馬燕 郭莉娜 劉漪淪
成都醫(yī)學院第一附屬醫(yī)院燒傷整形外科(成都 610500)
抑郁癥是一種常見的、反復發(fā)作的重性精神疾病,其臨床表現(xiàn)為情緒低落、自卑以及對日常令人愉快的活動失去興趣[1],具有顯著高于常人的自殺傾向[2]。抑郁癥的發(fā)病率在全球范圍呈上升趨勢,對人類健康產生越來越多的負面影響與社會負擔。研究[3-6]表明,抑郁癥的發(fā)病,與遺傳、免疫及環(huán)境因素相關,且多種因素常常相互作用,其關鍵機制因影響因素的復雜性,至今未能闡明,其防治仍是目前臨床面臨的難題。近年來,腸道菌群與疾病關系的相關研究發(fā)現(xiàn),為抑郁癥的治療帶來新的視野。動物實驗顯示,腸道菌群改變可通過炎癥反應、下丘腦—垂體—腎上腺軸(hypothalamus?pituitary?adrenal axis,HPA)或神經遞質的信號傳遞改變中樞神經系統(tǒng)生化特性,以誘發(fā)焦慮行為[7]。本文對腸道菌群與抑郁癥發(fā)生發(fā)展中的作用機制研究進展進行綜述。
人類的腸道系統(tǒng)是一個復雜的微生態(tài)系統(tǒng)。腸道微生物群對腸道微環(huán)境的穩(wěn)定起到關鍵作用,分為對機體有利的益生菌(如雙歧桿菌屬、乳酸菌屬和類桿菌屬)和對機體不利的機會致病菌(如革蘭陰性需氧菌、厭氧病原菌、難辨梭狀芽抱桿菌和白色念珠酵母菌)。據(jù)估計,腸道微生物包括至少1 800屬和超過40 000種,這些微生物總共擁有的基因型超過人類基因型的100倍。研究表明,從門一級別腸道微生物主要是由厚壁菌門和類桿菌門組成,它們占所有腸道微生物的70%~75%。在成年人腸道系統(tǒng)中,厚壁菌門是類桿菌門的10.9倍。
雖然如此,腸道微生物的構成會根據(jù)每個個體的不同而有所差異,腸道微生物群實際是一個動態(tài)平衡系統(tǒng),受到多種因素的影響,如遺傳因素、年齡、飲食習慣、新陳代謝、地域區(qū)別和壓力等。因此新觀點認為腸道微生物代表著人類遺傳史和環(huán)境史,并且也是獲得疾病并影響其治療效果的關鍵性危險因素。
下丘腦-垂體-腎上腺軸(HPA)是一種神經內分泌應激反應系統(tǒng),對情緒障礙和功能疾病都起著重要作用。不同類型的隱匿性精神病患者均被診斷出HPA系統(tǒng)的改變,這些疾病包括:創(chuàng)傷后應激障礙、精神分裂癥、社交恐懼癥和抑郁癥。HPA軸受促腎上腺皮質激素釋放激素(corticotropin releasing hormone,CRH)和血管加壓素(vaso?pressin,AVP)調控。下丘腦室旁核神經元分泌CRH,通過垂體門脈系統(tǒng)促進神經垂體釋放促腎上腺皮質激素(adre?nocorticotrophic hormone,ACTH),ACTH通過體循環(huán)作用于腎上腺,促進腎上腺皮質分泌糖皮質激素(主要是皮質醇)和鹽皮質激素(主要是醛固酮)。HPA軸的負反饋調節(jié)機制也發(fā)揮重要作用。內源性糖皮質激素與糖皮質激素受體(glucocorticoid recepter,GR)和鹽皮質激素受體(miner?alocorticoid recepter,MR)的結合,對下丘腦和垂體分泌CRH和ACTH產生負反饋抑制作用。MR對血液中的糖皮質激素具有較高親和力,其功能與保持晝夜節(jié)律相關;GR對糖皮質激素的親和力較低,但在HPA軸的負反饋調節(jié)機制中發(fā)揮作用。糖皮質激素既通過快調節(jié)機制作用于海馬的GR,抑制ACTH釋放,也通過慢調節(jié)機制作用于垂體和腎上腺上的受體,抑制ACTH釋放及其興奮作用。糖皮質激素還能調節(jié)神經元生長以及海馬和杏仁核的樹突的增長與萎縮。因此,若HPA軸的平衡遭到破壞,則會導致一些精神性疾病的發(fā)生。
