張媛文 凌健
摘要Madden-Julian Oscillation (MJO) 是熱帶大氣在季節(jié)內(nèi)時間尺度上的主要變化特征,MJO對流的活動對全球很多地區(qū)的天氣和氣候系統(tǒng)都有重要的影響,因此MJO是大氣科學(xué)重要的前沿課題之一.MJO對流的生成過程是MJO研究中公認(rèn)的最薄弱的環(huán)節(jié),文中從MJO的研究背景出發(fā),對MJO對流生成的有關(guān)研究工作及其進(jìn)展進(jìn)行了回顧與總結(jié),主要包括MJO對流生成的前期信號、MJO對流的數(shù)值模擬、MJO對流生成的動力學(xué)機(jī)制.最后對MJO對流生成研究中還有待解決的問題進(jìn)行了分析與討論.
關(guān)鍵詞MJO;對流;MJO生成;動力學(xué)機(jī)制;數(shù)值模擬
中圖分類號P434;P435
文獻(xiàn)標(biāo)志碼A
0 引言
Madden-Julian Oscillation (MJO) 是熱帶大氣季節(jié)內(nèi)振蕩的主要組成部分[1-2],是熱帶地區(qū)乃至全球重要的大氣環(huán)流系統(tǒng)之一.MJO的活動對全球很多地區(qū)的天氣和氣候系統(tǒng)都有重要的影響,因此備受各國學(xué)者的關(guān)注,成為大氣科學(xué)重要的前沿課題之一.
MJO最先由Madden 和Julian在1971年發(fā)現(xiàn)[1],他們在分析南太平洋坎頓島(Kanton Island,3°S,172°W)的無線電探空數(shù)據(jù)時發(fā)現(xiàn)其緯向風(fēng)和地面氣壓存在著一個周期為40~50 d的低頻振蕩.隨后,他們指出這種振蕩在全球熱帶大氣中普遍存在,主要以緯向一波結(jié)構(gòu)向東傳播(圖1)[2].Gruber[3]和Zangvil[4]的研究表明赤道附近的云也存在周期為40~50 d的振蕩,證實(shí)了Madden和Julian關(guān)于赤道附近云系存在東傳的推測.Yasunari[5]發(fā)現(xiàn)印度季風(fēng)區(qū)的云量也存在40 d左右的周期變化,并認(rèn)為印度季風(fēng)區(qū)向北傳播的云系始于赤道印度洋上向東傳播的云系.隨著1979年全球大氣研究計劃(Global Atmospheric Research Program,GARP)第一期全球試驗(yàn)(First GARP Global Experiment,F(xiàn)GGE)和GARP季風(fēng)試驗(yàn)(Monsoon Experiment,MONEX)的進(jìn)行,與MJO相關(guān)的研究得到了蓬勃開展.人們對MJO基本活動規(guī)律有了清晰的認(rèn)知[6-10],如MJO具有緯向一波為主的行星尺度空間結(jié)構(gòu),30~60 d的寬頻振蕩周期,以平均約5 m/s的速度從熱帶印度洋向熱帶太平洋中部地區(qū)緩慢東傳;MJO的垂直結(jié)構(gòu)主要表現(xiàn)為對流層上下反向的斜壓結(jié)構(gòu)、緯向風(fēng)和溫度場隨高度明顯西傾;水平結(jié)構(gòu)主要表現(xiàn)為東西方向上的偶極子特征;此外,MJO的活動還表現(xiàn)出明顯地域差異與季節(jié)性差異,MJO在北半球冬季和夏季的主要特征存在顯著不同.
在MJO對流和環(huán)流系統(tǒng)東傳的過程中,MJO對流異常通過熱力強(qiáng)迫和遙相關(guān)的方式對熱帶乃至全球天氣和氣候產(chǎn)生不同程度的影響[11].研究表明,MJO的活動對全球的季風(fēng)系統(tǒng)都具有一定的調(diào)制作用[12],它會影響亞洲季風(fēng)[5,13-16]、澳洲季風(fēng)[17-18]以及美洲季風(fēng)[19]的爆發(fā)和中斷;MJO能夠改變熱帶氣旋生成的大尺度條件,進(jìn)而調(diào)制熱帶氣旋的活動[20-23];MJO和 ENSO 之間存在相互作用[24-28],MJO東傳時的強(qiáng)西風(fēng)異常能夠影響西太平洋和中太平洋地區(qū)的海溫,從而影響El Nio的發(fā)展速度以及強(qiáng)度;MJO對印度洋偶極子事件的發(fā)生、發(fā)展和消亡過程起著不同程度的作用[29-30].此外,MJO對極端降水[31-32]、洪澇[33-34]以及熱帶大氣氣溶膠[35]等都具有一定的調(diào)制作用.
中國也處于MJO對流活動的傳播經(jīng)度范圍內(nèi),MJO在中國東部地區(qū)的天氣、氣候異常中扮演著重要角色.MJO的活動會影響我國東南地區(qū)冬季和夏季的降水強(qiáng)度[36-38]和云南地區(qū)的降水異常[39-40],并且對夏季江淮流域的旱澇[41-44]有重要影響.此外,MJO的活動與我國一些極端天氣現(xiàn)象關(guān)系密切.如2008年1月到2月初,我國南方大范圍持續(xù)冰凍雨雪天氣和MJO的活動密切相關(guān)[45-47].
經(jīng)過40多年的研究,目前人們對MJO有了一定程度的認(rèn)知,例如MJO的大尺度結(jié)構(gòu)[48-51]和多尺度特征[52-53],MJO對全球天氣、氣候系統(tǒng)的影響[11,54],MJO的傳播機(jī)制[55-57]等.但是仍然存在很多問題亟待解決[58-61],目前大多數(shù)模式都無法準(zhǔn)確模擬MJO的強(qiáng)度、周期及傳播特征,MJO活動的預(yù)測能力偏低,現(xiàn)有理論并不能完全解釋MJO的生成、維持和傳播機(jī)制.其中,MJO對流生成過程是MJO研究中公認(rèn)最薄弱的環(huán)節(jié),這反映出在MJO動力學(xué)理論機(jī)制,尤其是MJO對流信號在印度洋地區(qū)生成機(jī)制方面的研究中還存在明顯不足.
