戴爽,顏元良,龔志成
(1.中南大學(xué)湘雅藥學(xué)院,湖南 長沙 410013;2.中南大學(xué)湘雅醫(yī)院 藥學(xué)部,湖南 長沙 410008)
硬脂酰輔酶A去飽和酶1(stearoyl-coenzyme A desaturase 1,SCD1)又稱△-9-脂肪酸去飽和酶,是催化飽和脂肪酸(saturated fatty acid,SFA)向單不飽和脂肪酸(monounsaturated fatty acid,MUFA)轉(zhuǎn)化的關(guān)鍵酶。SCD1錨定于內(nèi)質(zhì)網(wǎng)膜上,擁有4個跨膜結(jié)構(gòu)域,與煙酰型輔酶NAD(P)、細(xì)胞色素還原酶以及細(xì)胞色素b5緊密結(jié)合,催化△9位和△10位間雙鍵的形成。SCD1的終產(chǎn)物—油酸(C18:1n-9)和棕櫚油酸(C16:1n-7)是三酰甘油、膽固醇酯、蠟酯、膜磷脂等多種結(jié)構(gòu)脂質(zhì)優(yōu)先利用的底物。因此,SCD1介導(dǎo)的SFA/MUFA平衡對促進(jìn)生物膜形成,支持腫瘤細(xì)胞快速分裂以及調(diào)節(jié)功能性脂筏結(jié)構(gòu),介導(dǎo)增殖和生存信號傳導(dǎo)具有重要意義。SCD1與腫瘤發(fā)生、發(fā)展密切相關(guān),SCD1已經(jīng)成為一個新型的抗腫瘤治療靶點(diǎn)。藥物抑制或基因敲除手段干擾SCD1的表達(dá)可以顯著抑制腫瘤細(xì)胞的增長、誘導(dǎo)凋亡。本文重點(diǎn)討論SCD1抑制劑在腫瘤治療以及抗腫瘤藥理學(xué)機(jī)制上的研究。
SCD1最初被發(fā)現(xiàn)與肥胖、脂肪肝、血脂異常及胰島素抵抗等代謝綜合征相關(guān),隨著脂質(zhì)組學(xué)和基因組學(xué)的發(fā)展,SCD1及其產(chǎn)物MUFA在腫瘤中的重要作用才逐漸被了解。一些腫瘤流行病學(xué)研究顯示,腫瘤患者血清和組織中MUFA/SFA含量可用來評估患者癌癥風(fēng)險,SFA與MUFA之間的轉(zhuǎn)化還與腫瘤預(yù)后密切相關(guān)。CHAVARRO等[1]通過對476例前列腺患者的血清脂肪酸成分檢測發(fā)現(xiàn),血清中MUFA(16:1n-7)的含量與高級別前列腺癌的發(fā)病率呈正相關(guān)。類似地,乳腺癌患者血清中高水平的反式-單不飽和脂肪酸會增加乳腺患病的危險性[2]。一項前瞻性研究[3]還顯示,乳腺腫瘤及轉(zhuǎn)移患者其卵磷脂中硬脂酸的低水平與乳腺癌不良預(yù)后密切相關(guān)。腫瘤組織中SFA與MUFA含量的不平衡提示,SCD1作為關(guān)鍵調(diào)節(jié)因子在腫瘤脂質(zhì)組成和發(fā)生、發(fā)展中可能發(fā)揮著積極作用。
研究顯示[4],SCD1在肺腺癌腫瘤組織中的表達(dá)量要高于癌旁正常細(xì)胞,體內(nèi)外干擾SCD1表達(dá)能夠抑制腫瘤的增殖、侵襲轉(zhuǎn)移并誘導(dǎo)細(xì)胞凋亡,在腎癌、甲狀腺癌及結(jié)腸癌細(xì)胞中也有類似的發(fā)現(xiàn),SCD1高表達(dá)與肺腺癌的不良預(yù)后相關(guān),可作為肺腺癌的一個生物標(biāo)志物。在雄激素受體陽性(androgen receptor positive,AR+)的前列腺癌細(xì)胞中,SCD1通過介導(dǎo)AR活化促進(jìn)LNCaP細(xì)胞增殖[5],SCD1的表達(dá)及其產(chǎn)物MUFA的含量還與前列腺癌惡性轉(zhuǎn)化密切相關(guān)[6]。在肝癌細(xì)胞系中,抗腫瘤藥物氟尿嘧啶和阿霉素通過調(diào)控PI3K/JNK1/2途徑能夠時間依賴性地誘導(dǎo)SCD1表達(dá)上調(diào),而抑制SCD1的表達(dá)能夠抑制腫瘤細(xì)胞的增殖,增加細(xì)胞對化療藥物誘導(dǎo)凋亡的敏感性[7]。SCD1在腫瘤組織和細(xì)胞中特異性過度表達(dá)使其可以作為一個潛在的腫瘤治療的藥靶,抑制SCD1可能為腫瘤藥物設(shè)計提供一個新的方向。