腸道微生物對神經內分泌細胞的成熟起到有利作用。微生物缺乏或者toll?like受體(TLRs)低表達均能導致腸道內神經內分泌細胞對病原體的應答反應[8]。MAHONY等把新生小鼠從母體分離后與脂多糖結合轉變成抑郁模型,采用16S rRNA測序技術發(fā)現(xiàn):與對照組相比,實驗組小鼠的血皮質酮和細胞因子(如TNF?α和TNF?γ)水平升高、內臟敏感性增加以及其糞便微生物組成發(fā)生改變。因此認為促腎上腺皮質激素和皮質酮與控制無菌小鼠處于適度壓力有關。實驗還發(fā)現(xiàn)給無菌小鼠模型植入雙歧桿菌后,由腎上腺皮質激素和皮質酮調節(jié)的應激反應發(fā)生變化。相反,給新生無菌小鼠植入致病性大腸桿菌則會增強HPA軸對壓力的應激反應。這些現(xiàn)象說明成年時期腸道微生物對早期應激反應起著重要作用。
腸道微生物引起應激反應改變的機制有可能與交感神經激活和腸道皮質醇及其微生物組成有關。位于腸道淋巴器周圍的去甲腎上腺素能神經激活有助于促進腸道細菌發(fā)揮腸道黏膜免疫細胞的作用[9]。在腸上皮注射腎上腺素可促進淋巴濾泡捕獲致病性細菌。去甲腎上腺素的釋放促進了腸道致病菌(如大腸桿菌)的生長并黏附于腸上皮。HPA軸激活引起的皮質醇分泌增多會導致腸道以及免疫系統(tǒng)的變化。皮質醇能改變腸道的通透性(通過增加通透性來提高具有免疫調節(jié)功能的微生物的循環(huán),例如LPS),影響腸道屏障功能以及促使腸道微生物組成成分更多的向內毒素轉變,例如類球菌屬、假丁酸弧菌屬和梭菌屬。BRAVO和他的同事們在實驗中觀察發(fā)現(xiàn)攝入益生菌產生的有利作用可被迷走神經切斷術抵消。因此他們認為腸道與大腦之間信息交流的傳入纖維是迷走神經。給無壓力小鼠攝入鼠李糖桿菌后表現(xiàn)為大腦GABAAα2和GABAB1b mRNA的部分依賴性改變,由此推測益生菌-鼠李糖桿菌減弱了應激行為(包括焦慮和抑郁),減少了皮脂酮的釋放。但這種神經化學和行為的改變在切斷迷走神經的小鼠身上完全消失[10]。
成年期的精神壓力能改變腸道微生物結構并引起菌群移位。實驗構建小鼠壓力模型,使其處于長期受壓狀態(tài),結果發(fā)現(xiàn)小鼠盲腸中的桿菌屬明顯減少,而梭菌屬明顯增多[11]。這些小鼠還表現(xiàn)為高水平的 IL?6和CCL?2?;悸圆豢深A知性應激抑郁(CMS)的成年小鼠是一種被公認的研究抑郁癥的模型,表現(xiàn)為血漿LPS、脂多糖結合蛋白和大腦LPS受體與TLR4水平升高[12]。當大腦組織中的15D?PGJ2減少時,導致IL?1β、COX?2、PG?E2升高和脂質過氧化。相反,使用革蘭陰性廣譜抗生素凈化腸道,大腦促炎癥因子、皮質酮、LPS以及15D?PGJ2的水平都會降低。
綜上,壓力狀態(tài)下HPA軸和交感神經系統(tǒng)的激活能夠破壞腸道通透性、改變腸道微生物的構成、增加免疫刺激劑中細菌細胞壁免疫成分(如LPS)的循環(huán)水平。這些細菌混合物能夠促進腸道與炎癥系統(tǒng)對壓力刺激作出應答,由此對大腦生化功能產生重大影響。相反地,腸道微生物和益生菌制劑能改變循環(huán)細胞因子的水平,顯著影響大腦功能。除此之外,腸道微生物與大腦的信息交流網(wǎng)絡也會明顯影響交感神經系統(tǒng)功能[13]。