本文將首先回顧MJO對流生成的前期信號,并梳理MJO對流數(shù)值模擬的現(xiàn)狀,著重介紹現(xiàn)有MJO對流生成的動力學(xué)機(jī)制,最后對MJO對流生成研究中還有待解決的問題進(jìn)行分析與討論,以期加深對印度洋地區(qū)MJO對流生成的理解.
1 MJO對流生成的前期信號
MJO對流是MJO研究的核心部分,它一般在西印度洋生成并向東傳播,途經(jīng)海洋性大陸地區(qū)進(jìn)入西太平洋,到達(dá)日界線后逐漸減弱并最終消亡.盡管在熱帶印度洋到太平洋暖池地區(qū)均可能有MJO對流生成,但印度洋是大多數(shù)MJO對流的生成地.目前關(guān)于MJO對流在初期形成的原因尚無定論,但已有不少研究指出MJO對流生成前期印度洋地區(qū)存在一些前兆信號.
Ling等[62]對比了初始型MJO和非 MJO對流生成之前大尺度環(huán)流場,指出MJO生成前熱帶印度洋地區(qū)存在3種大尺度信號:對流層低層首先出現(xiàn)東風(fēng)異常并從低層向?qū)α鲗又袑友由欤c此同時該信號在印度洋地區(qū)自西向東移動;海平面氣壓場呈現(xiàn)緯向一波的結(jié)構(gòu),并且負(fù)的海平面氣壓距平在赤道地區(qū)從非洲一直延伸至海洋性大陸;對流層中層存在著負(fù)溫度距平,并且以接近 MJO傳播的速度從印度洋開始緩慢東傳.以上信號在MJO對流信號生成之前的20 d就已經(jīng)存在,這些大尺度的信號可以為預(yù)測MJO對流的生成提供重要的客觀指標(biāo).
Zhao等[63]通過診斷NOAA衛(wèi)星觀測資料和ERA-40再分析資料,揭示了冬季MJO生成的前兆信號和相關(guān)動力過程.其研究指出熱帶西印度洋是MJO對流活動生成的關(guān)鍵區(qū)域.在MJO對流生成之前,熱帶西印度洋地區(qū)對流層低層的濕度顯著增加并且溫度顯著增高.水汽和溫度的增長有利于該地區(qū)對流不穩(wěn)定的增長并最終導(dǎo)致MJO對流產(chǎn)生.MJO對流觸發(fā)期間,MJO風(fēng)場與低頻濕度場(溫度場)相互作用導(dǎo)致的水平濕平流(水平暖平流)是比濕(溫度)增加的主要原因.而這種低頻風(fēng)場是對熱帶東印度洋MJO抑制位相的羅斯貝波響應(yīng),即下游強(qiáng)迫.但是并非每次MJO對流發(fā)生前都會有一個MJO事件存在,因此這種前兆信號的普適性有待檢驗(yàn).
Mei等[64]檢驗(yàn)了赤道西印度洋上持續(xù)東傳的強(qiáng)MJO事件的前期信號,并將其分為3類:邊界層水汽超前型(類型Ⅰ)、對流層低層上升運(yùn)動超前型(類型Ⅱ)和無明顯前兆信號型(類型Ⅲ).在類型Ⅰ中MJO對流發(fā)生前約7天時印度洋地區(qū)邊界層水汽已經(jīng)開始增加,這種增濕過程主要由低頻風(fēng)場對平均濕度的平流引起,而這種低頻風(fēng)場是位于赤道東印度洋上受前期MJO抑制位相引起的羅斯貝波的一部分.在類型Ⅱ中MJO對流發(fā)生前約4天時印度洋地區(qū)對流層低層上升運(yùn)動出現(xiàn),水平暖平流是上升運(yùn)動產(chǎn)生的主要原因.類型Ⅲ中對流層低層并沒有顯著的前期水汽和上升運(yùn)動異常信號,這種類型的MJO對流生成可能受到中緯度羅斯貝波能量的影響.
以上研究從不同的角度探究MJO對流生成的前期信號,對MJO的預(yù)測具有一定的參考價值,但是更具有普適性的MJO對流生成的前兆信號依然有待于進(jìn)一步探究.
2 MJO對流的數(shù)值模擬
從19世紀(jì)80年代開始,越來越多的學(xué)者將數(shù)值模式運(yùn)用到MJO的研究中,數(shù)值試驗(yàn)有助于探究MJO生成機(jī)制,然而大多數(shù)模式對MJO的模擬效果并不理想(圖2).
目前大多數(shù)的大氣模式都低估了MJO的強(qiáng)度[65],未能再現(xiàn)MJO的季節(jié)性差異[66-67],模式中MJO的東傳速度過快[58],高頻信號比觀測更強(qiáng)[68],緯向西傳比東傳偏強(qiáng)[69].Hung等[70]評估了20個CMIP5模式對MJO和赤道波動的模擬能力,并且和CMIP3模式進(jìn)行了對比,結(jié)果顯示大部分CMIP5模式模擬MJO的振幅、周期和東傳速度都有了顯著提高,但是模式模擬MJO的能力還是偏弱.導(dǎo)致模式模擬MJO存在偏差的可能原因主要包括模式分辨率[71-72]、對流參數(shù)化方案[73]、海氣相互作用[74]以及模式的平均態(tài)[75]等.
不同模式對MJO的模擬能力與模式分辨率的關(guān)系存在差異.Hayashi等[76]對比了GFDL(Geophysical Fluid Dynamics Laboratory)模式2個不同分辨率版本中MJO的模擬結(jié)果,發(fā)現(xiàn)提高模式水平分辨率有利于MJO的模擬.Slingo等[77]對比了法國國家氣象研究中心CNRM(Centre National de Recherches Meteorlogiques)3個不同分辨率版本對MJO的模擬能力,發(fā)現(xiàn)隨著水平分辨率的提高M(jìn)JO的強(qiáng)度反而減弱.Gualdi等[78]對ECHAM3模式的3個不同分辨率版本的分析結(jié)果也表明水平分辨率提高實(shí)際上降低了MJO的模擬能力.Jia等[68]對比了中國科學(xué)院大氣物理研究所/大氣科學(xué)和地球流體力學(xué)數(shù)值模擬國家重點(diǎn)試驗(yàn)室發(fā)展的大氣環(huán)流模式SAMIL(Spectral Atmospheric Model of IAP/LASG)3個不同分辨率版本,結(jié)果表明分辨率的變化并沒有使MJO的模擬能力發(fā)生本質(zhì)上的變化,但是對MJO的某些特征起到了明顯的調(diào)制作用.