SCD1在人類疾病中扮演著重要的角色,吸引著眾多公司和研究人員參與到SCD1抑制劑的研發(fā)工作中。自2005年Xenon公司研制出首個SCD抑制劑后,Merck、Abbott、CV Therapeutics等公司也相繼開發(fā)出新的SCD抑制劑[8-9]。目前SCD1抑制劑都還處于臨床前 研 究,CAY-10566、A939572、CVT-11127、MF-438、T-3764518等是已報道在腫瘤中具有抗腫瘤活性的抑制劑(見附表)。
CAY-10566是由Abbott公司開發(fā)的噠嗪雜環(huán)類SCD抑制劑,實驗證明CAY-10566能有效阻斷飽和長鏈脂肪酸輔酶A向單不飽和長鏈脂肪酸輔酶A轉(zhuǎn)化。在肝癌HepG2細(xì)胞中,CAY-10566能劑量依賴性抑制細(xì)胞增殖,作用于mSCD1和hSCD1,IC50分別為7.9 nmol(C17:1/C17:0)/6.8 nmol(C16:1/C16:0)和26 nmol[10]。隨后的研究表明,CAY-10566不僅能抑制HepG2細(xì)胞生長、促進(jìn)凋亡,還能劑量依賴性和時間依賴性地誘導(dǎo)肝癌細(xì)胞HepG2發(fā)生自噬[11]。在HCT116結(jié)腸癌體外實驗中,CAY-10566可抑制油酸的合成,誘導(dǎo)多聚二磷酸腺苷核糖聚合酶(poly ADP-ribose polymerase,PARP)降解,抑制細(xì)胞生長并促進(jìn)細(xì)胞凋亡。CAY-10566對腫瘤生長的抑制在小鼠體內(nèi)實驗中也得到證實。這項研究同時還提示食源性的補(bǔ)充不飽和脂肪酸可能是限制SCD1抑制劑發(fā)揮抗腫瘤效應(yīng)的原因之一[12]。此外,研究顯示CAY-10566具有良好的選擇性,與癌旁正常組織比較,對體外培養(yǎng)的乳腺癌組織具有更好的抑瘤作用,飽和脂肪酸的積累僅出現(xiàn)在腫瘤組織中[13]。CAY-10566還能夠抑制尼古丁誘導(dǎo)的口腔上皮癌變細(xì)胞及一系列頭頸部鱗癌細(xì)胞的增殖、侵襲和克隆形成[14]。在卵巢癌中,腫瘤干細(xì)胞中脂肪酸的不飽和程度對于維持腫瘤干細(xì)胞特性具有重要的意義,CAY-10566降低細(xì)胞中不飽和脂肪酸含量,阻斷核轉(zhuǎn)錄因子Kappa B(nuclear factor kappa B,NF-κB)信號通路,抑制腫瘤干細(xì)胞的體外成球和體內(nèi)成瘤能力[15]。
A939572是Abbott公司利用骨架遷越方法設(shè)計的另一類哌啶芳基脲衍生物,可以功能性抑制HepG2細(xì)胞中SCD1酶活性,在體內(nèi)外都具有良好的理化特性[16]。在低血清培養(yǎng)條件下A939572處理腫瘤細(xì)胞出現(xiàn)明顯的生長抑制,并且該生長抑制能被SCD1的產(chǎn)物油酸所逆轉(zhuǎn),而在不飽和脂肪酸充足的高血清培養(yǎng)條件下腫瘤細(xì)胞生長則不會受到A939572的影響。有結(jié)果表明,腫瘤細(xì)胞的生存依賴于不飽和脂肪酸,在沒有外源不飽和脂肪酸補(bǔ)充的情況下,利用A939572阻斷內(nèi)源性不飽和脂肪酸合成,能有效抑制腫瘤細(xì)胞生長[17]。在荷瘤小鼠動物模型中,A939572也呈現(xiàn)抑瘤效應(yīng)。