人類的下消化道包括100萬億的微生物群,其中大部分是細菌。腸道微生物對宿主有以下好處:(1)保護宿主不受致病微生物侵害;(2)提供機體所需的基本營養(yǎng)物質;(3)有利于促進某些藥物代謝;(4)參與脂肪酸吸收與儲存[14]。微生態(tài)失調破壞了宿主的某些功能導致腸上皮屏障的免疫功能受損以致微生物移位。一些腸源性細菌產物可誘發(fā)行為的改變,例如短鏈脂肪酸。但最受關注的是脂多糖(LPS)對腸道-大腦軸的影響[15]。腸道-大腦軸是一個能使激素、神經系統(tǒng)和免疫信號一體化的雙向信息交流系統(tǒng),包括腸道微生物對大腦發(fā)育和功能的影響。LPS是革蘭陰性細菌細胞外膜上的一種結構蛋白。正常情況下,腸黏膜能阻止革蘭陰性菌和LPS進入體循環(huán)。但當上皮細胞間的緊密連接變得疏松時就會導致共生菌的移位,例如革蘭陰性菌從腸道移位至固有層或腸系膜淋巴結,繼而細菌與LPS又會從腸系膜淋巴結進入體循環(huán),尤其在免疫應答發(fā)生改變時更易發(fā)生。一旦進入血液系統(tǒng),LPS會通過與CD14?TLR4復合增加促炎癥細胞因子的釋放[16]。單核細胞、內皮細胞、小膠質細胞、星形膠質細胞和神經細胞被LPS引起的固有免疫反應(包括NF?κB,蛋白激酶通路)激活時,能表達TLR4。這使得外周和中樞促炎癥細胞因子增加,最終導致神經系統(tǒng)功能的改變[17]。值得注意的是,小腸的微生物是觸發(fā)連蛋白(zonulin)釋放的關鍵,zo?nulin是一種與腸道滲透壓有關的蛋白質[18]。連蛋白信號釋放導致激動蛋白細絲重排,誘發(fā)連接復合體蛋白質移位,以此來增加腸道的通透性。FASANO在自身免疫性和炎癥性疾病患者中發(fā)現(xiàn)了高水平的連蛋白。相反地,自身免疫性疾病如腸易激綜合征和偽膜性腸炎患者是重度抑郁癥患者(MDD)的并發(fā)癥,均表現(xiàn)出腸黏膜通透性功能障礙。
讓小鼠長期處于壓力狀態(tài),結果發(fā)現(xiàn)抑郁癥小鼠組與對照組相比alistipes明顯升高[19],同時在慢性疲勞綜合征患者[20]和 IBS[21]中也發(fā)現(xiàn) alistipes的升高。這說明了alistipes與炎癥反應有關,因此可以推斷alistipes通過炎癥反應通路對抑郁癥的發(fā)生產生影響。在抑郁癥患者中,由IgA和IgM介導的應答脂多糖(LPS)的炎癥反應會增強[22]。抑郁癥可能由循環(huán)細胞因子異常引起。一項臨床研究Meta分析[23]表明:抑郁癥患者炎癥因子IL?6和TNF?α較正常人高。并且,在小鼠中也發(fā)現(xiàn)腸道炎癥會誘發(fā)焦慮行為以及改變中樞神經系統(tǒng)生化特性。MAES等[24]人將112例MDD患者和28例正常人作為對照,結果發(fā)現(xiàn):與正常人相比,MDD患者血清IgM和IgA中位數(shù)的升高對腸道革蘭腸桿菌、蜂窩哈夫尼亞菌、綠膿桿菌、摩根氏菌、假單胞菌、克氏檸檬酸桿菌和肺炎克雷伯桿菌的LPS具有不利影響。這些現(xiàn)象說明:腸道共生菌的移位可激活免疫細胞從而誘發(fā)IgM和IgA的應答,這種現(xiàn)象在慢性抑郁癥病理生理過程中通過免疫通路的逐步放大效應發(fā)揮重要作用。