對流參數(shù)化方案被普遍認(rèn)為是影響MJO模擬的重要因素[79].Slingo等[77]對比了使用不同對流參數(shù)化方案的大氣環(huán)流模式對MJO模擬的結(jié)果,認(rèn)為相比于基于水汽輻合的對流方案,浮力閉合對流方案可以更好地模擬出MJO的特征.王坤等[80]利用中國科學(xué)院大氣物理研究所的大氣環(huán)流模式(IAP AGCM 4),分析了Emanuel方案(EMA)、Zhang-McFarlane方案(ZM)和修改的Zhang-McFarlane方案(MZM)3種不同的對流方案,結(jié)果表明MZM方案較好地模擬出了MJO的基本特征,包括季節(jié)內(nèi)的時間尺度、東傳特征以及傳播的連續(xù)性.
圖3給出了SAMIL R42L9分別使用MCA和Tiedtke積云對流參數(shù)化方案所模擬的MJO傳播特征.可以看到使用MCA方案可以模擬出MJO的東傳信號,而Tiedtke方案卻不能.對比它們的熱帶大氣垂直加熱廓線發(fā)現(xiàn),使用MAC方案的大氣垂直加熱廓線的峰值位于對流層中下層.很多研究都表明,在對流參數(shù)化方案能否刻畫出對流層中低層的加熱峰值最為關(guān)鍵[81].只有當(dāng)模式中熱帶大氣垂直加熱廓線的峰值位于對流層中低層時,才可以在對流層低層產(chǎn)生很強(qiáng)的上升運(yùn)動以及水汽輻合,有利于深對流的產(chǎn)生和維持,從而使模式模擬出MJO的基本特征.
海氣相互作用對MJO的模擬性能也有一定的影響.一些研究認(rèn)為引入海溫的季節(jié)內(nèi)擾動反饋可以提高模式模擬熱帶大氣MJO的能力[9,66,82-84],但是還有一些研究認(rèn)為引入海氣相互作用之后模式對MJO的模擬能力反而變差[85-87].Zhang[9]認(rèn)為,引入海氣相互作用能提升模式對MJO模擬能力的前提是該模式在沒有引入海氣相互作用的時候也可以模擬出MJO的信號.但是Liess等[87]的研究卻表明即使在大氣模式可以模擬出MJO信號的前提下,也不能保證在引入海氣相互作用后可以改善模式對MJO模擬的能力.
模式平均態(tài)對MJO的模擬有重要影響.對流層低層平均濕度場可以決定MJO的傳播相速度和不穩(wěn)定增長率[9].存在強(qiáng)季節(jié)循環(huán)并且平均降水場更接近觀測的模式可以模擬出較好的MJO信號[77].此外,平均垂直風(fēng)切變和低層緯向風(fēng)場也對MJO的模擬有不可忽視的作用[84].Ling等[75]采用MJO Tracking方法評估了27個全球模式,指出每個模式都可以模擬出MJO大尺度對流緩慢東傳的信號,只不過不同模式產(chǎn)生MJO對流的頻率不同,該研究還進(jìn)一步指出模式背景態(tài)對MJO對流的模擬至關(guān)重要.
3 MJO對流生成的動力學(xué)機(jī)制
隨著MJO研究的逐步深入,MJO對流的生成機(jī)制受到廣泛重視.李崇銀[88]最先將積云對流加熱反饋機(jī)制(CISK,Conditional Instability of Second Kind)引入到MJO的動力學(xué)研究中,認(rèn)為積云對流加熱反饋是激發(fā)MJO對流的重要動力學(xué)機(jī)制.隨后Lau等[55]在此基礎(chǔ)上發(fā)展出了“可移動性”波動CISK理論,較好地解釋了MJO緩慢東傳的原因.Wang[56]進(jìn)一步提出了摩擦波動CISK理論,認(rèn)為低層水汽輻合引發(fā)的深積云對流釋放出的凝結(jié)潛熱強(qiáng)迫出的不穩(wěn)定東傳模具有和MJO類似的東傳速度.后來Li[89]進(jìn)一步研究發(fā)現(xiàn)在積云對流加熱反饋?zhàn)饔孟?,熱帶大氣能夠產(chǎn)生一種既可以向西也可以向東傳播的并具有能量頻散特性的CISK羅斯貝波,并指出這種CISK羅斯貝波可能是赤道以外大氣30~60 d振蕩的重要激發(fā)和驅(qū)動機(jī)制.自此,與MJO相關(guān)的波動-CISK機(jī)制得以完善.雖然以上理論嘗試給出MJO生成過程的完整物理圖像和機(jī)制解釋,但是MJO對流在初期是如何形成的,尚存爭議.目前關(guān)于MJO對流的生成機(jī)制主要可以分為熱帶強(qiáng)迫(上游強(qiáng)迫、局地強(qiáng)迫和下游強(qiáng)迫)與熱帶外強(qiáng)迫[90].
上游強(qiáng)迫是指已存在的MJO對流沿赤道連續(xù)東傳并激發(fā)開爾文波,該開爾文波產(chǎn)生的異常風(fēng)場東傳從西側(cè)進(jìn)入熱帶西印度洋觸發(fā)新的MJO對流[55,91-94].Hsu等[95]認(rèn)為已存在的MJO激發(fā)的開爾文波在越過非洲時由于地形抬升作用改變了印度洋地區(qū)的溫度場和濕度場,從而導(dǎo)致新的MJO對流的生成.