在許多腫瘤細(xì)胞系和動物模型中,A939572均具有濃度依賴性的抑制細(xì)胞增長的活性,包括人咽鱗癌、腎透明細(xì)胞癌、甲狀腺癌、肝癌[18-20]。用A939572處理這些腫瘤細(xì)胞,均可觸發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ER stress)反應(yīng),導(dǎo)致細(xì)胞生長受抑和細(xì)胞凋亡。而在肝癌Huh7細(xì)胞中,A939572處理還會影響細(xì)胞成球能力,抑制細(xì)胞侵襲和轉(zhuǎn)移,降低細(xì)胞耐藥性。線粒體是細(xì)胞的“動力工廠”,線粒體功能障礙通常被認(rèn)為與細(xì)胞凋亡密切相關(guān)。有研究表明A939572會造成結(jié)腸癌細(xì)胞線粒體功能發(fā)生障礙,導(dǎo)致胞內(nèi)氧化應(yīng)激(reactive oxygen species,ROS)水平升高、線粒體跨膜電位改變以及細(xì)胞色素C(P450)膜轉(zhuǎn)位進(jìn)而引起細(xì)胞凋亡。L-環(huán)絲氨酸能夠通過抑制神經(jīng)酰胺合成逆轉(zhuǎn)這種促凋亡效應(yīng),表明神經(jīng)酰胺合成信號在A939572介導(dǎo)細(xì)胞凋亡的抑癌功能中也發(fā)揮著一定的作用[21]。除了單藥使用的抗腫瘤作用,A939572與不同腫瘤化療藥物聯(lián)合應(yīng)用在體內(nèi)外實驗中都表現(xiàn)出獨(dú)特的治療優(yōu)勢。在腎癌裸鼠移植瘤模型中,A939572與雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)抑制劑temsirilimus單獨(dú)使用的抑制效應(yīng)為20%~30%,而兩者聯(lián)合使用對腫瘤生長的抑制效應(yīng)可達(dá)60%,顯示出體外的協(xié)同抗癌效果[18]。A939572還可以增加肝癌化療抵抗細(xì)胞對sorafenib的藥物敏感性,可作為sorafenib的化療增敏劑提高藥物療效[20]。另外,SCHLAEPFER等[22]發(fā)現(xiàn)孕激素通過刺激SCD表達(dá)促進(jìn)乳腺癌細(xì)胞增殖,介導(dǎo)乳腺癌對多西紫杉醇耐藥,A939572與多西紫杉醇聯(lián)用可作為孕激素敏感型乳腺癌的聯(lián)合化療方案。
CVT-11127是CV Therapeutics公司通過高通量篩選得到的1個新的SCD抑制劑,其不僅具有穩(wěn)定的代謝性質(zhì),還能選擇性抑制△5-和△6-去飽和酶[23]。有研究表明[24],CVT-11127可以刺激AMPK活化,磷酸化ACC而抑制葡萄糖介導(dǎo)的脂質(zhì)合成,進(jìn)而抑制細(xì)胞增殖。在MINVILLE WALZ的研究中[25],CVT-11127與另一種SCD1抑制劑MF-438均能高效的抑制單不飽和脂肪酸的從頭合成。在人骨肉瘤U2OS細(xì)胞中,CVT-11127相對于MF-438具有更好的抗腫瘤效應(yīng),這種效應(yīng)被認(rèn)為與未折疊蛋白反應(yīng)中CCAAT/增強(qiáng)子結(jié)合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein,CHOP)的激活相關(guān)。CVT-11127還可以阻斷肺癌細(xì)胞周期進(jìn)程,使細(xì)胞發(fā)生G1/S期阻滯,抑制肺癌細(xì)胞的脂質(zhì)合成和增殖[26]。SCD1調(diào)節(jié)飽和脂肪酸與不飽和脂肪酸的平衡,為功能性脂筏提供特殊的脂類分子。CVT-11127能改變脂筏結(jié)構(gòu),影響細(xì)胞膜的流動性,干預(yù)表皮細(xì)胞生長因子(epidermal growth factor,EGF)受體的磷酸化而導(dǎo)致EGFR下游AKT和ERK信號失活。CVT-11127與EGFR信號抑制劑(gefitinib、LY29004,U0126和rapamycin)對肺癌細(xì)胞協(xié)同的生長抑制作用同時也證實CVT-11127可以作為提高肺癌化療療效的一種干預(yù)策略[27]。
