 2010, 411(21/22): 1645-1649.
29 King KY, Lew JD, Ha NP, et al. Polymorphic allele of human IRGM1 is associated with susceptibility to tuberculosis in African Americans[J]. PLoS One, 2011, 6(1): e16317.
30 Bahari G, Hashemi M, Taheri M, et al. Association of IRGM polymorphisms and susceptibility to pulmonary tuberculosis in Zahedan, Southeast Iran[J/OL]. http://www.hindawi.com/ journals/tswj/2012/950801
31 Macmicking JD, Taylor GA, Mckinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47[J]. Science,2003, 302(5645): 654-659.
32 Bradfute SB, Castillo EF, Arko-Mensah J, et al. Autophagy as an immune effector against tuberculosis[J]. Curr Opin Microbiol,2013, 16(3):355-365.
33 Bekpen C, Hunn JP, Rohde C, et al. The interferon-inducible p47(IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage[J]. Genome Biol, 2005, 6(11):R92.
34 Kaiser F, Kaufmann SH, Zerrahn J. IIGP, a member of the IFN inducible and microbial defense mediating 47 kDa GTPase family,interacts with the microtubule binding protein hook3[J]. J Cell Sci,2004, 117(Pt 9): 1747-1756.
35 Vergne I, Singh S, Roberts E, et al. Autophagy in immune defense against Mycobacterium tuberculosis[J]. Autophagy, 2006, 2(3):175-178.
36 Wang J, Yang K, Zhou L, et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb[J]. PLoS Pathog, 2013, 9(10): e1003697.
37 Evine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330): 323-335.
38 郭旭光,馬越云,周珊,等.肺泡Ⅱ型上皮細(xì)胞自噬體與結(jié)核分枝桿菌相互作用的研究[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2010,10(5):810-813.
39 Rubinsztein DC, Gestwicki JE, Murphy LO, et al. Potential therapeutic applications of autophagy[J]. Nat Rev Drug Discov,2007, 6(4): 304-312.
40 Suárez-Méndez R, García-García I, Fernández-Olivera N, et al. Adjuvant interferon gamma in patients with drug - resistant pulmonary tuberculosis: a pilot study[J]. BMC Infect Dis, 2004, 4:44.
41 Ghadimi D, De Vrese M, Heller KJ, et al. Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagy-promoting cytokine (IFN-gamma) and nitric oxide(NO) levels and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen[J]. Int Immunopharmacol, 2010, 10(6): 694-706.
42 Forsythe P, Inman MD, Bienenstock J. Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice[J]. Am J Respir Crit Care Med, 2007, 175(6):561-569.
43 Colditz GA, Brewer TF, Berkey CS, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature[J]. JAMA, 1994, 271(9): 698-702.
44 Styblo K. The elimination of tuberculosis in The Netherlands[J]. Bull Int Union Tuberc Lung Dis, 1990, 65(2-3):49-55.
45 焦慧,張志,馬清華,等.Apelin-13對(duì)葡萄糖剝奪乳鼠心肌細(xì)胞自噬的影響及機(jī)制[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2013(2):167-171.
Autophagy participating in inhibiting mycobacterium tuberculosis survival in infected macrophages
SUN Huijie1,2, DONG Mei1, WANG Di11Department of Clinical Laboratory, the 309th Hospital of Chinese PLA, Beijing 100091, China;2Hebei North University, Zhangjiakou 075000, Hebei Province, China
DONG Mei. Email: dongmei0659@sina.com
Autophagy is an evolutionarily conserved process which plays a vital role in maintaining cytoplasmic homeostasis by degrading damaged organelles or misfolded proteins in phagolysosome. The anti-mycobacterial immunology is mainly dependent on macrophages which belong to the fi rst line of anti-mycobacterial immune defense system. Although the induction of autophagy suppresses intracellular survival of mycobacterial, the bacteria are capable of surviving and persisting within host macrophages because of its repertoire of evading the host immune response, and mycobacterial can limit the maturation of mycobacterial phagosomes to escape degradation by lysosomal hydrolases. Autophagy is closely related with mycobacterial tuberculosis. The researches on autophagy reveal a novel direction in regulating autophagy-mediated mycobacterial elimination, and provide potential targets for clinical treatment.
autophagy; mycobacterium tuberculosis; macrophages; immune response
R 378.911
A
2095-5227(2015)02-0197-04
10.3969/j.issn.2095-5227.2015.02.029
時(shí)間:2014-10-14 09:58
http://www.cnki.net/kcms/detail/11.3275.R.20141014.0958.002.html
2014-08-12
國(guó)家自然科學(xué)基金項(xiàng)目(81271777)
Supported by the National Natural Science Foundation of China (81271777)
孫慧杰,女,碩士。研究方向:結(jié)核桿菌的免疫特性與分子機(jī)制。Email: Sunny7125797@163.com
董梅,女,主任醫(yī)師。Email: dongmei0659@sina.com