神經遞質的信號傳遞在抑郁癥的發(fā)生過程中起直接影響作用。近幾年,諸多文獻表明,抑郁癥的發(fā)生與γ-氨基丁酸(GABA)系統(tǒng)功能低下有關。GABA受體包括GABAA、GABAB和GABAC受體,不同類型受體在抑郁癥的發(fā)生發(fā)展過程中發(fā)揮不同作用。研究[25]發(fā)現(xiàn),抑郁癥患者小腦內GAD65、GAD67水平均下降,枕葉皮質和腦脊液中GABA濃度明顯降低。在實驗中還觀察到,敲除GABAB受體的GABAB1亞單位后小鼠表現(xiàn)出抗抑郁樣行為[26]。抑郁癥患者GABA能神功能減弱,降低了其對CRH能神經元的抑制,導致抑郁癥患者HPA軸活性過度增強[27]。研究表明[10]腸道細菌能產生GABA,并在小鼠中發(fā)現(xiàn)益生菌可通過GABA信號調節(jié)抑郁行為。顫桿菌的最終代謝產物是戊酸,戊酸在結構上與GABA相似并能與GABAα受體結合。因此推測含有戊酸或者代謝產物含有戊酸的微生物都與抑郁癥的發(fā)生有關。目前戊酸治療抑郁癥已應用于臨床。盡管已知戊酸是主要的短鏈脂肪酸之一,但是關于其起何種作用的研究到目前為止還不是很明確。
另一種與抑郁癥有關的信號通路是五羥色安能信號通路,五羥色安能在無菌小鼠紋狀體中的含量比在普通動物中高得多[28]。作為中樞神經系統(tǒng)關鍵神經遞質之一,五羥色安能與抑郁癥的發(fā)生密切相關,與其緊密相關的受體主要有5?HT1AR、5?HT2R、5?HT3R、5?HT6R和5?HT7R。五羥色安能與其亞型的異常表達是抑制癥發(fā)生的主要原因。研究表明,抑郁癥患者大腦內的五羥色安能受體較正常人偏低[29-31]。目前已普遍應用的抗抑郁藥SSRIs通過增加五羥色安能的數(shù)量起到治療抑郁癥的作用,這也充分證實了5?HT與抑郁癥的發(fā)生密切相關。
JIANG等[32]的研究納入了46例抑郁癥患者,其中29例為重度抑郁癥(active?MDD)。實驗觀察到17例接受抗抑郁藥物治療的患者(responded?MDD)和另外30例作為對照的正常人其腸道擬桿菌、變形菌和放線菌的水平均升高。與正常對照組相比active?MDD和responded?MDD組厚壁菌減少。MDD組腸桿菌和Alistipes升高,但是柔嫩菌減少了。值得注意的是Alistipes屬是吲哚陽性微生物,它能影響色氨酸的作用。色氨酸又是5羥色胺的前體,因此大量增加的Alistipes可能損害了腸道羥色胺系統(tǒng)的平衡。關于這一點,SAULNIER等人發(fā)現(xiàn)高水平的Alistipes與腸易激綜合征患者頻發(fā)腹痛有關,因此他猜測Alistipes還與腸道炎癥有關。與以厭氧菌占優(yōu)勢的健康個體相比,腸桿菌科更適應在有炎癥的腸道中生存。
越來越多的研究證實了腸道微生物對中樞神經系統(tǒng)功能的重要性。腸道內的微生物群落通過影響HPA軸、神經遞質、炎癥因子影響中樞神經系統(tǒng)功能見圖1。腸道微生物平衡遭到破壞,主要是益生菌的減少和機會致病菌的增加與抑郁癥的發(fā)生密切相關。反之,抑郁癥患者的腸道微生物成分發(fā)生變化或菌群發(fā)生移位。因此,通過調節(jié)腸道微生物菌群來改善中樞神經系統(tǒng)功能必將成為今后抑郁癥治療的新趨勢。更具體的機制還有待科學家們進一步深入探究。
圖1 腸道微生物與抑郁癥關系簡圖Fig.1 A schematic diagram of the relationship between gut microbiology and depression
參考文獻
[1]STUBBS B,STUBBS J,GNANARAJ S D,et al.Falls in older adults with major depressive disorder(MDD):a systematic re?view and exploratory meta?analysis of prospective studies[J].Int Psychogeriatr,2016,28(1):23?29.