MF-438是一種口服有效,并具有良好藥代動力學(xué)特性和代謝穩(wěn)定性的噻二唑噠嗪類衍生物[28]。內(nèi)質(zhì)網(wǎng)相關(guān)的蛋白降解(ER-associated protein degradation,ERAD)負(fù)責(zé)發(fā)現(xiàn)和清除錯誤折疊蛋白,ERAD平衡對維持內(nèi)質(zhì)網(wǎng)功能穩(wěn)態(tài),保護(hù)細(xì)胞存活具有重要作用。在甲狀腺癌體內(nèi)外中,MF-438能協(xié)同ERAD抑制劑增加細(xì)胞應(yīng)激壓力,抑制細(xì)胞生長并誘導(dǎo)細(xì)胞凋亡。腫瘤干細(xì)胞(CSC)對腫瘤形成、存活、轉(zhuǎn)移和復(fù)發(fā)起重要作用,是造成腫瘤化療耐藥的最根本原因。NOTO等[29]研究發(fā)現(xiàn)SCD1在肺癌干細(xì)胞樣細(xì)胞中高表達(dá),免疫熒光結(jié)果顯示,MF-438處理的干細(xì)胞樣細(xì)胞呈現(xiàn)早期凋亡標(biāo)志M30和干性標(biāo)志乙醛脫氫酶A1(aldehyde dehydrogenase 1,ALDH1A1)標(biāo)記的雙陽性信號,表明MF-438能選擇性地誘導(dǎo)干細(xì)胞樣細(xì)胞發(fā)生凋亡。在裸鼠移植瘤模型中也觀察到,MF-438選擇性誘導(dǎo)ALDH1A1陽性細(xì)胞發(fā)生凋亡,抑制體內(nèi)成瘤能力。肺腺癌干細(xì)胞在順鉑處理后干性特征增強(qiáng),對順鉑化療具有高度耐藥性。而MF-438聯(lián)合順鉑治療能夠降低肺腺癌細(xì)胞的干性,抑制腫瘤三維球體的形成,下降干性標(biāo)志物的表達(dá),提高肺腺癌干細(xì)胞對順鉑化療的敏感性。MF-438逆轉(zhuǎn)肺癌干細(xì)胞順鉑耐藥,其機(jī)制與激活內(nèi)質(zhì)網(wǎng)應(yīng)激和增加自噬有關(guān)[30]。
T-3764518是一種可口服的小分子SCD1抑制劑,具有抗腫瘤效果好,毒副作用小和良好的藥代動力學(xué)性質(zhì)等優(yōu)點(diǎn)。脂質(zhì)組學(xué)分析結(jié)果顯示,T-3764518呈劑量依賴性降低結(jié)腸癌HCT116細(xì)胞移植瘤組織中不飽和脂肪酸與飽和脂肪酸的比率。體內(nèi)藥效實驗還證實T-3764518能夠抑制789-O細(xì)胞裸鼠移植瘤的生長而不會引發(fā)嚴(yán)重藥物毒性[31]。體內(nèi)外實驗表明,T-3764518能選擇性抑制SCD1活性,抑制硬脂酰輔酶A向油酰輔酶A的轉(zhuǎn)化,從而改變細(xì)胞膜的脂質(zhì)組成。T-3764518能夠延遲腫瘤生長,激活內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),并誘導(dǎo)細(xì)胞凋亡,體內(nèi)外都顯示出良好的抑瘤作用[32]。抑制SCD1活性會導(dǎo)致其底物SFA累積而引起細(xì)胞凋亡,研究卻發(fā)現(xiàn)[33],抑制SCD1可負(fù)反饋激活A(yù)MPK,阻斷下游脂肪酸合成通路,避免SFA的過度蓄積,從而拮抗T-3764518對HCT116細(xì)胞的生長抑制。該研究認(rèn)為,AMPK通路誘導(dǎo)產(chǎn)生的自噬在T-3764518的腫瘤治療中對腫瘤細(xì)胞起著保護(hù)性作用,能夠促進(jìn)腫瘤細(xì)胞的存活,抑制細(xì)胞自噬這一細(xì)胞存活通路能增強(qiáng)T-3764518的腫瘤抑制效應(yīng)。
