亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        尋找球心
        ——四面體外接球問題的關(guān)鍵

        2018-05-26 03:13:28河南省許昌高中教研處趙小強
        中學(xué)數(shù)學(xué)雜志 2018年9期
        關(guān)鍵詞:外心球心外接圓

        ☉河南省許昌高中教研處 趙小強

        縱觀高考題中空間幾何體外接球問題,出現(xiàn)最多的就是四面體的外接球問題了.各類問題最終聚焦在球的半徑的計算上,但計算半徑的前提卻都要回答一個問題——球心在哪兒?不同的問題尋找球心的方法也不盡相同,下面我們就一起去看看四面體外接球球心的尋找攻略吧.

        一、四面體是正三棱錐

        例1 已知正三棱錐P-ABC,PA=a,AB=b,求正三棱錐的外接球的半徑R.

        解:過P作PH⊥平面ABC,垂足為H,則H是△ABC的重心(中心),則P-ABC的外接球球心O一定在直線PH上.

        (1)如圖1,當(dāng)O在線段PH上,連接HC,OC,則OP=OC=R.

        圖1

        (3)如圖2,當(dāng)O在PH延長線上時,

        綜上,正三棱錐的外接球半徑為

        圖2

        特別地,當(dāng)a=b時,即四面體PABC為正四面體時,

        二、四面體是三組對棱分別相等的四面體

        例2 已知四面體ABCD中,AB=CD=a,AD=BC=b,AC=BD=c,求四面體ABCD的外接球的半徑R.

        解:由于三組對棱分別相等,可以考慮把此四面體置入一個長方體中,如圖3所示.

        則長方體的外接球與四面體的外接球是同一個球(球可以由不共面的四點確定).

        設(shè)長方體的長、寬、高分別為m,n,p.

        圖3

        三、四面體含有兩個共斜邊的直角三角形

        例3 已知四面體ABCD,∠BAD=∠BCD=90°,求四面體ABCD的外接球半徑R.

        解 :在Rt△BAD中,因為∠BAD=90°,Rt△BCD中,∠BCD=90°,所以BD為公共斜邊,由直角三角形的性質(zhì),BD中點O到A,B,C,D四點距離相等,即O為四面體ABCD的外接球球心,所以

        四、四面體存在兩個面相互垂直

        這種問題又可細分為兩種情況,第一種情況為有一條棱垂直于四面體的一個面.第二種情況為僅有兩個面垂直,而不存在棱與面垂直.

        例4 四面體ABCD,AD⊥平面BCD,AD=a,BC=b,CD=c,BD=d,求其外接球的半徑R.

        解:由于AD⊥平面BCD,所以把四面體ABCD補成直三棱柱AEF-DBC(如圖4),設(shè)M,N分別為△AEF,△BCD的外心,則球心O位于MN連線中點,連接OC,NC,構(gòu)造Rt△ONC,則R=OC,NC為△BCD外接圓半徑r.

        ON=,在△BCD中運用余弦定理及正弦定理可求出r.

        圖4

        特別地,①當(dāng)△BCD滿足∠BDC=90°時,可得AD,BD,CD兩兩垂直,于是可把四面體ABCD視為長方體一部分,從而轉(zhuǎn)化為長寬高分別為d,c,a的長方體的外接球問題可得

        ②當(dāng)△BCD滿足∠BCD=90°或∠DBC=90°時,轉(zhuǎn)化為第三類問題,從而可得

        例5 四面體ABCD,平面ABD⊥平面BCD.AB=a,BC=b,CD=c,DA=d,BD=e,求此四面體的外接球半徑R.

        解:設(shè)△BCD的外心為M,△ABD的外心為N,BD的中點為P,根據(jù)球的幾何性質(zhì),球心O必然在過M且垂直于平面BCD的直線與過N且垂直于面ABD的直線交點處.

        設(shè)△ABD外接圓半徑為r1,△BCD半徑為r2.

        以上,我們列舉了幾種特殊情形的四面體尋找外接球球心的方法.事實上,任何一個四面體均有外接球,而外接球球心都是在過相鄰兩面的外心且垂直于相應(yīng)面的垂線的交點,也都是可以求出的,但由于運算量太大,在命題時缺乏實際價值,我們一般不去考慮.H

        猜你喜歡
        外心球心外接圓
        直擊多面體的外接球的球心及半徑
        用向量法證明三角形的外心、內(nèi)心和垂心
        值得加味的三角形的“四心”
        復(fù)平面上三角形的外心公式的一種特殊形式
        歐拉不等式一個加強的再改進
        將相等線段轉(zhuǎn)化為外接圓半徑解題
        ?如何我解決幾何體的外接球問題
        僅與邊有關(guān)的Euler不等式的加強
        例析確定球心位置的策略
        對三角形外心和內(nèi)心的向量表示的探究
        狠狠的干性视频| 一本色道久久综合亚州精品| 精品久久一区二区三区av制服| 日韩大片高清播放器大全| 乱人伦中文无码视频在线观看| 久久久久亚洲AV无码专| 国产99视频一区二区三区| 国产毛女同一区二区三区| 岳好紧好湿夹太紧了好爽矜持| 亚洲午夜久久久久久久久久| 日韩人妻无码一区二区三区久久99 | 日本av一区二区三区视频| 色噜噜狠狠狠综合曰曰曰| 国产又黄又爽视频| 少妇激情一区二区三区久久大香香| 免费在线观看av不卡网站| 亚洲人成无码网站在线观看| 欧美午夜精品久久久久久浪潮| 91精品国产色综合久久不| 国产精华液一区二区三区| 天堂aⅴ无码一区二区三区 | 亚洲国产一区久久yourpan| 国产精品性色av麻豆| 国产福利视频在线观看| 中文字幕在线免费| 国产精品污一区二区三区在线观看 | 国产高清不卡在线视频| 精品人妻系列无码人妻漫画| 国产99视频精品免视看9| 成年女人在线观看毛片| 乳乱中文字幕熟女熟妇| 国产精品9999久久久久仙踪林| 十八岁以下禁止观看黄下载链接 | 夜夜爽一区二区三区精品| 又色又爽又黄的视频网站| 那有一级内射黄片可以免费看| 亚洲人成电影在线播放| 传媒在线无码| 亚洲av综合日韩精品久久| 亚洲第一最快av网站| 欧美日韩亚洲成人|