[2]LEE Y J,KIM S,GWAK A R,et al.Decreased regional gray matter volume in suicide attempters compared to suicide non?at?tempters with major depressive disorders[J].Compr Psychiatry,2016,67:59?65.
[3]NASERIBAFROUEI A,HESTAD K,AVERSHINA E,et al.Correlation between the human fecal microbiota and depression[J].Neurogastroenterol Motil,2014,26(8):1155?1162.
[4]PAN Z,ROSENBLAT J D,SWARDFAGER W,et al.Role of proinflammatory cytokines in dopaminergic system disturbances,implications for anhedonic features of MDD[J].Curr Pharm Des,2017,23(14):2065?2072.
[5]WANG Y,SUN N,LIU Z,et al.Psychosocial mechanisms of serotonin transporter′s genetic polymorphism in susceptibility to major depressive disorder:mediated by trait coping styles and interacted with life events[J].Am J Transl Res,2016,8(2):1281?1292.
[6]SLYEPCHENKO A,MAES M,JACKA F N,et al.Gut microbi?ota,bacterial translocation,and interactions with diet:patho?physiological links between major depressive disorder and non?communicable medical comorbidities[J].Psychother Psycho?som,2017,86(1):31?46.
[7]WANG Y,KASPER L H.The role of microbiome in central ner?vous system disorders[J].Brain Behav Immun,2014,38:1?12.
[8]WANG H X,WANG Y P.Gut Microbiota brain Axis[J].Chin Med J,2016,129(19):2373?2380.
[9]LYTE M.Probiotics function mechanistically as delivery vehi?cles for neuroactive compounds:microbial endocrinology in the design and use of probiotics[J].Bioessays,2011,33(8):574?581.
[10] BRAVO J A,F(xiàn)ORSYTHE P,CHEW M V,et al.Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J].Proc Natl Acad Sci USA,2011,108(38):16050?16055.
[11] MACEDO D,F(xiàn)ILHO A J,SOARES C N,et al.Antidepres?sants,antimicrobials or both gut microbiota dysbiosis in depres?sion and possible implications of the antimicrobial effects of an?tidepressant drugs for antidepressant effectiveness[J].J Affect Disord,2017,208:22?32.
[12] LIU J,BUISMAN?PIJLMAN F,HUTCHINSON M R.Toll?like receptor 4:innate immune regulator of neuroimmune and neuro?endocrine interactions in stress and major depressive disorder[J].Front Neurosci,2014,8:309?309.
[13] CRYAN J F,DINAN T G.Mind?altering microorganisms:the impact of the gut microbiota on brain and behaviour[J].Nat?Rev Neurosci,2012,13(10):701?712.
[14] ARUMUGAM M,RAES J,PELLETIER E,et al.Enterotypes of the human gut microbiome[J].Nature,2011,473(7346):174?180.
[15] WU Y,F(xiàn)U Y,RAO C,et al.Metabolomic analysis reveals met?abolic disturbances in the prefrontal cortex of the lipopolysac?charide?induced mouse model of depression[J].Behav Brain Res,2016,308:115?127.