一些研究認(rèn)為印度洋局地邊界層比濕增加與水汽輻合[49,96-97]、云-輻射-水汽反饋[98-103]和局地海氣通量與下墊面溫度變化[49,96,104-106]等局地變化過程能夠激發(fā)MJO對流的生成.Kemball-Cook等[49]的研究表明,東風(fēng)異常通過改變海表潛熱通量使邊界層大氣增濕,濕靜力能先在邊界層增加引起淺對流的產(chǎn)生,又通過淺對流輻合進(jìn)一步加濕大氣,最終激發(fā)MJO深對流生成.Bladé等[98]指出,在對流活躍位相與抑制位相之間變化的靜止熱源通過輻射-對流-表面水汽通量之間的非線性作用進(jìn)行自我調(diào)節(jié),導(dǎo)致了熱帶印度洋MJO對流的生成.Wang等[106]的研究表明,印度洋局地海溫的變化在某些MJO對流個例的生成中起著重要作用.
赤道太平洋地區(qū)已存在MJO抑制位相的羅斯貝波會通過異常水汽平流在熱帶西印度洋地區(qū)觸發(fā)新的MJO對流生成[46,63].Seo等[107]發(fā)現(xiàn)已存在的MJO會在對流層中低層產(chǎn)生正位渦,在東風(fēng)作用下通過渦度平流引起上游低層輻合,產(chǎn)生上升區(qū)進(jìn)而激發(fā)一次新MJO對流的生成.Zhao等[63]指出已存在的MJO抑制位相的羅斯貝波響應(yīng)在熱帶印度洋產(chǎn)生的異常風(fēng)場會激發(fā)新的MJO對流的生成.
另一些研究則強(qiáng)調(diào)來自熱帶外的擾動對MJO對流產(chǎn)生的影響,包括中緯羅斯貝波和斜壓渦動的能量頻散和動量傳輸[63,108-112],有的研究還表明冷涌能夠激發(fā)MJO對流[108,113-114],但是在印度洋地區(qū)這樣的個例偏少.
MJO具有準(zhǔn)周期性,其生成的時間并不規(guī)律.Matthews[93]利用OLR指數(shù)將其分為初始型MJO和連續(xù)型MJO.上述熱帶強(qiáng)迫機(jī)制中的上、下游強(qiáng)迫與連續(xù)型MJO對流的激發(fā)有密切的關(guān)系,局地強(qiáng)迫與初始型MJO對流的生成有一定聯(lián)系,大多數(shù)研究認(rèn)為初始型MJO對流的生成機(jī)制主要受到來自赤道外的影響.然而上述連續(xù)型MJO的生成機(jī)制難以解釋為什么連續(xù)型MJO沒有持續(xù)激發(fā)新的MJO對流,而初始型MJO的生成頻率遠(yuǎn)遠(yuǎn)低于理論得出的生成次數(shù),顯然僅僅依靠熱帶外的影響不足以觸發(fā)初始型 MJO對流的生成.
4 總結(jié)與討論
MJO是熱帶大氣在季節(jié)內(nèi)時間尺度上的主要變化特征,MJO對流的活動對全球天氣和氣候系統(tǒng)都有重要的影響.作為全球最強(qiáng)低頻信號,國內(nèi)外普遍認(rèn)為MJO可以作為聯(lián)系天氣和氣候的橋梁.MJO對流的生成過程是MJO研究中公認(rèn)的最薄弱環(huán)節(jié),由于篇幅和作者能力所限,本文只是對MJO對流生成的有關(guān)研究工作及其進(jìn)展進(jìn)行了簡要的回顧與總結(jié),可歸納為以下幾點(diǎn):
1)MJO對流生成的前20 d,熱帶印度洋地區(qū)存在如下大尺度信號:對流層低層存在東風(fēng)異常并自西向東移動;海平面氣壓場呈現(xiàn)緯向一波的結(jié)構(gòu);對流層中層出現(xiàn)負(fù)溫度距平并緩慢東傳.此外,熱帶西印度洋地區(qū)生成的持續(xù)東傳強(qiáng)MJO對流事件的前期信號可分為邊界層水汽超前型、對流層低層上升運(yùn)動超前型和無明顯前兆信號型.
2)目前模式對MJO的模擬效果并不理想,大多數(shù)模式都低估了MJO的強(qiáng)度,未能再現(xiàn)MJO的季節(jié)性差異,模式中MJO的東傳速度過快,模式中高頻信號比觀測更強(qiáng).導(dǎo)致MJO模擬偏差的可能原因主要有模式分辨率、對流參數(shù)化方案、海氣相互作用以及模式模擬的平均場等.其中,對流參數(shù)化方案在MJO對流的模擬中起著至關(guān)重要的作用.在對流參數(shù)化方案中,當(dāng)熱帶大氣垂直加熱廓線的峰值位于對流層中低層時能夠更好地刻畫MJO的基本特征.盡管調(diào)整某些參數(shù)能夠使MJO的模擬效果提高,但是這可能會導(dǎo)致模式對其他地方的模擬能力變?nèi)?
3)MJO對流信號在印度洋地區(qū)的生成機(jī)制尚不明確.目前關(guān)于MJO對流的生成機(jī)制主要可以分為熱帶強(qiáng)迫(上游強(qiáng)迫、局地強(qiáng)迫和下游強(qiáng)迫)與熱帶外強(qiáng)迫.但這些機(jī)制并不能完全解釋MJO對流生成的原因.加深對MJO對流在印度洋地區(qū)生成機(jī)制的理解對提高模式對MJO的模擬能力和預(yù)測能力有重要的參考價值.
對MJO對流生成過程的深入理解能夠?yàn)镸JO生命史中其他階段的研究工作提供參考,對提高模式的模擬能力和次季節(jié)預(yù)測的能力有重要參考價值.目前國際上大多數(shù)模式對MJO的模擬能力偏低,相關(guān)理論有待完善,這都反映了我們對MJO對流生成機(jī)制的認(rèn)識還有待加深.因此,關(guān)于MJO對流生成機(jī)制、模擬和預(yù)測的全面和深入的研究工作有待進(jìn)一步開展.