除了上述幾種抑制劑具有抗腫瘤作用外,其他幾種SCD抑制劑也表現(xiàn)出良好的腫瘤治療前景,包括 Plurisin#1、BZ36 和 Abbott#7n。研究表明[34-35],Plurisin#1能夠選擇性消除未分化的誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPS cells),降低iPS細(xì)胞治療的致瘤性。在誘導(dǎo)iPS心肌再生的治療過程中,Plurisin#1能夠誘導(dǎo)Nanog陽性(維持細(xì)胞干性的核轉(zhuǎn)錄因子)iPS細(xì)胞的凋亡,降低心肌梗死的概率,同時不影響心肌分化。抑制劑BZ36可以阻礙脂肪酸從頭合成,阻斷腫瘤關(guān)鍵致癌通路,抑制雄激素敏感/耐藥的前列腺癌細(xì)胞的增殖,同時抑制前列腺癌移植瘤裸鼠的瘤體增長[36-37]。Abbott研發(fā)的另一種SCD1抑制劑Abbott #7n在結(jié)腸癌HCT116細(xì)胞體內(nèi)外模型也顯示抑瘤作用[38-39]。該研究均強(qiáng)調(diào)SCD1與腫瘤的發(fā)生和發(fā)展密切相關(guān),并充分證明SCD1抑制劑作為抗腫瘤藥物的可能性。
研究表明,SCD1可通過調(diào)控腫瘤脂代謝和AMPK/ACC、PI3K/Akt、Wnt等致癌信號通路促進(jìn)腫瘤的發(fā)生、發(fā)展(見附圖)。在腫瘤細(xì)胞中持續(xù)活化的SCD1,一方面為癌細(xì)胞提供源源不斷的MUFA底物,促進(jìn)脂質(zhì)的生物合成,另一方面參與腫瘤細(xì)胞增殖和存活通路信號轉(zhuǎn)導(dǎo),加速細(xì)胞增殖、增加細(xì)胞侵襲和生存能力。脂肪酸從頭合成的終產(chǎn)物為SFA,非脂肪組織中SFA的蓄積會導(dǎo)致細(xì)胞脂毒性,誘導(dǎo)細(xì)胞發(fā)生凋亡。實際上,在SCD1過表達(dá)的腫瘤細(xì)胞中,存在著SFA向MUFA的不斷轉(zhuǎn)化,從而避免SFA的過量累積引起的脂毒性。siRNA手段敲除SCD1可使腫瘤細(xì)胞對外源性飽和脂肪酸誘導(dǎo)的凋亡效應(yīng)更加敏感。在前列腺癌中SCD1抑制劑BZ36可阻斷SFA向MUFA的轉(zhuǎn)化,造成腫瘤細(xì)胞存活率下降[37]。使用CVT-11127處理肺癌細(xì)胞時也有類似的作用[27]。該研究表明SCD1對維持腫瘤細(xì)胞在代謝壓力下的存活有重要作用,而抑制SCD1活性將破壞MUFA/SFA間的平衡,導(dǎo)致細(xì)胞程序性死亡。
除此之外,SCD1還可以通過AMPK/ACC途徑對整個脂肪酸從頭合成過程進(jìn)行調(diào)節(jié)。AMPK是細(xì)胞和機(jī)體能量代謝的主要調(diào)節(jié)器,AMPK的激活使得ACC磷酸化而降低其活性。使用CVT-11127抑制SCD1表達(dá)能夠激活A(yù)MPK,活化的AMPK使ACC磷酸化而失活,阻斷脂肪酸的合成,并抑制腫瘤細(xì)胞增殖[24]。然而,ONO的研究[33]發(fā)現(xiàn)T-3764518激活A(yù)MPK,阻斷SFA的合成和累積反過來抵抗SCD1抑制誘導(dǎo)的脂毒性。并且AMPK還能激活腫瘤細(xì)胞自噬存活通路。用AMPK抑制劑直接阻斷SCD1抑制對AMPK的負(fù)反饋信號或者用自噬抑制劑抑制AMPK誘導(dǎo)的自噬存活,都能增強(qiáng)腫瘤細(xì)胞對SCD1抑制劑的敏感性。研究表明[33],抑制SCD1誘導(dǎo)腫瘤細(xì)胞凋亡需要依賴AMPK的失活。