[16] COLLINS K H,PAUL H A,REIMER R A,et al.Relationship between inflammation,the gut microbiota,and metabolic osteo?arthritis development:studies in a rat model[J].Osteoarthritis Cartilage,2015,23(11):1989?1998.
[17] MARTIN?SUBERO M,ANDERSON G,KANCHANATAWAN B,et al.Comorbidity between depression and inflammatory bowel disease explained by immune?inflammatory,oxidative,and nitrosative stress;tryptophan catabolite;and gut?brain pathways[J].CNS Spectr,2016,21(2):184?198.
[18] FASANO A.Zonulin and its regulation of intestinal barrier func?tion:the biological door to inflammation,autoimmunity,and cancer[J].PhysiolRev,2011,91(1):151?175.
[19] BANGSGAARD BENDTSEN K M,KRYCH L,S?RENSEN D B,et al.Gut microbiota composition is correlated to grid floor in?duced stress and behavior in the BALB/c mouse[J].PLoS one 2012,7(10):e46231.
[20] FREMONT M,COOMANS D,MASSART S,et al.High?throughput 16S rRNA gene sequencing reveals alterations of in?testinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients[J].Anaerobe,2013,22:50?56.
[21] SAULNIER D M,RIEHLE K,MISTRETTA T A,et al.Gastro?intestinal microbiome signatures of pediatric patients with irrita?ble bowel syndrome[J].Gastroenterology,2011,141(5):1782?1791.
[22] MAES M.An intriguing and hitherto unexplained co?occur?rence:depression and chronic fatigue syndrome are manifesta?tions of shared inflammatory,oxidative and nitrosative(IO&NS)pathways[J].Prog Neuropsy?chopharmacol Biol Psy?chiatry,2011,35(3):784?794.
[23] YU X,JIANG X,ZHANG X,et al.The effects of fisetin on li?popolysaccharide?induced depressive?like behavior in mice[J].Metab Brain Dis,2016,31(5):1011?1021.
[24] MAES M,KUBERA M,LEUNIS J C,et al.Increased IgA and IgM responses against gut commensals in chronic depression:further evidence for increased bacterial translocation or leaky gut[J].J Affect Disord,2012,141(1):55?62.
[25] LUSSIER A L,ROMAY?TALLóN R,CARUNCHO H J,et al.Altered gabaergic and glutamatergic activity within the rat hip?pocampus and amygdala in rats subjected to repeated corticoste?rone administration but Not restraint stress[J].Neuroscience,2013,231:38?48.
[26] MOHLER H.The GABA system in anxiety and depression and its therapeutic potential[J].Neuropharmacology,2012,62(1):42?53.
[27] GAO S F,KLOMP A,WU J L,et al.Reduced GAD(65/67)immunoreactivity in the hypothalamic paraventricular nucleus in depression:a postmortem study[J].J Affect Disord,2013,149(1?3):422?425.
[28] DIAZ HEIJTZ R,WANG S,ANUAR F,et al.Normal gut mi?crobiota modulates brain development and behavior[J].Proc?Natl Acad Sci U S A ,2011,108(7):3047?3052.
[29] MASIRAN R,SIDI H,MOHAMED Z,et al.Female sexual dysfunction in patients with major depressive disorder(MDD)treated with selective serotonin reuptake inhibitor(SSRI)and its association with serotonin 2A?1438 G/A single nucleotide polymorphisms[J].2014,11(4):1047?1055.
[30] FARNIA V,HOJATITABAR S,SHAKERI J,et al.Adjuvant rosa damascena has a small effect on SSRI?induced sexual dys?function in female patients suffering from MDD[J].Pharmaco?psychiatry,2015,48(4?5):156?163.
[31] SERIPA D,PILOTTO A,PARONI G,et al.Role of the sero?tonin transporter gene locus in the response to SSRI treatment of major depressive disorder in late life[J].J Psychopharmacol,2015,29(5):623?633.
[32] JIANG H,LING Z,ZHANG Y,et al.Altered fecal microbiota composition in patients with major depressive disorder[J].Brain Behav Immun,2015,48:186?194.