參考文獻(xiàn)
References
[1] Madden R A,Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J].J Atmos Sci,1971,28(5):702-708
[2] Madden R A,Julian P R.Description of global scale circulation cells in the tropics with 40-50 day period[J].J Atmos Sci,1972,29(6):1109-1123
[3] Gruber A.The wavenumber-frequency spectra of satellite-measured brightness in the tropics[J].J Atmos Sci,1974,31(6):1675-1680
[4] Zangvil A.Temporal and spatial behavior of large-scale disturbances in tropical cloudiness deduced from satellite brightness data[J].Mon Wea Rev,1975,103(10):904-920
[5] Yasunari T.Cloudiness fluctuations associated with the northern hemisphere summer monsoon[J].J Meteor Soc Japan,1979,57(3):227-242
[6] Krishnamurti T N,Subrahmanyam D.The 30-50 day mode at 850 mb during MONEX[J].J Atmos Sci,1982,36(9):2088-2095
[7] Murakami T,Nakazawa T,He J.On the 40-50 day oscillation during 1979 northern hemisphere summer.Part Ⅰ:phase propagation[J].J Meteorol Soc Japan,1984,62:440-468
[8] 李崇銀.大氣低頻振蕩[M].北京:氣象出版社,1993:310
LI Chongyin.Atmospheric low frequency oscillation[M].Beijing:China Meteorological Press,1993:310
[9] Zhang C.Madden-Julian oscillation[J].Rev Geophys,2005,43(2):2003
[10] Madden R A,Julian P R.Historical perspective[M]∥Lau W K M,Waliser D D E.Intraseasonal variability in the atmosphere-ocean climate system.2nd ed.Berlin:Springer,2012:36-54
[11] Zhang C D.Madden-Julian oscillation:bridging weather and climate[J].Bull Amer Met Soc,2013,94(12):1849-1870
[12] Lau W K M,Waliser D D E.Intraseasonal variability of the atmosphere-ocean climate system[M].2nd ed.Berlin:Springer,2012:613
[13] Wang B,Xie X S.A model for the boreal summer intraseasonal oscillation[J].J Atmos Sci,1997,54(1):72-86
[14] 穆明權(quán),李崇銀.1998年南海夏季風(fēng)的爆發(fā)與大氣季節(jié)內(nèi)振蕩的活動[J].氣候環(huán)境研究,2000,5(4):375-387
MU Mingquan,LI Chongyin.On the outbreak of South China Sea summer monsoon in 1998 and activity of atmospheric intraseasonal oscillation[J].Climatic and Environmental Research,2000,5(4):375-387
[15] Zhou L,Murtugudde R.Impact of northward-propagating intraseasonal variability on the onset of Indian summer monsoon[J].J Climate,2014,27(1):126-139
[16] 馬婷婷,吳志偉,江志紅,等.4—6 月MJO北傳與東亞季風(fēng)爆發(fā)的關(guān)系[J].熱帶氣象學(xué)報,2014,30(5):921-931
MA Tingting,WU Zhiwei,JIANG Zhihong,et al.Relationship between the northward propagation of the Madden-Julian oscillation in the April to June and the outbreaks of east Asian monsoon[J].J Trop Meteor,2014,30(5):921-931
[17] Wheeler M C,Hendon H H,Cleland S,et al.Impacts of the Madden-Julian oscillation on Australian rainfall and circulation[J].J Climate,2009,22(6):1482-1497
[18] Wheeler M C,McBride J L.Australian monsoon[M]∥Lau W K M,Waliser D D E.Intraseasonal variability in the atmosphere-ocean climate system.2nd ed.Berlin:Springer,2012:147-198
[19] Mo K C,Jones C,Paegle J N.Pan-America[M]∥Lau W K M,Waliser D D E.Intraseasonal variability in the atmosphere-ocean climate system.2nd ed.Berlin:Springer,2012:111-146
[20] Liebmann B,Hendon H H,Glick J D.The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation[J].J Meteor Soc Japan,1994,72(3):401-412
[21] Maloney E D,Hartmann D L.Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation[J].Science,2000,287(5460):2002-2004
[22] Maloney E D,Hartmann D L.Modulation of eastern north Pacific hurricanes by the Madden-Julian oscillation[J].J Climate,2000,13(9):1451-1460
[23] 潘靜,李崇銀,宋潔.熱帶大氣季節(jié)內(nèi)振蕩對西北太平洋臺風(fēng)的調(diào)制作用[J].大氣科學(xué),2010,34(6):1059-1070
PAN Jing,LI Chongyin,SONG Jie.The modulation of Madden Julian oscillation on typhoons in the northwestern Pacific Ocean[J].Chinese J Atmos Sci,2010,34(6):1059-1070
[24] 李崇銀,肖子牛.赤道東太平洋增暖對全球大氣30~60 天振蕩的激發(fā)[J].科學(xué)通報,1991,36(15):1157-1160
LI Chongyin,XIAO Ziniu.The trigger of 30-60- day oscillation of the global atmosphere by the warming of the eastern equatorial Pacific[J].Chinese Sci Bull,1991,36(15):1157-1160
[25] 李崇銀,周亞萍.熱帶大氣季節(jié)內(nèi)振蕩和ENSO 的相互關(guān)系[J].地球物理學(xué)報,1994,37(1):17-26
LI Chongyin,ZHOU Yaping.Relationship between intraseasonal oscillation in the tropic atmosphere and ENSO[J].Acta Geophys Sinica,1994,37(1):17-26
[26] 龍振夏,李崇銀.熱帶低層大氣30~60天低頻動能的年際變化與ENSO循環(huán)[J].大氣科學(xué),2001,25(6):798-808
LONG Zhenxia,LI Chongyin.Interannual variability of 30-60 day low-frequency kinetic energy in the lower tropical atmosphere and ENSO cycle[J].Chinese J Atmos Sci,2001,25(6):798-808
[27] Zhang C D,Gottschalck J.SST anomalies of ENSO and the Madden-Julian oscillation in the equatorial Pacific[J].J Climate,2002,15(17):2429-2445
[28] Hendon H H,Wheeler M C,Zhang C D.Seasonal dependence of the MJO-ENSO relationship[J].J Climate,2007,20(3):531-543
[29] Rao S A,Yamagata T.Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances[J].Geophys Res Lett,2004,31(19):353-364
[30] Han W Q,Shinoda T,F(xiàn)u L L,et al.Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole during the 1990s[J].J Phys Oceanogr,2006,36(4):670-690