附圖 SCD1調(diào)控腫瘤脂代謝和致癌信號轉(zhuǎn)導(dǎo)
PI3K/Akt信號通路是細(xì)胞增殖和存活通路,同時也是腫瘤細(xì)胞糖脂代謝重要的調(diào)控信號。研究表明,SCD1的活性與PI3K/Akt信號轉(zhuǎn)導(dǎo)有密切的聯(lián)系。癌細(xì)胞中高表達(dá)的SCD1通過調(diào)節(jié)MUFA含量,改善細(xì)胞膜的流動性。有研究者認(rèn)為[27],這種脂質(zhì)膜有利于EGFR的磷酸化和脫離,進(jìn)而激活下游信號級聯(lián)反應(yīng)。抑制SCD活性阻礙EGFR配體介導(dǎo)的磷酸化,阻斷下游靶點(diǎn)AKT、ERK、mTOR的活化,從而降低EGF誘導(dǎo)的細(xì)胞增殖。除此之外,抑制SCD1還通過抑制AKT下游分子糖原合成酶激酶3β(GSK3β)的磷酸化,阻止β-catenin向核內(nèi)轉(zhuǎn)移而發(fā)揮抑癌作用[40]。
早期研究[41]發(fā)現(xiàn),Wnt3a蛋白的分泌和轉(zhuǎn)運(yùn)依賴于特殊位點(diǎn)上棕櫚油酸的修飾。Wnt信號活化會引起GSK3β磷酸化降低,導(dǎo)致β-catenin向核內(nèi)聚集而促進(jìn)腫瘤的發(fā)生和轉(zhuǎn)移。用CAY-10566和A939572阻斷單不飽和脂肪酸的合成,阻斷Wnt蛋白的旁分泌及自分泌,從而抑制Wnt下游信號激活[42]。不飽和脂肪酸還能夠直接抑制β-catenin的降解,促進(jìn)腫瘤生長。Fas相關(guān)因子(FAF1)能與β-catenin 結(jié)合而促進(jìn)β-catenin的降解,不飽和脂肪酸通過與該蛋白的UAS結(jié)構(gòu)域結(jié)合,阻礙β-catenin的泛素化降解。A939572處理細(xì)胞可以檢測到β-catenin表達(dá)減少,腫瘤生長受抑[43]。本研究表明,抑制SCD1可能通過抑制Wnt/β-catenin通路發(fā)揮抗腫瘤作用。
綜上所述,SCD1是調(diào)節(jié)腫瘤細(xì)胞脂質(zhì)構(gòu)成的關(guān)鍵樞紐,同時也在腫瘤細(xì)胞生長、存活、惡性轉(zhuǎn)化信號轉(zhuǎn)導(dǎo)通路中發(fā)揮重要作用。以SCD1為靶點(diǎn)的抑制劑可抑制腫瘤細(xì)胞增殖、誘導(dǎo)細(xì)胞凋亡并逆轉(zhuǎn)腫瘤細(xì)胞化療耐藥,在臨床前實驗中顯示一定的抗腫瘤活性。因此,靶向SCD1的干預(yù)治療有望成為腫瘤藥物治療的一個新選擇。迄今為止,SCD1抑制劑在腫瘤治療中的研究仍然停留在臨床前實驗,主要是由于其在治療過程造成的體重下降以及對皮膚、眼睛的毒副作用。因此,如何克服治療過程的毒副作用將成為下一代SCD1抑制劑研發(fā)的關(guān)鍵點(diǎn)。同時,全面深入了解SCD1的腫瘤生物學(xué)功能及調(diào)控機(jī)制將為SCD1抑制劑作為抗腫瘤藥物提供證據(jù),并推動SCD1抑制劑的有效研發(fā)。
[1]CHAVARRO J E,KENFIELD S A,STAMPFER M J,et al.Blood levels of saturated and monounsaturated fatty acids as markers of de novo lipogenesis and risk of prostate cancer[J].American Journal of Epidemiology,2013,178(8): 1246-1255.