[31] Higgins R W,Leetmaa A,Xue Y,et al.Dominant factors influencing the seasonal predictability of U.S.precipitation and surface air temperature[J].J Climate,2000,13(22):3994-4017
[32] Jones C,Waliser D E,Lau K M,et al.Global occurrences of extreme precipitation events and the Madden-Julian oscillation:observations and predictability[J].J Climate,2004,17(23):4575-4589
[33] Barlow M,Wheeler M C,Lyon B,et al.Modulation of daily precipitation over southwest Asia by the Madden-Julian oscillation[J].Mon Wea Rev,2005,133(12):3579-3594
[34] Aldrian E.Dominant factors of Jakartas three largest floods[J].J Hidrosfir Indones,2008,3(3):105-112
[35] Tian B,Waliser W E.Chemical and biological impacts[M]∥Lau W K M,Waliser D D E.Intraseasonal variability in the atmosphere-ocean climate system.2nd ed.Berlin:Springer,2012:569-586
[36] 章麗娜,林鵬飛,熊喆,等.熱帶大氣季節(jié)內(nèi)振蕩對華南前汛期降水的影響[J].大氣科學(xué),2011,35(3):560-570
ZHANG Lina,LIN Pengfei,XIONG Zhe,et al.Impact of the Madden-Julian oscillation on pre-flood season precipitation in South China[J].Chinese J Atmos Sci,2011,35(3):560-570
[37] 林愛蘭,李春暉,谷德軍,等.熱帶季節(jié)內(nèi)振蕩對廣東 6 月降水的影響[J].熱帶氣象學(xué)報,2013,29(3):353-363
LIN Ailan,LI Chunhui,GU Dejun,et al.Impact of tropical intraseasonal oscillation on the precipitation of Guangdong in June[J].J Trop Meteor,2013,29(3):353-363
[38] 陳雄,李崇銀,譚言科.冬季熱帶西太平洋MJO活動強(qiáng)弱年的環(huán)境場特征[J].熱帶氣象學(xué)報,2015,31 (1):1-10
CHEN Xiong,LI Chongyin,TAN Yanke.The environmental characteristics of strong/weak MJO activity over the tropical western Pacific in winter[J].J Trop Meteor,2015,31(1):1-10
[39] 琚建華,呂俊梅,謝國清.MJO和AO持續(xù)異常對云南干旱的影響研究[J].干旱氣象,2011,29(4):401-406
JU Jianhua,L Junmei,XIE Guoqing.Studies on the influences of persistent anomalies of MJO and AO on drought appeared in Yunnan[J].J Arid Meteor,2011,29(4):401-406
[40] 呂俊梅,琚建華,任菊章,等.熱帶大氣MJO活動異常對2009—2010年云南極端干旱的影響[J].中國科學(xué)(地球科學(xué)),2012,42(4):599-613
L Junmei,JU Jianhua,REN Juzhang,et al.The influence of the Madden-Julian oscillation activity anomalies on Yunnans extreme drought of 2009-2010[J].Scientia Sinica Terrae,2012,42(4):599-613
[41] Yang H,Li C Y.The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Jianghuai River Basin[J].Adv Atoms Sci,2003,20(4):540-553
[42] 賀懿華,王曉玲,金琪.南海熱帶對流季節(jié)內(nèi)振蕩對江淮流域旱澇影響的初步分析[J].熱帶氣象學(xué)報,2006,22(3):259-264
HE Yihua,WANG Xiaoling,JIN Qi.The preliminary analysis for the impact of intraseasonal oscillation of the tropical convection over South China Sea on the droughts and floods of Changjiang and Huaihe River basin[J].J Trop Meteor,2006,22(3):259-264
[43] 岑思弦,鞏遠(yuǎn)發(fā),王霄.2007年夏季淮河流域洪澇與亞洲地區(qū)大氣低頻振蕩的關(guān)系[J].大氣科學(xué),2009,33(6):1286-1296
CEN Sixian,GONG Yuanfa,WANG Xiao.The relationship between the atmospheric low-frequency oscillation over Asia and the flood in the Huaihe River valley in the summer of 2007[J].Chinese J Atmos Sci,2009,33(6):1286-1296
[44] Yang S Y,Wu B Y,Zhang R H,et al.Relationship between an abrupt drought-flood transition over mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over mid-high latitudes of East Asia[J].Acta Meteor Sinica,2013,27(2):129-143
[45] Hong C C,Li T.The extreme cold anomaly over southeast Asia in February 2008:roles of ISO and ENSO[J].J Climate,2009,22(13):3786-3801
[46] 吳俊杰,袁卓建,錢鈺坤.熱帶季節(jié)內(nèi)振蕩對2008年初南方持續(xù)性冰凍雨雪天氣的影響[J].熱帶氣象學(xué)報,2009,25(增刊1):103-112
WU Junjie,YUAN Zhuojian,QIAN Yukun.The role of intraseasonal oscillation in the Southern-China snowstorms during January 2008[J].J Trop Meteor,2009,25(sup1):103-112
[47] 朱紅蕊,劉赫男,張洪玲.熱帶大氣季節(jié)內(nèi)振蕩與2008年初中國南方雪災(zāi)的關(guān)系[J].氣象與環(huán)境學(xué)報,2013,29(4):77-83
ZHU Hongrui,LIU Henan,ZHANG Hongling,et al.The relationship between MJO and snow disaster in the south of China in January of 2008[J].J Meteor Environ,2013,29(4):77-83
[48] Wang B,Rui H L.Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial beta plane[J].J Atmos Sci,1990,47(4):397-413
[49] Kemball-Cook S R,Weare B C.The onset of convection in the Madden Julian oscillation[J].J Climate,2001,14(5):780-793
[50] Myers D S,Waliser D E.Three-dimensional water vapor and cloud variations associated with the Madden-Julian oscillation during northern hemisphere winter[J].J Climate,2003,16(6):929-950
[51] Lin J L,Mapes B E,Zhang M H,et al.Stratiform precipitation,vertical heating profiles,and the Madden-Julian oscillation[J].J Atmos Sci,2004,61(3):296-309
[52] Hendon H H,Liebmann B.Organization of convection within the Madden-Julian oscillation[J].J Geophys Res,1994,99(D4):8073-8083
[53] Chen S S,Houze Jr R A.Diurnal variation of deep convective systems over the tropical Pacific warm pool[J].Q J R Meteorol Soc,1997,123(538):357-388
[54] 任宏利,沈雨旸.MJO對我國天氣氣候影響的新事實(shí)[J].氣象科技進(jìn)展,2016,6(3):97-105
REN Hongli,SHEN Yuyang.A new look at impacts of MJO on weather and climate in China[J].Adv Meteor Sci Tech,2016,6(3):97-105