[2]CHAJèS V,THIéBAUT A C,ROTIVAL M,et al.Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study[J].American Journal of Epidemiology,2008,167(11): 1312-1320.
[3]BOUGNOUX P,CHAJES V,LANSON M,et al.Prognostic significance of tumor phosphatidylcholine stearic acid level in breast carcinoma[J].Breast Cancer Research & Treatment,1992,20(3): 185-194.
[4]HUANG J,FAN X X,HE J,et al.SCD1 is associated with tumor promotion,late stage and poor survival in lung adenocarcinoma[J].Oncotarget,2016,7(26): 39970-39979.
[5]KIM S J,CHOI H,PARK S S,et al.Stearoyl CoA desaturase(SCD) facilitates proliferation of prostate cancer cells through enhancement of androgen receptor transactivation[J].Molecules &Cells,2011,31(4): 371-377.
[6]PECK B,SCHUG Z T,ZHANG Q,et al.Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments[J].Cancer & Metabolism,2016,4(1):6.
[7]BANSAL S,BERK M,ALKHOURI N,et al.Stearoyl-CoA desaturase plays an important role in proliferation and chemoresistance in human hepatocellular carcinoma[J].Journal of Surgical Research,2014,186(1): 29-38.
[8]LIU G.Stearoyl-CoA desaturase inhibitors: update on patented compounds[J].Expert Opinion on Therapeutic Patents,2009,19(9): 1169-1191.
[9]POWELL D A.An overview of patented small molecule stearoyl coenzyme-A desaturase inhibitors (2009-2013)[J].Expert Opinion on Therapeutic Patents,2014,24(2): 155-175.
[10]LIU G,LYNCH J K,FREEMAN J,et al.Discovery of potent,selective,orally bioavailable stearoyl-CoA desaturase 1 inhibitors[J].Journal of Medicinal Chemistry,2007,50(13): 3086-3100.
[11]HUANG G M,JIANG Q H,CAI C,et al.SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway[J].Cancer Letters,2015,358(2): 180-190.
[12]MASON P,LIANG B,LI L,et al.SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids[J].PLoS One,2012,7(3): e33823.
[13]MOHAMMADZADEH F,MOSAYEBI G,MONTAZERI V,et al.Fatty acid composition of tissue cultured breast carcinoma and the effect of stearoyl-CoA desaturase 1 inhibition[J].Journal of Breast Cancer,2014,17(2): 136-142.
[14]NANJAPPA V,RENUSE S,SATHE G J,et al.Chronic exposure to chewing tobacco selects for overexpression of stearoyl-CoA desaturase in normal oral keratinocytes[J].Cancer Biology &Therapy,2015,16(11): 1593-1603.
[15]LI J,CONDELLO S,THOMES-PEPIN J,et al.Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J].Cell Stem Cell,2017,20(3): 303-314.
[16]XIN Z,ZHAO H,SERBY M D,et al.Discovery of piperidine-aryl urea-based stearoyl-CoA desaturase 1 inhibitors[J].Bioorganic &Medicinal Chemistry Letters,2008,18(15): 4298-4302.
[17]ROONGTA U V,PABALAN J G,WANG X,et al.Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy[J].Molecular Cancer Research,2011,9(11): 1551-1561.
[18]VON ROEMELING C A,MARLOW L A,WEI J J,et al.Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2013,19(9): 2368-2380.
[19]VON ROEMELING C A,MARLOW L A,PINKERTON A B,et al.Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target[J].J Clin Endocrinol Metab,2015,100(5): 697-709.
[20]MA M K F,LAU Y E T,LEUNG D H W,et al.Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation[J].Journal of Hepatology,2017,67(5): 979-990.
[21]CHEN L,REN J,YANG L,et al.Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J].Scientif i c Reports,2016,6: 19665.
[22]SCHLAEPFER I R,HITZ C A,GIJóN M A,et al.Progestin modulates the lipid prof i le and sensitivity of breast cancer cells to docetaxel[J].Molecular & Cellular Endocrinology,2012,363(1/2): 111-121.