[55] Lau K M,Peng L.Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere.I:basic theory[J].J Atmos Sci,1987,44(6):950-972
[56] Wang B.Dynamics of tropical low-frequency waves-an analysis of the moist Kelvin wave[J].J Atmos Sci,1988,45(14):2051-2065
[57] Li C Y,Jia X L,Ling J,et al.Sensitivity of MJO simulations to diabatic heating profiles[J].Climate Dyn,2009,32(2):167-187
[58] Kim D,Sperber K,Stern W,et al.Application of MJO simulation diagnostics to climate models[J].J Climate,2009,22(23):6413-6436
[59] Fu X X,Lee J Y,Hsu P C,et al.Multi-model MJO forecasting during DYNAMO/CINDY period[J].Climate Dyn,2013,41(3/4):1067-1081
[60] Ling J,Bauer P,Bechtod P,et al.Global vs local MJO forecast skill of the ECMWF model during DYNAMO[J].Mon Wea Rev,2014,142(6):2228-2247
[61] Jiang X N,Waliser D E,Xavier P K,et al.Vertical structure and physical processes of the Madden-Julian oscillation:exploring key model physics in climate simulations[J].J Geophys Res,2015,120(10):4718-4748
[62] Ling J,Zhang C D,Bechtold P.Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean[J].J Atmos Sci,2013,70(9):2696-2712
[63] Zhao C B,Li T,Zhou T J.Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean[J].J Climate,2013,26(1):291-307
[64] Mei S L,Li T,Chen W.Three-type MJO initiation processes over the western equatorial Indian Ocean[J].Adv Atmos Sci,2015,32(9):1208-1216
[65] Lin J L,Kiladis G N,Mapes B E,et al.Tropical intraseasonal variability in 14 IPCC AR4 climate models.Part Ⅰ:convective signals[J].J Climate,2006,19(12):2665-2690
[66] Waliser D E,Lau K M,Kim J H.The influence of coupled sea surface temperatures on the Madden-Julian oscillation:a model perturbation experiment[J].J Atmos Sci,1999,56(3):333-358
[67] Sabeerali C T,Dandi R,Dhakate A R,et al.Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs[J].J Geophys Res,2013,118(10):4401-4420
[68] Jia X L,Li C Y,Ling J,et al.Impact of a GCMs resolution on MJO simulation[J].Adv Atmos Sci,2008,25(1):139-156
[69] Lin J L,Weickman K M,Kiladis G N,et al.Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs[J].J Climate,2008,21(18):4541-4567
[70] Hung M P,Lin J L,Wang W,et al.MJO and convectively coupled equatorial waves simulated by CMIP5 climate models[J].J Climate,2013,26(17):6185-6214
[71] Inness P M,Slingo J M,Woolnough S J,et al.Organization of tropical convection in a GCM with varying vertical resolution:implications for the simulation of the Madden-Julian oscillation[J].Clim Dyn,2001,17(10):777-793
[72] Duffy P B,Govindasamy B,Iorio J P,et al.High resolution simulations of global climate.Part Ⅰ:present climate[J].Clim Dyn,2003,21(5):371-390
[73] Zhang G J,Mu M Q.Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme[J].J Climate,2005,18(19):4046-4064
[74] Sperber K R,Slingo J M,Inness P M,et al.On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations[J].Clim Dyn,1997,13(11):769-795
[75] Ling J,Zhang C D,Wang S G,et al.A new interpretation of the ability of global models to simulate the MJO[J].Geophys Res Lett,2017,44(11):5798-5806
[76] Hayashi Y,Golder D.Tropical intraseasonal oscilations appearing in a GFDL general circulation model and FGGE data.Part Ⅰ:phase propagation[J].J Atmos Aci,1986,43(24):3058-3067
[77] Slingo J M,Sperber K R,Boyle J S,et al.Intraseasonal oscillations in 15 atmospheric general circulation models:results from an AMIP diagnostic subproject[J].Clim Dyn,1996,12(5):325-357
[78] Gualdi S,Navarra A,von Starch H.Tropical intraseasonal oscillation appearing in operational analyses and in a family of general circulation models[J].J Atmos Aci,1997,54(9):1185-1202
[79] 賈小龍,李崇銀.熱帶大氣季節(jié)內(nèi)振蕩及其數(shù)值模擬[M].北京:氣象出版社,2009
JIA Xiaolong,LI Chongyin.Tropical intraseasonal oscillation and its numerical simulation[M].Beijing:China Meteorological Press,2009
[80] 王坤,林朝暉.IAP大氣環(huán)流模式中不同積云參數(shù)化方案對 MJO 模擬的影響研究[C]∥創(chuàng)新驅(qū)動發(fā)展 提高氣象災(zāi)害防御能力:s13熱帶海洋氣象,2013
WANG Kun,LIN Zhaohui.Effects of different cumulus cloud parameterization schemes in IAP atmospheric circulation model on MJO simulation[M].Innovation Driven Development,Improving Meteorological Disaster Defense Capability:s13-Tropical Marine Meteorology,2013
[81] Ling J,Li C Y,Zhou W,et al.Effect of boundary layer latent heating on MJO simulations[J].Adv Atmos Sci,2013,30(1):101-115
[82] Flatau M,F(xiàn)latau P J,Phoebus P,et al.The feedback between equatorial convection and local radiative and evaporative processes:the implications for intraseasonal oscillations[J].J Atmos Aci,1997,54(19):2373-2386
[83] 李薇,郭裕福,張學(xué)洪.熱帶大氣季節(jié)內(nèi)振蕩研究進(jìn)展:觀測、動力機(jī)制和數(shù)值模擬[J].地球科學(xué)進(jìn)展,2001,16(1):72-78
LI Wei,GUO Yufu,ZHANG Xuehong.Proceeding of observation,dynamics and numerical simulation studies on Madden-Julian oscillation[J].Adv Earth Sci,2001,16(1):72-78
[84] Inness P M,Slingo J M.Simulation of the Madden-Julian oscillation in a coupled general circulation model.Part Ⅰ:comparison with observations and an atmosphere-only GCM[J].J Climate,2003,16(3):345-364