[23]KOLTUN D O,PARKHILL E Q,VASILEVICH N I,et al.Novel,potent,selective,and metabolically stable stearoyl-CoA desaturase(SCD) inhibitors[J].Bioorganic & Medicinal Chemistry Letters,2009,19(7): 2048-2052.
[24]SCAGLIA N,CHISHOLM J W,IGAL R A.Inhibition of stearoyl CoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK[J].PLoS One,2009,4(8): e6812.
[25]MINVILLEWALZ M,PIERRE A S,PICHON L,et al.Inhibition of stearoyl-CoA desaturase 1 expression induces CHOP-dependent cell death in human cancer cells[J].PLoS One,2010,5(12): e14363.
[26]HESS D,CHISHOLM J W,IGAL R A.Inhibition of stearoyl CoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells[J].PLoS One,2010,5(6): e11394.
[27]NASHED M,CHISHOLM J W,IGAL R A.Stearoyl-CoA desaturase activity modulates the activation of epidermal growth factor receptor in human lung cancer cells[J].Experimental Biology & Medicine,2012,237(9): 1007-1017.
[28]LéGER S,BLACK W C,DESCHENES D,et al.Synthesis and biological activity of a potent and orally bioavailable SCD inhibitor (MF-438)[J].Bioorganic & Medicinal Chemistry Letters,2010,20(2): 499-502.
[29]NOTO A,RAFFA S,VITIS C D,et al.Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells[J].Cell Death &Disease,2013,4(12): e947.
[30]PISANU M E,NOTO A,DE V C,et al.Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells[J].Cancer Letters,2017,406: 93-104.
[31]IMAMURA K,TOMITA N,KAWAKITA Y,et al.Discovery of novel and potent stearoyl coenzyme A desaturase 1 (SCD1)inhibitors as anticancer agents[J].Bioorganic & Medicinal Chemistry,2017,25(14): 3768-3779.
[32]NISHIZAWA S,SUMI H,SATOH Y,et al.In vitro and in vivo antitumor activities of T-3764518,a novel and orally available small molecule stearoyl-CoA desaturase 1 inhibitor[J].European Journal of Pharmacology,2017,807: 21-31.
[33]ONO A,SANO O,KAZETANI K,et al.Feedback activation of AMPK-mediated autophagy acceleration is a key resistance mechanism against SCD1 inhibitor-induced cell growth inhibition[J].PLoS One,2017,12(7): e0181243.
[34]BEN-DAVID U,GAN Q F,GOLAN-LEV T,et al.Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen[J].Cell Stem Cell,2013,12(2): 167-179.
[35]ZHANG L,PAN Y,QIN G,et al.Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic nanog-positive cells:Improving the safety of iPS cell transplantation to myocardium[J].Cell Cycle,2014,13(5): 762-771.
[36]FU J M,SUN S,KODOMURU V,et al.Nicotinamide derivatives and their use as therapeutic agents[P]: EP,EP2266566.2010,12.29.
[37]FRITZ V,BENFODDA Z,RODIER G,et al.Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice[J].Molecular Cancer Therapeutics,2010,9(6): 1740-1754.
[38]ZHAO H,SERBY M D,SMITH H T,et al.Discovery of 1-(4-phenoxypiperidin-1-yl) -2-arylaminoethanone stearoyl-CoA desaturase 1 inhibitors[J].Bioorganic & Medicinal Chemistry Letters,2007,17(12): 3388-3391.
[39]MASON P,LIANG B,LI L,et al.SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids[J].PLoS One,2012,7(3): e33823.
[40]MAUVOISIN D,CHARFI C,LOUNIS A M,et al.Decreasing stearoyl-CoA desaturase-1 expression inhibits β-catenin signaling in breast cancer cells[J].Cancer Science,2013,104(1): 36-42.
[41]TAKADA R,SATOMI Y,KURATA T,et al.Monounsaturated fatty acid modif i cation of Wnt protein: its role in Wnt secretion[J].Developmental Cell,2006,11(6): 791-801.
[42]RIOS-ESTEVES J,RESH M.Stearoyl CoA desaturase is required to produce active,lipid-modified Wnt proteins[J].Cell Reports,2013,4(6): 1072-1081.
[43]KIM H,RODRIGUEZNAVAS C,KOLLIPARA R K,et al.Unsaturated fatty acids stimulate tumor growth through stabilization of β-catenin[J].Cell Reports,2015,13(3): 495-503.