[85] Hendon H H.Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model[J].J Atmos Sci,2000,57(24):3939-3952
[86] Liess S,Bengtsson L,Arpe K.The intraseasonal oscillation in ECHAM4.Part Ⅰ:coupled to a comprehensive ocean model[J].Climate Dyn,2004,22(6/7):653-669
[87] Liess S,Bengtsson L.The intraseasonal oscillation in ECHAM4.Part Ⅱ:sensitivity studies[J].Climate Dyn,2004,22(6/7):671-688
[88] 李崇銀.南亞夏季風(fēng)槽(脊)和熱帶氣旋的活動與移動性 CISK 波[J].中國科學(xué)(B),1985,28(7):668-675
LI Chongyin.Actions of summer monsoon troughs (ridges) and tropical cyclones over south Asia and the moving CISK mode[J].Sci China Chem,1985,28(7):668-675
[89] Li C Y.A further inquiry on the mechanism of 30-60 day oscillation in the tropical atmosphere[J].Adv Atoms Sci,1993,10(1):41-53
[90] Li T,Zhao C B,Hsu P C,et al.MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011[J].J Climate,2015,28(6):2121-2135
[91] Wang B,Li T.Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system[J].J Atmos Sci,1994,51(11):1386-1400
[92] Matthews A J.Propagation mechanisms for the Madden-Julian oscillation[J].Quart J Roy Meteor Soc,2000,126(569):2637-2651
[93] Matthews A J.Primary and successive events in the Madden-Julian oscillation[J].Quart J Roy Meteor Soc,2008,134(631):439-453
[94] Seo K H,Kim K Y.Propagation and initiation mechanisms of the Madden-Julian oscillation[J].J Geophys Res,2003,108(D13):4384
[95] Hsu H H,Lee M Y.Topographic effects on the eastward propagation and initiation of the Madden-Julian oscillation[J].J Climate,2005,18(6):795-809
[96] Jiang X A,Li T.Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean[J].J Climate,2005,18(18):3777-3795
[97] Seo K H,Kumar A.The onset and life span of the Madden-Julian oscillation[J].Theor Appl Climatol,2008,94(1/2):13-24
[98] Bladé I,Hartmann D L.Tropical intraseasonal oscillations in a simple nonlinear model[J].J Atmos Sci,1993,50(17):2922-2939
[99] Hu Q,Randall D A.Low-frequency oscillation in radiative-convective systems[J].J Atmos Sci,1993,51(8):1089-1099
[100] Raymond D J.Thermodynamic control of tropical rainfall[J].Quart J Roy Meteor Soc,2000,126(564):889-898
[101] Sobel A H,Gildor H.A simple time-dependent model of SST hot spots[J].J Climate,2003,16(23):3978-3992
[102] Zhang G,Song X L.Interaction of deep and shallow convection is key to Madden-Julian oscillation simulation[J].Geophys Res Lett,2009,36 (9):269-277
[103] Maloney E,Sobel A H,Hannah W M.Intraseasonal variability in an aquaplanet general circulation model[J].J Adv Model Earth Syst,2010,2(2),DOI:103894/JAMES.201025
[104] Li T,Tam F,F(xiàn)u X H.Causes of the intraseasonal SST variability in the tropical Indian Ocean[J].Atmos Ocean Sci Lett,2008,1(1):18-23
[105] Sobel A,Wang S G,Kim D.Moist static energy budget of the MJO during DYNAMO[J].J Atmos Sci,2014,71(11):4276-4291
[106] Wang S G,Sobel A H,Zhang F Q,et al.Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution[J].J Climate,2015,28(6):2097-2119
[107] Seo K H,Song E J.Initiation of boreal summer intraseasonal oscillation:dynamic contribution by potential vorticity[J].Mon Wea Rev,2012,140(6):1748-1760
[108] Hsu H H,Hoskins B J,Jin F F.The 1985/86 intraseasonal oscillation and the role of the extratropics[J].J Atmos Sci,1990,47(7):823-839
[109] Matthews A J,Kiladis G N.The tropical-extratropical interaction between high-frequency transients and the Madden-Julian oscillation[J].Mon Wea Rev,1999,127(5):661-677
[110] Pan L L,Li T.Interactions between the tropical ISO and midlatitude low-frequency flow[J].Climate Dyn,2008,31(4):375-388
[111] Ray P,Zhang C D,Dudhia J,et al.A numerical case study on the initiation of the Madden-Julian oscillation[J].J Atmos Sci,2009,66:310-331
[112] Ray P,Li T.Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state[J].J Atmos Sci,2013,70:876-893
[113] Lim H,Chang C P.A theory for midlatitude forcing of tropical motions during winter monsoons[J].J Atmos Sci,1981,38:2377-2392
[114] Wang L,Kodera K,Chen W.Observed triggering of tropical convection by a cold surge:implications for MJO initiation[J].Quart J Roy Meteor Soc,2012,138(668):1740-1750
Abstract The Madden-Julian Oscillation (MJO) is a dominant component of tropical variability at intraseasonal time scales.The activities of the MJO convection have important impacts on weather and climate systems in many parts of the world.The study of the MJO therefore represents one of the frontiers of atmospheric science.Since the convective initiation is the least understood aspect of MJO,this review aims to synthesize and summarize studies of convective initiation of the MJO include but are not limited to:its observed precursor signals,the numerical simulations,and the mechanisms.The focuses of ongoing research and unsolved issues related to MJO initiation are also presented.
Key words Madden-Julian oscillation;convection;MJO initiation;dynamic mechanisms;numerical simulation